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Abstract. We give a brief and biased survey of the past, present, and future
of research on the interface of theoretical computer science and game theory.

1 Introduction

By the end of the 20th century, the widespread adoption of the Internet and
the emergence of the Web had changed fundamentally society’s relationship
with computers. The primary role of a computer evolved from a stand-alone,
well-understood machine for executing software to a conduit for global commu-
nication, content-dissemination, and commerce. Two aftershocks of this phase
transition were inevitable: theoretical computer science would respond by for-
mulating novel problems, goals, and design and analysis techniques relevant for
Internet applications; and game theory, with its deep and beautiful study of
interaction between competing or cooperating individuals, would play a cru-
cial role. Research on the interface of theoretical computer science and game
theory, an area now known as algorithmic game theory (AGT), has exploded
phenomenally over the past ten years.

The central research themes in AGT differ from those in classical microeco-
nomics and game theory in important, albeit predictable, ways. Firstly in appli-
cation areas: Internet-like networks and non-traditional auctions (such as digital
goods and search auctions) motivate much of the work in AGT. Secondly in its
quantitative engineering approach: AGT research typically models applications
via concrete optimization problems and seeks optimal solutions, impossibility
results, upper and lower bounds on feasible approximation guarantees, and so
on. Finally, AGT usually adopts reasonable (e.g., polynomial-time) computa-
tional complexity as a binding constraint on the feasible behavior of system
designers and participants. These themes, which have played only a peripheral
role in traditional game theory, give AGT its distinct character and relevance.

Sections 24 touch on the current dominant research trends in AGT, loosely
following the organization of the first book in the field [94]; Section 5 highlights
a number of prominent open questions. We discuss only (a subset of the) topics
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studied by “the STOC/FOCS community”; see [4, 54, 79, 123] for alternative
perspectives on computer science and game theory.

2 Algorithmic Mechanism Design

Algorithmic mechanism design studies optimization problems where the un-
derlying data (such as a value of a good or a cost of performing a task) is a
priori unknown to the algorithm designer, and must be implicitly or explicitly
elicited from self-interested participants (e.g., via a bid). The high-level goal is
to design a protocol, or “mechanism”, that interacts with participants so that
self-interested behavior yields a desirable outcome.

There is a complex interaction between the way an algorithm employs elicited
data and participant behavior. For example, in a “first-price” sealed-bid auction
(where the winner pays its bid), bidders typically shade their bids below their
maximum willingness to pay, by an amount that depends on knowledge or beliefs
about the other bids. In the “second-price” or “Vickrey” variant [130], where
the winner pays only the value of the second-highest bid, each participant may
as well bid its true value for the good. (Do you see why?)

Nisan and Ronen [93] proposed the systematic study of what can and cannot
be efficiently computed or approximated when the problem data is held by self-
ish agents, and also coined the term “algorithmic mechanism design (AMD)”.
(See [76, 101, 119] for related contemporaneous work on combinatorial auctions
in the AT literature.) Auction design is the most obvious motivation for this
subfield, but there are many others. See [92] for a list of traditional economic
applications, together with [71] and [37] for overviews of two modern “killer ap-
plications” — keyword search auctions and spectrum auctions, respectively. The
economic literature on mechanism design is very rich (e.g., [60]), but AMD has
contributed in several ways. We concentrate here on its emphasis on complex-
ity bounds and worst-case approximation guarantees, but mention additional
aspects of AMD at the end of the section.

The technical core of AMD is the following deep question:

(Ql) what extent is “incentive-compatible” efficient computation fundamentally
less powerful than “classical” efficient computation?

To translate question (Q1) into mathematics, reconsider the Vickrey auction
for selling a single good. Each bidder ¢ has a private (true) willingness-to-pay v;
and submits to the auctioneer a bid b;. The auction comprises two algorithms:
an allocation algorithm, which picks a winner, namely the highest bidder; and
a payment algorithm, which uses the bids to charge payments, namely 0 for the
losers and the second-highest bid for the winner. One easily checks that this
auction is truthful in the following sense: for every bidder i and every set of bids
by the other players, player ¢ maximizes its “net value” (value for the good, if
received, minus its payment, if any) by submitting its true private value: b; = v;.
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Moreover, no false bid is competitive with truthful bidding for all possible bids
by the other players. Assuming all players bid truthfully (as they should), the
Vickrey auction solves the social welfare maximization problem, in the sense
that the good is allocated to the participant with the highest value for it.

More generally, consider a feasible region {2, n participants each with a real-
valued private objective function ¢;(-) defined on {2, and a designer objective
function f(t1,...,t,). In the Vickrey auction, {2 has one outcome per partici-
pant (indicating the winner), ¢;(w) is v; if ¢ wins in w and 0 otherwise, and f is
>, ti(w). Classical optimization would ask: given the t;’s, optimize the objective
function f over {2. The AMD analog is only harder: simultaneously determine
the (private) t;’s and optimize the corresponding f over (2. Sometimes the lat-
ter problem is no more difficult that the former (as with the Vickrey auction)
— when is it strictly more difficult?

Characterizations and the Limits of Approzimation. Question (Q1) is the sub-
ject of intense study by the AGT community. We confine our discussion here
to mechanisms M that share the following properties with the Vickrey auc-
tion: M first asks each participant i for a “bid function” b;(-), hopefully iden-
tical to the private objective function ¢;(-); M then invokes an allocation al-
gorithm x(by,...,b,) and a payment algorithm m(by,...,b,) to determine an
outcome w and payments p1, ..., pn, respectively; and truthful reporting always
maximizes the resulting “utility” ¢;(w) — p; of a player, no matter what other
players do. We call such mechanisms simple.?2 The allocation algorithm of a
simple mechanism is essentially solving the classical optimization version of the
problem with known ¢;’s (assuming all players bid truthfully, as they should).

