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Abstract. Motivated by the study of cellular automata algorithmic and
dynamics, we investigate an extension of ultimately periodic words to two-
dimensional infinite words: collisions. A natural composition operation on
tilings leads to a catenation operation on collisions. By existence of ape-
riodic tile sets, ultimately periodic tilings of the plane cannot generate all
possible tilings but exhibit some useful properties of their one-dimensional
counterparts: ultimately periodic tilings are recursive, very regular, and tiling
constraints are easy to preserve by catenation. We show that, for a given
catenation scheme of finitely many collisions, the generated set of collisions is
semi-linear.

1 Introduction

The theory of regular languages, sets of one-dimensional sequences of letters
sharing some regularities, has been well studied since the fifties. Finite state
machines [18], regular languages [14, 5], computing devices with bounded mem-
ory, monadic second-order logic [4]: various point of views lead to a same ro-
bust notion of regular languages. The concept extends to infinite words and
various other one-dimensional structures. Unfortunately, when considering two-
dimensional words – partial mappings from the plane Z2 to a finite alphabet –
such a robust common object fails to emerge: automata on the plane, picture
languages, second-order logic, all lead to different notions of regular languages
[9]. A first difficulty arises from the definition of a finite word: should it be any
partial mapping with a finite support? Should it be rectangles filled with letters?
Should it be any mapping with a connected support for some particular connex-
ity notion? A second difficulty arises from the complexity of two-dimensional
patterns: in the simplest case of uniform local constraints, i.e. tilings, knowing
whether a given finite pattern is a factor of a valid tiling (of the whole plane)
is already undecidable [1].

In the present paper, we investigate a particular family of recursive tilings
of the plane endowed with a catenation operation. Our definition of an ulti-
mately periodic tiling, a collision, is inspired by geometrical considerations on
one-dimensional cellular automata space-time diagrams and tilings. It can be
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thought of as an extension of the notion of ultimately periodic bi-infinite words
to two-dimensional words. These objects provide a convenient tool to describe
synchronization problems in cellular automata algorithmic.

One-dimensional cellular automata [13] are dynamical systems whose con-
figurations consist of bi-infinite words on a given finite alphabet. The system
evolves by applying uniformly and synchronously a locally defined transition
rule. The value at each position, or cell, of a configuration only depends on the
values of the cells on its neighborhood at the previous time step. To discuss
the dynamics or to describe algorithmic constructions, it is often convenient to
consider space-time diagrams rather than configurations. A space-time diagram
is a drawing of a particular orbit of the system: configurations are depicted one
on top of the other, from bottom to top, by successively applying the transition
rule, as depicted on Fig. 1. This representation permits to draw away the time-
line and discuss the structure of emerging two-dimensional patterns. Formally,
this is equivalent to consider tilings of half the plane with a special kind of local
constraint, oriented by the time-line.

Time goes from bottom to top. Each letter is represented by a different color.

Fig. 1 Space-time diagram of a one-dimensional cellular automaton

Let us give first an informal overview of what collisions are and where they
come from. An ultimately periodic configuration consists of two infinite peri-
odic words separated by a finite non-periodic word. As transitions of cellular
automata are locally defined, the image of an ultimately periodic configuration
is an ultimately periodic configuration such that: for each periodic part, the pe-
riod in the image divides the period in the preimage; for the non-periodic part,
it can only grow by a finite size depending on the local rule. If, by iterating the
transition rule of the cellular automaton, the size of the non-periodic part of
the configurations remains bounded, then the orbit of the ultimately periodic
configuration is, up to a translation, ultimately periodic. When considering this
ultimately periodic behavior from the space-time diagram point of view, one
can see some kind of particle: a localized structure moving with a rational slope
in a periodic background environment, as depicted on Fig. 2a.

As particles are ultimately periodic configurations, one can construct more
complicated configurations by putting particles side by side, ensuring that the
non-periodic parts are far enough from each other, and that the periodic parts
of two particles put side by side are the same and well aligned. If the non-
periodic part of several particles (two or more) becomes near enough in the
orbit, complex interactions might occur. If the interaction is localized in both
space and time, as depicted on Fig. 2b, this interaction is called a collision.

Particles and collisions provide a convenient tool in the study of cellular au-
tomata. When constructing two-dimensional cellular automata, like in historical
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(a) particle (b) collision (c) network of collisions

Fig. 2 Particles and collisions generated by ultimately periodic configurations

constructions of von Neumann [20] and Codd [6], particles are a convenient way
to convey quanta of information from place to place. The most well known ex-
ample of particle is certainly the glider of the Game of Life used by Conway
et al. to embed computation inside the Game of Life [2] by using particular
behavior of glider collisions. When using one-dimensional cellular automata to
recognize languages or to compute functions, a classical tool is the notion of
signal introduced by Fischer [8] and later developed by Mazoyer and Terrier
[16, 17]: signals and their interactions are simple kinds of particles and colli-
sions. Particles appear even in the classification of cellular automata dynamics:
in its classification [21], Wolfram identifies what he calls class 4 cellular au-
tomata where “(...) localized structures are produced which on their own are
fairly simple, but these structures move around and interact with each other in
very complicated ways. (...)” A first study of particles interaction was proposed
by Boccara et al. [3], latter followed by Crutchfield et al. [12]: these works focus
on particles and bounding the number of possible collisions they can produce.
Finally, the proof by Cook of the universality of rule 110 [7] is a typical construc-
tion involving a huge number of particles and collisions: once the gadgets and
the simulation are described, the main part of the proof consists of proving that
particles are well synchronized and that collisions occur exactly as described in
the simulation.