Call an allocation algorithm implementable if, for some cleverly chosen pay-
ment algorithm 7, coupling « with 7 yields a (truthful) simple mechanism. For
a single-good auction, if z is the “highest-bidder” allocation algorithm, then
defining 7 as in the Vickrey auction shows that z is implementable. If x is
the “second-highest bidder” allocation algorithm, then it is not implementable:
no payment algorithm can be matched with x to yield a truthful mechanism.
(This is not obvious but not hard to prove.) Thus some but not all algorithms
are implementable. We can mathematically phrase the question (Q1) as follows:
are implementable algorithms less powerful than arbitrary algorithms for solving
fundamental optimization problems?

This question is interesting for both polynomial-time and computationally
unbounded algorithms. There is a strong positive result in the latter scenario,
achieved by a far-reaching generalization of the Vickrey auction known as the
“VCG mechanism” (see e.g. [92]): for every mechanism design problem with a
sum objective (), t;(w), and weighted variants), the optimal (not necessarily
polynomial-time) allocation algorithm is implementable. This is not generally
the case for non-sum objectives [10, 93].

2 The usual term is “truthful, direct-revelation”. Our restriction to simple mechanisms is
partially but not fully without loss of generality; see Section 5.



24 T. Roughgarden

Far less is known about polynomial-time implementability. Most intrigu-
ing are the many mechanism design problems that are derived from an N P-
complete problem and for which the optimal allocation algorithm is imple-
mentable. For these, any separation between implementable and non-implementable
polynomial-time algorithms must be conditional on P # NP, and no such sepa-
ration is known. Any resolution of this issue would be conceptually and techni-
cally remarkable: either incentive-compatibility imposes no additional difficulty
for a massive class of important mechanism design problems, or else there is a
non-trivial way of amplifying (conditional) complexity-theoretic approximation
lower bounds using information-theoretic strategic requirements.

Understanding the reach of implementable algorithms generally involves two
interrelated goals: characterization theorems and approximation bounds (see
also [72]).

(Gpefully characterize the implementable allocation algorithms x for the prob-
lem.

(GRyove upper and lower bounds on the best-achievable approximation ratio of
an implementable algorithm (subject to polynomial running time, if desired).

The second goal quantifies the limitations of implementable algorithms using a
worst-case approximation measure. The first goal aims to reformulate the un-
wieldy definition of implementability into a form more amenable to (both upper
and lower) approximation bounds. Versions of the second goal pervade modern
algorithmic research: for a given “constrained computational model”, where the
constraint can be either computational (as for polynomial-time approximation
algorithms) or information-theoretic (as for online algorithms), quantify its lim-
itations for optimization and approximation. Goal (G1) reflects the additional
difficulty in AMD that even the “computational model” (of implementable al-
gorithms) induced by strategic constraints is poorly understood — for example,
determining whether or not a given algorithm is online is intuitively far easier
than checking if one is implementable.

Single-Parameter Mechanism Design. This two-step approach is vividly il-
lustrated by the important special case of single-parameter problems, where
goal (G1) has been completely resolved. A mechanism design problem is single-
parameter if all outcomes are real n-vectors and participants’ private objective
functions have the form ¢;(w) = v;w; for a private real number v; (the “sin-
gle parameter”); w; and v; can be thought of as the quantity received and the
value-per-unit of a good, respectively. (A single-item auction is the special case
in which each w is a standard basis vector.) An algorithm for a single-parameter
problem is monotone if a greater value begets a greater allocation: increasing
the value of a v; (keeping other v;’s fixed) can only increase the ith component
of the computed solution. For example, the “highest bidder” allocation algo-
rithm for a single-good auction is monotone, while the “second-highest bidder”
allocation algorithm is not. More generally, monotonicity characterizes imple-
mentability for single-parameter problems.
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Theorem 1 ([10, 90, 105]). An algorithm for a single-parameter mechanism
design problem is implementable if and only if it is monotone.

Theorem 1 should be viewed as a useful solution to the first goal (G1), and
it reduces implementable algorithm design to monotone algorithm design. An
analogous characterization applies to randomized algorithms, where the mono-
tonicity and truthfulness conditions concern expected allocations and expected
participant utilities, respectively [10].

Archer and Tardos [10] were the first to systematically study approximation
in single-parameter mechanism design problems. Among other contributions,
they identified a natural candidate problem for a conditional separation be-
tween implementable and non-implementable polynomial-time approximation
algorithms: minimizing the makespan of parallel related machines with pri-
vate machine speeds. (In a scheduling context, each player is a machine with
a private speed s; = —1/v;, allocations describe the sum of job processing
times assigned to each machine, and monotonicity dictates that declaring a
slower speed can only decrease the amount of work received.) The problem ad-
mits an (exponential-time) implementable optimal algorithm, but all classical
polynomial-time approximation algorithms for it (e.g., the PTASes in [43, 58])
are not monotone and hence not implementable [10]. Archer and Tardos [7, 10]
devised a randomized monotone 2-approximation algorithm for the problem,
and several subsequent papers gave monotone deterministic approximation al-
gorithms (see Kovdcs [70] for the best bound of 2.8 and references). Very re-
cently, Dhangwatnotai et al. [40] proved that, allowing randomization, mono-
tone polynomial-time algorithms are competitive with arbitrary polynomial-
time algorithms for makespan minimization.

Theorem 2 ([40]). There is a monotone randomized PTAS, and a correspond-
ing truthful in expectation mechanism, for makespan minimization on parallel
related machines.

Whether or not there is a conditional separation between implementable and
arbitrary polynomial-time algorithms remains open. In light of Theorem 2,
the most likely candidate problems for obtaining such a separation are multi-
parameter; we discuss these next.

Multi- Parameter Mechanism Design. Many important mechanism design prob-
lems are not single-parameter. Combinatorial auctions, in which each partici-
pant aims to acquire a heterogeneous set of goods and has unrelated values for
different sets, are a practical and basic example. (See [24, 38| for much more
on the topic.) Multi-parameter mechanism design is complex and our current
understanding of goals (G1) and (G2) is fairly primitive for most problems of
interest. Because of its importance and bounty of open questions, the subject
has been a hotbed of activity over the past few years; we briefly indicate the
primary research threads next.

New characterizations of implementable algorithms are useful (and possibly
essential) for understanding their approximation capabilities, and are interest-
ing in their own right. Rochet’s Theorem [107] is a classical characterization of
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implementable algorithms in terms of a certain shortest-path condition known
as cycle monotonicity (see [132]) that is general but difficult to use to prove
upper or lower approximation bounds (see [74] for an exception). Archer and
Kleinberg [8] give a promising reformulation of Rochet’s Theorem that could
lend itself to new approximation bounds. Saks and Yu [118] show that in the
common special case where the t;’s are drawn from convex sets, implementabil-
ity is equivalent to a simpler 2-cycle condition known as weak monotonicity; see
also [8, 87] for new alternative proofs and [85] for a recent analog in discrete
domains.

But what kinds of algorithms meet these technical conditions? The answer
depends on the “richness” of the domain in which the private information (the
t;’s) lie — richer domains possess more potentially profitable false declarations,
making the space of implementable algorithms more highly constrained. For the
extreme case of “unrestricted domains”, where {2 is an abstract outcome set
and the t;’s are arbitrary real-valued functions on {2, Robert’s Theorem [106]
states that there are almost no implementable algorithms: only the VCG-like
“affine maximizers”, all minor variants on the algorithm that always chooses the
outcome maximizing ) . t;(w). This should be viewed as a negative result, since
affine maximizers have limited polynomial-time approximation capabilities in
most important problems (see e.g. [41]). However, applications usually involve
more structured domains. This point motivates an important research agenda,
still in its embryonic stages, to identify the types of domains for which Robert’s
Theorem holds (see [100] for a surprising new example) and characterize the
additional implementable mechanisms for domains in which Robert’s Theorem
breaks down (see [20, 73] and [42, 33] for partial but highly non-trivial results
on combinatorial auctions and machine scheduling, respectively).

The design and analysis of good truthful multi-parameter mechanisms has
proceeded apace despite our limited understanding of implementability. Much of
this research has coalesced around welfare maximization in combinatorial auc-
tions (see [24]), where (2 is the ordered partitions (St, . .., Sp) of a set of m goods
among the n players, the private information ¢; describes player i’s valuation
(willingness to pay) v;(.S) for each of the 2™ possible subsets S of goods, and the
optimization problem is to choose an allocation maximizing Y, v;(S;).> While
the aforementioned VCG mechanism truthfully solves this optimization problem
in exponential time, its polynomial-time approximability varies with the degree
of structure imposed on valuations. General valuations exhibit both “comple-
ments”, where goods are useful only when purchased in tandem (as with a pair
of tennis shoes), and “substitutes”, where goods are redundant (as with a pair of
tennis rackets). Early research focused on valuations with complements but no
substitutes and largely succeeded in designing implementable polynomial-time
algorithms with approximation ratios matching the best-possible ones for arbi-
trary polynomial-time algorithms (assuming P # NP) [76, 89]. Some of these

3 Valuations are typically modeled either as a “black box” that can be queried or implicitly
via a compact representation of size polynomial in m; an “efficient algorithm” in this context
has running time polynomial in both n and m.
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guarantees have been extended to general valuations (see [24]). Unfortunately,
with complements, the underlying welfare maximization problem includes the
Maximum Independent Set problem as a special case and thus reasonable ap-
proximation guarantees are possible only under strong additional assumptions
(as in [9, 17]).

Recent work has focused on classes of valuations with substitutes but no com-
plements, including subadditive valuations (satisfying v(S UT) < v(S) + v(T)
for all S, T) and submodular valuations (satisfying the stronger condition that
v(SU{j}) —v(S) <v(TU{j})—v(T) for all T C S and j ¢ S). Here, excellent
(constant-factor) approximation guarantees appear possible, though challenging
to obtain. Beginning in [75], a number of papers have proved constant-factor up-
per and lower bounds for polynomial-time approximation of welfare maximiza-
tion with complement-free valuations by non-implementable algorithms; see [47]
and [135] for two recent gems. Remarkably, no constant-factor implementable al-
gorithm is known for any such problem. For problems with a sum objective, wel-
fare maximization with complement-free bidders appears to be the most likely
candidate to separate the power of implementable and non-implementable algo-
rithms. See [100] for a very recent communication complexity-based separation,
a significant research breakthrough.

Further Aspects of AMD. This section focused on the design of computationally
efficient truthful mechanisms with provable approximation guarantees for three
reasons: it comprises a large portion of AMD research; there remain numerous
deep open questions on the topic; and appreciating its motivating questions and
key results requires minimal economics background. We emphasize that AMD
has several other thriving aspects, including: revenue-maximization with worst-
case guarantees, and related algorithmic pricing problems (surveyed in [56]);
revenue guarantees and cost-sharing mechanism design (see [61, 83]); online
mechanism design, in which participants arrive and depart over time (surveyed
in [102]); and new models and goals for Internet-suitable mechanism design,
such as distributed mechanisms (see [48]) and mechanisms restricted to use
little [84] or no [57, 78, 122] payments.

3 Quantifying Inefficiency and the Price of Anarchy

The truthful mechanisms studied in Section 2 are strategically degenerate in
that the best course of action of a player (i.e., truthtelling) does not depend
on the actions taken by the others. This was possible because a designer (like
a search engine owner) had tremendous control over the game being played.
Strategic games that occur “in the wild” are rarely so well behaved. Even in a
design context, when the designer cannot directly dictate the allocation of re-
sources (such as traffic rates or routing paths in a large network), dependencies
between different players’ optimal courses of action are generally unavoidable,
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and these dependencies usually preclude exact optimization of standard ob-
jective functions. This motivates adopting an equilibrium concept — a rigorous
proposal for the expected outcome(s) of a game with self-interested participants
— and an approzimation measure that quantifies the inefficiency of a game’s
equilibria, in order to address the following basic question:

(QRRen, and in what senses, are game-theoretic equilibria guaranteed to approz-
imately optimize natural objective functions?

Such a guarantee implies that imposing additional control over the system is
relatively small, and is particularly reassuring when implementing an optimal
solution is infeasible (as in a typical Internet application).

We only address this question for the most popular modeling choices (Nash
equilibria and the price of anarchy, respectively) and the most well-studied
application area (routing games). The end of the section provides pointers to
some of the many other results in the area.

Routing with Congestion. General tight bounds on the inefficiency of equilibria
were first proved in a model of “selfish routing” [115]. The model is originally
from [18, 136] and is thoroughly discussed in [110]; the price of anarchy was
originally suggested in [69] for a scheduling model, results on which are surveyed
in [131].

Consider a directed multicommodity network — a directed graph with fixed
flow rates between given source-sink vertex pairs — in which selfish users choose
paths to minimize individual cost. Edge costs are congestion-dependent, with
ce(fe) denoting the cost incurred by flow on edge e when there are f. units of
such flow. In an equilibrium, each selfish user with source s; and sink ¢; chooses
an s;-t; path P that minimizes ) p cc(fe), given the routing selections of the
other users. Such games are strategically non-trivial in that the routing decision
of one user can alter the optimal path for another.

To keep things simple, assume that each selfish user controls a negligible
fraction of the overall traffic, and that all edge cost functions are continuous
and non-decreasing. Equilibrium flows are then, by definition, those on which
all flow is routed on shortest paths, given the congestion: fp > 0 for a path P
implies ) . p ce(fe) is minimum over all paths with the same source and des-
tination (if not, some selfish users using this path would switch to a cheaper
one). All equilibrium flows are interchangeable in that they have equal cost
— Y o Ce(fe)fe, as in classical minimum-cost flow — and one is guaranteed to
exist [18].

For example, in a “Pigou-like network” (named after [103]), r units of selfish
users decide between two parallel edges e; and es connecting a source s to a
sink ¢. Suppose the second edge has some cost function ca(+), and the first edge
has a constant cost function ¢; everywhere equal to ca(r). Such networks are
strategically trivial, just like the simple mechanisms of Section 2: the second
edge always has no larger cost than the first, even in the worst case when
it is fully congested. For this reason, routing all flow on the second edge is
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an equilibrium. This equilibrium in generally suboptimal, in that it fails to
minimize the cost ) . p ce(fe) over all feasible flows. For example, if 7 = 1 and
co(x) = z, the equilibrium flow has cost 1, while splitting the traffic equally
between the two edges yields an (optimal) flow with cost 3/4. The latter flow is
not an equilibrium because of a “congestion externality”: a selfish network user
routed on the first edge would switch to the second edge, indifferent to the fact
that this switch (slightly) increases the cost incurred by a large portion of the
population.

The price of anarchy (POA) of such a selfish routing network is the ratio
of costs of an equilibrium and an optimal flow — 4/3 in the example above.
The closer the POA is to 1, the lesser the consequences of selfish behavior.
Simple exploration of Pigou-like networks suggests that, at least in this simple
family of examples, the POA is governed by the “degree of nonlinearity” of the
cost function cg; in particular, the POA can be arbitrarily large in Pigou-like
networks with unrestricted cost functions. A key result formalizes and extends
this intuition to arbitrary multicommodity networks: among all multicommodity
networks with cost functions lying in a set C (e.g., bounded-degree polynomials
with nonnegative coeflicients), the largest-possible POA is already achieved in
Pigou-like networks [109]. Conceptually, complex topologies do not amplify the
worst-case POA. Technically, this reduction permits the easy calculation of tight
bounds on the worst-case POA in most interesting cases. For example, the POA
of every multicommodity selfish routing network with affine cost functions (of
the form c.(fe) = aefe + be for ae,b. > 0) is at most 4/3, matching the lower
bound noted above. See [113, 112] for recent surveys detailing these and related
results.

While there is no explicit design aspect to these POA bounds, they nicely
justify a common rule of thumb used in real-life network design and manage-
ment: overprovisioning networks with extra capacity ensures good performance.
This postulate was first formalized mathematically and proved in [115]. Here
we provide a conceptually similar but technically different result, which is a
special case of the POA bounds in [109] (see also [110, §3.6]). Suppose ev-
ery edge e of a network has a capacity u. and a corresponding cost function
ce(fe) =1/(ue — fe). (If fe > ue, we interpret the cost as infinite.) This is the
standard M/M/1 queueing delay function with service rate ., a common model
in the network literature (e.g. [19]). We say the network is §-overprovisioned for
B € (0,1) if, at equilibrium, at least a § fraction of each edge’s capacity remains
unused. The following tight bound on the POA holds for such networks.
Theorem 3 (Consequence of [109]). The POA of a (3-overprovisioned net-
work is at most (1 + ﬁ)

Thus even 10% extra capacity reduces the price of anarchy of selfish routing to
roughly 2.

Designing for Good Equilibria. In the same spirit as mechanism design and our
prescriptive interpretation of Theorem 3, we would like to use inefficiency mea-
sures such as the POA to inform how to design systems to have good equilibria.
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Two variants of this idea have been explored in a number of different models:
improving the POA of a given game (see [113] for a survey of selfish routing
examples), and designing a family of games to minimize the worst-case POA.
We focus on the latter idea, first proposed in [32], where a number open issues
remain. See [62, 117] for surveys of other work on this important topic.

We follow the network cost-allocation example in [27], which was motivated
by the network formation games of [6] (see [111, 127] for relevant surveys). As
in a selfish routing network, each player selects a path in a multicommodity
network to minimize its incurred cost. For technical convenience, we now as-
sume that each player controls a single (non-negligible) unit of flow and uses
a single path to route it. The key difference between the two models is the
cost structure. If f. units of flow use an edge e of a selfish routing network,
this creates total cost fe - ce(fe) which is distributed evenly among the edges’
users (for a per-unit cost of c.(fe)). In a network cost-allocation game, each
edge e has a fixed price p. for being used by one or more players — for in-
stalling infrastructure or leasing a large fixed amount of bandwidth, say — to
be somehow distributed among the edges’ users. The average per-player cost
of an edge is thus decreasing with the number of users, giving players an in-
centive to cooperate via shared paths. Our benchmark is the minimum-cost
way of connected all of the players’ source-sink pairs, a Steiner connectivity
problem (equivalent to the minimum-cost Steiner tree problem if all players
share a common sink vertex). An obvious question is: how should we distribute
costs to minimize the worst-case equilibrium efficiency loss over all networks?
This cost-allocation design decision does not affect the underlying optimization
problem, but it fundamentally determines the incentives, and hence the Nash
equilibria, in the resulting path selection game.

For example, Shapley cost-sharing dictates sharing each edge cost equally
among its users. So if k players choose paths Pi,..., Py, the cost incurred by
the ith player is . p pe/fe, where f. is the number of players choosing a path
including e. At a (pure-strategy) Nash equilibrium, no player can switch paths
to strictly decrease its cost. Shapley cost-sharing always leads to at least one
equilibrium [6], and generally to multiple equilibria. For example, in a network
of parallel links, all with costs strictly between 1 and k, every link corresponds
to a different Nash equilibrium (if all players use a link with price p, each player
pays only p/k < 1, and a unilateral deviation to a different link would cost more
than this). The POA is traditionally defined by the worst equilibrium [69], and
this example yields a linear lower bound for the worst-case POA of Shapley
cost-sharing (there is an easy matching upper bound). Can we do better?

The answer is different for undirected and directed networks. An alternative
to Shapley cost-sharing is ordered cost-sharing, a simple priority scheme: order
the players arbitrarily, with the first user of an edge (according to this order)
paying its full cost. Up to tie-breaking, there is a unique Nash equilibrium under
ordered cost-sharing: the first player chooses a shortest path between its source
and sink, the second player chooses a shortest path given the edges already
paid for by the first player, and so on. Indeed, the equilibria are in one-to-one
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correspondence to the possible outputs of well-studied greedy online algorithms
for Steiner connectivity problems [13, 59]. This correspondence implies that,
in undirected networks, ordered cost-sharing has exponentially better worst-case
POA than Shapley cost-sharing. There is also a matching lower bound.

Theorem 4 ([27]). In undirected cost-allocation games, ordered cost-sharing
attains the minimum-possible worst-case POA (up to constant factors).

The proof of Theorem 4 is highly non-trivial, and hinges on a complete classifica-
tion of the cost-sharing methods that are guaranteed to induce at least one Nash
equilibrium in all networks. These turn out to be precisely the finite “concate-
nations” of weighted Shapley values (in the sense of [65]); Shapley cost-sharing
is the special case of uniform weights and no concatenation, while ordered cost-
sharing arises from the concatenation of k different one-player (trivial) Shapley
values. No method of this type can outperform ordered cost-sharing by more
than a constant factor [27].

In directed networks, it is easy to show that all cost-sharing methods, includ-
ing ordered ones, have linear worst-case POA (like Shapley cost-sharing). We
can obtain a more refined comparison by analyzing the ratio of the best (instead
of the worst) Nash equilibrium and a minimum-cost solution, a quantity known
as the price of stability (POS). The worst-case POS of Shapley cost-sharing
in directed networks is precisely the kth Harmonic number Hj ~ Ink [6]. A
consequence of the classification above is that no other method has superior
worst-case POS (or POA).

Theorem 5 ([27]). In directed cost-allocation games, Shapley cost-sharing at-
tains the minimum-possible worst-case POS and POA.

Further Aspects of Quantifying Inefficiency. We have barely scratched the sur-
face of recent work on equilibrium efficiency analyses. Many different models
of routing games have studied from this perspective — following [108, 116],
often in the more abstract guise of “congestion games” — see [68, 112] for an
incomplete survey. See [94, Chapters 19-21] and [113] for overviews of efficiency
analyses in some other application domains. See [5, 31] for efficiency analyses of
equilibrium concepts other than Nash equilibria. See [15, 28, 66] for recent effi-
ciency guarantees in models that allow altruistic and/or malicious participants,
rather than only self-interested ones.

In addition to the aforementioned work on designing games with efficient
equilibria, a second current and important trend in the area is to prove POA-
type bounds under increasingly weak assumptions on the rationality of par-
ticipants. Recall that in Section 2, our only assumption was that participants
will make use of a “foolproof” strategy (one that dominates all others), should
one be available. This section implicitly assumed that selfish participants can
reach a Nash equilibrium of a game without such foolproof strategies, presum-
ably through repeated experimentation. This much stronger assumption has
been addressed in two different ways in the recent literature. The first is to
formally justify this assumption by positing natural experimentation strategies
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(or “dynamics”) and proving that they quickly reach a (possibly approximate)
equilibrium; see [14, 21, 30, 44, 50] for a sampling of examples. The second is
to prove POA-like guarantees on system performance that apply even if such
experimentation strategies fail to converge to an equilibrium. Remarkably, such
bounds exist in, for example, the selfish routing networks discussed in this sec-
tion; see [53, 86] and [22] for two different formalizations of this approach.

4 Complexity of Equilibrium Computation

Equilibrium concepts such as the Nash equilibrium obviously play a starring role
in game theory and microeconomics. If nothing else, a notion of equilibrium de-
scribes outcomes that, once reached, persist under some model of individual
behavior. In engineering applications we generally demand a stronger interpre-
tation of an equilibrium, as a credible prediction of the long-run state of the
system. But none the standard equilibrium notions or the corresponding proofs
of existence suggest how to arrive at an equilibrium with a reasonable amount
of effort. The Pavlovian response of any theoretical computer scientist would
be to pose the following queries.

(QBJhen can the participants of a game quickly converge to an equilibrium? More
modestly, when can a centralized algorithm quickly compute an equilibrium
outcome?

These questions are important for two reasons. Algorithms for equilibrium com-
putation can be useful practically, for example in game-playing (e.g. [52]) and
for multi-agent reasoning (see [124] for an introduction). Second, resolving the
computational complexity of an equilibrium concept has economic implications:
a polynomial-time algorithm for computing an equilibrium is a crucial step to-
ward establishing its credibility, while an intractability result casts doubt on its
predictive power (a type of critique dating back at least 50 years [104]).

There has been a frenzy of recent work on these questions, for many different
fundamental equilibrium concepts. Perhaps the most celebrated results in the
area concern the PP AD-completeness of computing mixed-strategy Nash equi-
libria in general games with two or more players [29, 39]. To briefly convey the
spirit of the area with a minimum of technical fuss, we instead discuss the com-
plexity of converging to and computing pure-strategy Nash equilibria in variants
of the routing games studied in Section 3. The end of the section mentions the
key differences between the two settings, as well as surveys of other central
equilibrium computation problems (such as market and correlated equilibria).

Pure Equilibria in Network Congestion Games. Recall the selfish routing net-
works of Section 3. The atomic variant is similar to the cost allocation games
of the section, in that each of k£ players controls a non-negligible fraction of
the overall traffic (say one unit each) and routes it on a single path. Each edge
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cost function ¢, : {1,2,...,k} — R +, describing the per-player cost along
an edge as a function of its number of users, is non-decreasing. Similarly to
the cost allocation games in Section 3, in a (pure-strategy) Nash equilibrium
(PNE) Pi,..., Pg, each player simultaneously chooses a best response: a path
with minimum-possible cost ), c.(fe), given the choices of others.

Best-response dynamics (BRD) is a simple model of experimentation by play-
ers over time: while the current outcome is not a PNE, choose an arbitrarily
player that is not using a best response, and update its path to a best response.
The update of one player usually changes the best responses of the others; for
this reason, BRD cycles forever in many games. In an atomic selfish routing net-
work, however, every iteration of BRD strictly decreases the potential function
D(Pr,...,P) = cn Zlf; ce(4), and thus BRD is guaranteed to terminate,
necessarily at a PNE [88, 108]. The number of distinct outcomes is generally
exponential in the size of the network and the number of players; does conver-
gence require polynomial or exponential time? Can we compute a PNE of such
a game by other means in polynomial time?

Computing a PNE of an atomic selfish routing game is a member of TFFN P
(“total functional NP), an intriguing class of search problems for which all
instances have a (short and efficiently verifiable) witness [82]. Intuitively, all
(well-formed) instances have a solution (in our case, a PNE); the only issue is
finding one in polynomial time.

Assume for the moment that the problem lies outside P; how would we
amass evidence for this fact? We can’t expect to prove that a T F'N P problem
is N P-hard in a meaningful sense; a short argument shows that such a reduction
would imply NP = coN P [82]. We also can’t expect to show that it is TF'N P-
complete, since TFN P is a “semantic class” — informally, there is no apparent
way to efficiently check membership in TFNP given (say) a Turing machine
description of a NP search problem — and thus unlikely to contain complete
problems (see [63, 125]). Our best option is therefore to define a “syntactic
subclass” of TFNP that contains as many problems as possible (including
computing PNE) while admitting complete problems.

We follow [114] in motivating the appropriate subclass. View the definition
of NP (existence of short witnesses and an efficient verifier) as a minimal con-
straint ensuring that a problem is solvable by brute-force search (enumerating
all possible witnesses) using polynomial time per iteration. Computing a PNE
of an atomic selfish routing games appears to be easier because there is a guided
search algorithm (namely BRD) that is guaranteed to find a legitimate witness.
What are the minimal ingredients that guarantee that a problem admits an anal-
ogous guided search procedure? This question was answered twenty years ago
in the context of local search algorithms, by the definition of the class PLS, for
“polynomial local search” [64]. A PLS problem is abstractly described by three
polynomial-time algorithms: one to accept an instance and output an initial
candidate solution; one to evaluate the objective function value of a candidate
solution; and one that either verifies local optimality (for some local neighbor-
hood) or else returns a new candidate solution with strictly better objective
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function value. PLS can be phrased as a syntactic class and it therefore admits
a generic complete problem [64]. The analog of Cook’s Theorem (a reduction
from the generic complete problem to a concrete one), proved in [64], states
that a particular local search problem for Boolean circuits called “Circuit Flip”
is PLS-hard. Circuit Flip has been used to establish the PLS-completeness of
many other problems (e.g. [121, 137]).

Solutions of a PLS problem correspond to local optima, and one can ob-
viously be found (generally in exponential time) via local search. Computing
a PNE of an atomic selfish routing game can be cast as a PLS problem by
adopting the potential function as an objective, and define two outcomes to
be neighbors if they differ in the path of only one player. Local minima then
correspond to the PNE of the game.

Solving a PLS problem means computing a locally optimal solution by what-
ever means (not necessarily by local search). For example, in single-commodity
atomic selfish routing games, where all players have the same source and sink, a
PNE can be computed in polynomial time using minimum-cost flow [46] despite
the fact that BRD (i.e., local search) can require an exponential number of itera-
tions [1]. If P = PLS, then given only an abstract description of a PLS problem
in terms of the three algorithms above, there is a generic, problem-independent
way of finding a “shortcut” to a locally optimal solution, exponentially faster
than rote traversal of the path suggested by the guided search algorithm. For
both this conceptual reason and its inclusion of many well-known and appar-
ent difficult problems, it is generally believed that P # PLS. PLS-hardness
should therefore viewed as strong evidence that a T F'N P search problem is not
solvable in polynomial time. Computing a PNE of a (multicommodity) atomic
selfish routing network is hard in this sense.

Theorem 6 ([46]). The problem of computing a PNE of an atomic selfish rout-
ing game is PLS-complete.

See also [1] for an alternative proof, and [1, 2, 46, 126] for further PLS-
completeness results on PNE.

The reductions in PLS-completeness results such as Theorem 6 nearly always
give unconditional exponential lower bounds on the worst-case running time of
the generic local search algorithm (or BRD, in the present context). Even if
P = PLS, the following corollary holds.

Corollary 1. There is a constant ¢ > 0 such that for arbitrarily large n, there
is an n-player atomic selfish routing network and an initial outcome from which
BRD requires 2°" iterations to converge to a PNE, no matter how players are
selected in each step of BRD.

Mizxed-Strategy Nash Equilibria and PPAD. A mized strategy is a probability
distribution over the pure strategies of a player. A collection of mixed-strategies
is a (mized-strategy) Nash equilibrium (MNE) if every player simultaneously
chooses a mixed strategy maximizing its expected utility, given the mixed strate-
gies chosen by the others. Resorting to mixed strategies is necessary to establish
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the existence of Nash equilibria in arbitrary finite games with two or more play-
ers [91], but they are not without conceptual controversy (see e.g. [96, §3.2]).
Regardless, computing an MNE of a finite game is clearly a central equilibrium
computation problem.

First consider the two-player (“bimatrix”) case, where the input is two m x n
payoff matrices (one for each player) with integer entries. There is a non-obvious
exponential-time algorithm for computing an MNE in bimatrix games, which
enumerates over all possible pairs of supports for the two players and solves a
linear system for each to check for a feasible solution (see e.g. [98, 114, 124]).
There is a still less obvious “guided search” algorithm, the Lemke-Howson (LH)
algorithm [77]; see [133] for a careful exposition. Its worst-case running time is
exponential [120]. The LH algorithm is a path-following algorithm in the spirit
of local search, but is not guided by an objective or potential function and thus
does not obviously prove that computing a MNE of a bimatrix game is in PLS.
A related but apparently different subclass of TF N P, called PPAD (for “poly-
nomial parity argument, directed version”), was defined in [97] to capture the
complexity of this and related problems (mostly from combinatorial topology,
such as computing approximate Brouwer fixed points). Its formal definition
parallels that of PLS, with a PPAD problem consisting of the minimal ingre-
dients (again easily phrased as three polynomial-time algorithms) necessary to
execute a LH-like search procedure. PP AD-hardness is viewed as a comparable
negative result to PLS-hardness (for the same reasons). Computing an MNE
of a bimatrix game is hard in this sense.

Theorem 7 ([29, 39]). The problem of computing an MNE of a bimatriz game
is PPAD-complete.

This hardness result trivially applies to games with any constant number of
players. It extends to computing a natural notion of an “e-approximate MNE”
for values of e as large as inverse polynomial [29], thus ruling out an FP-
TAS for computing e-approximate MNE (unless P = PPAD). Unlike PLS-
completeness results, PP AD-completeness results are not known to have im-
mediate unconditional consequences in the spirit of Corollary 1. However, a
lower bound on the convergence time of certain dynamics to an MNE was re-
cently proved in [55] (without relying on Theorem 7).

The proof of Theorem 7 is necessarily intricate because in the result is a
“Cook’s Theorem for PPAD” — while several PP AD-complete problems were
previously known [97], all of them have the flavor of “generic” complete prob-
lems, in which an instance includes a description of an arbitrary polynomial-
time algorithm. For example, instances of PPAD-complete fixed-point prob-
lems included an encoding of a polynomial-time algorithm that computes the
values of some continuous function restricted to a subdivided simplex. The
proof of Theorem 7 effectively encodes arbitrary computation in terms of a bi-
matrix game, so its sophistication should come as no surprise. Many of the first
“non-generic” PLS-complete problems required similarly intricate reductions
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(e.g. [121]). See [98] for a nice high-level survey of the proof of Theorem 7 and
the sequence of results that led to it.

Further Aspects of Equilibrium Computation. Another genre of equilibrium
computation problems bustling with activity is market or price equilibria —
prices for goods at which decentralized and selfish exchange “clears the mar-
ket”, yielding a Pareto efficient allocation of the goods. As with mixed Nash
equilibria, such equilibria exist under weak conditions [11] but their efficient
computation is largely open. The last five years have seen a number of new
polynomial-time algorithm (surveyed in [129] and [34]) and a few scattered
hardness results (see [34]), but many basic questions remain open (see [129]).

Back in finite games, equilibrium computation in extensive-form games —
specified by a game tree in which paths represent sequences of actions by the
various players and by nature, see e.g. [134] — was studied early on by the AI
community (surveyed in [67]) and more recently in the theoretical computer
science literature (e.g. [85]). Special classes of extensive-form games defined
in [36] are, along with some number-theoretic problems like factoring, among
the most prominent candidates for problems in (NP NcoNP) \ P (see [63]).
Other equilibrium concepts in finite games have also been studied recently. For
correlated equilibria [12], an equilibrium concept with fundamental connections
to no-regret learning algorithms (see [23]), sweeping positive algorithmic re-
sults are possible [99]. In repeated games, computing a Nash equilibrium is
polynomial-time solvable in two-player games [81] but PPAD-hard with three
or more players [25], despite the overwhelming number of equilibria guaranteed
by the “folk theorem” for such games.

5 Future Directions

The astonishing and accelerating rate of progress in algorithmic game theory,
nourished by deep connections with other areas of theoretical computer science
and a consistent infusion of new motivating applications, leaves no doubt that it
will continue to flourish for many years to come. There is presently a surplus of
challenging open questions across all three of the areas surveyed in Sections 2—4;
we record a small handful to prove the point.

We first mention some concrete problems that are well known in the AGT
community. A few in AMD include: prove better upper or lower bounds on the
achievable approximation guarantees of implementable algorithms for combina-
torial auctions (see [24] for a reasonably current survey); characterize the multi-
parameter domains for which affine maximizers are the only implementable
algorithms (see [100] for the latest developments); and develop some under-
standing of the power of randomization in polynomial-time implementability
(see [3] for an entry point). Some personal favorites involving equilibrium ef-
ficiency analyses are: determine the POA in atomic selfish routing networks
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with fractional routing and the POS in Shapley cost allocation games (see [35]
and [49], respectively, for partial results); develop a general analytical tech-
nique to extract tight efficiency loss bounds from potential functions and/or
variational inequalities (see [111]); and, in the spirit of [27], identify how to dis-
tribute delays (via an appropriate queuing policy) to minimize the worst-case
POA in selfish routing networks. Central open questions in equilibrium compu-
tation include the complexity of computing approximate mixed-strategy Nash
equilibria (see [26, 80, 128] for the state-of-the-art), the complexity of com-
puting market equilibria with reasonably general (concave) participant utility
functions (see [129]), and the complexity of the stochastic games in NPNcoN P
defined in [36] (see also [63]).

Speaking more informally and long-term, we expect that all areas of AGT will
(and should) grapple with appropriate models of agent behavior over the next
several years. Some type of non-worst-case behavioral assumption is inevitable
for systems with independent participants: all of the results described in this
survey, even the welfare guarantee of the simple Vickrey auction, depend on
such assumptions. AGT has minimized controversy thus far by adopting well-
known notions from traditional game theory, such as the Nash equilibrium. But
if traditional game theory applied “off the shelf” to modern computer science
applications, there would be no need for AGT at all. See [51] for a compelling ar-
gument — made over a decade ago but more appropriate than ever — about why
models of rationality and equilibrium concepts should be completely rethought
given the characteristics of an Internet-like strategic environment.

Behavioral assumptions are essential to address modern computer applica-
tions, yet are largely foreign to the mainstream “STOC/FOCS” mentality and
its emphasis on minimal assumptions and worst-case analysis. Can we retain
this unquestionably useful and well-motivated bias while expanding our field’s
reach? Of course: shining examples of worst-case guarantees coupled with novel
behavioral models have already begun to sprout in the AGT literature. For
example: mechanism implementation in undominated strategies [16] and in ex
post collusion-proof Nash equilibrium [95]; the price of total anarchy in [22]; and
the complexity of unit-recall games [45]. If history is any guide, these represent
only the vanguard of what promises to be a rich and relevant theory.
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