When dealing with space-time diagrams consisting of only particles and col-
lisions, a second object is often used: a planar map describing the collisions
and their interactions. When identifying particles and collisions in space-time
diagrams, in the style of Boccara et al. [3], one builds the planar map to give a
compact description of the diagram, as depicted on Fig. 2(c). When describing
algorithmic computation, in the style of Fischer [8], one describes a family of
planar maps as a scheme of the produced space-time diagrams.

The aim of the present paper is to define particles and collisions, describe
how collisions can be catenated, introduce collisions schemes as planar maps
and discuss the construction of finite catenations from collisions schemes. All
the necessary material is defined in section 2 followed by basic catenation of
tilings in section 3. Collisions and their catenations are formally introduced in
section 4. The main result on catenation is presented in section 5.
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2 Definitions

In the remaining of this paper, every discussion occurs in the two-dimensional
plane Z2 partially colored with the letters of a given finite alphabetΣ. A pattern
is a subset of Z2. A cell c of a given pattern P is an element c ∈ P . A vector is
an element of the group

(
Z2, +

)
of translations in the plane. A coloring C is a

partial map from Z2 to Σ. The support of a coloring C is denoted by Sup(C),
its restriction to a pattern P is denoted by C|P .

The translation u ·C of a coloring C by a vector u is the coloring with support
Sup(C) + u such that, for all z ∈ Sup(C), it holds (u · C)(z + u) = C(z). The
disjoint union C ⊕ C′ of two colorings C and C′ is the coloring with support
Sup(C) ∪ Sup(C′) such that, for all z ∈ Sup(C), it holds C ⊕ C′(z) = C(z) and
for all z ∈ Sup(C′), it holds C ⊕ C′(z) = C′(z). Colorings and their operations
are depicted on Fig. 3.

(a) a coloring C (b)
(1
1

)
· C (c) C ⊕

(−2
−2

)
· C

Fig. 3 Colorings, translations and disjoint unions

A tiling constraint is a pair (V,Υ ) where V is a finite pattern and Υ is a
subset of ΣV . A coloring C satisfies a tiling constraint (V,Υ ) if for each vector
u ∈ Z2 such that V is a subset of Sup(u · C), it holds (u · C)|V ∈ Υ . For now
on we fix a tiling constraint (V,Υ ). A tiling is a coloring with support Z2 that
satisfies the tiling constraint. For any pattern P , the neighborhood along the
constraint (V,Υ ) is defined as ∂P = P ∪ {p + v|p ∈ P and v ∈ V }.

In the following, for geometrical considerations, we will implicitly use vari-
ations of discrete forms of the Jordan curve theorem [15]. Two points

(x
y

)
,
(x′

y′

)
∈

Z2 are 4-connected if
(|x−x′|
|y−y′|

)
∈
{(1

0

)
,
(0
1

)}
, 8-connected if

(|x−x′|
|y−y′|

)
∈
{(1

0

)
,
(0
1

)
,
(1
1

)}
.

A pattern P is 4-connected, resp. 8-connected, if for each pair of points z, z′ ∈ P ,
there exists a 4-connected, resp. 8-connected, path of points of P from z to z′.
The discrete Jordan curve theorem states that any non empty 4-connected
closed path separates the plane into two 8-connected patterns, the interior and
exterior of the path. More generally, a frontier is a 4-connected pattern sepa-
rating the plane into n 8-connected patterns, its borders.
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3 Catenation of tilings

Let (V,Υ ) be a tiling constraint and C a set of colorings satisfying this con-
straint. To generate tilings by catenating colorings in C, the idea is to construct
a patchwork of colorings by cutting portions of coloring and glue them together
so that tiling constraints are preserved. A simple patchwork of 2 tilings is de-
picted on Fig. 4.

(a) coloring ! (b) coloring ! (c) blueprint (d) patchwork

Fig. 4 A patchwork

Definition 1. A patchwork is a tiling Tφ defined for each z ∈ Z2 by Tφ(z) =
φ(z)(z) where φ : Z2 → C is the blueprint of the patchwork such that:

1. ∀C ∈ C, ∂φ−1(C) ⊆ Sup(C);
2. ∀z ∈ Z2, ∀v ∈ V, φ(z)(z + v) = φ(z + v)(z + v).

Patchworks provide a convenient way to combinatorially generate tilings from
a set of valid colorings without knowing explicitly the tiling constraint: it is
sufficient to know a super-set of the tiling neighborhood V and to cut colorings
on a big enough boundary containing the same letters.

Topology is a classical tool of symbolic dynamics [11], tilings being exactly
the shifts of finite type for two-dimensional words. The set of colorings is en-
dowed with the so called Cantor topology: the product of the discrete topology
on Σ ∪ {⊥} where ⊥ denotes undefined color. This topology is compatible with
the following distance on colorings: d(C, C′) = 2−min{|z|,C(z) ̸=C′(z)}. Let OC be
the set of colorings C′ such that C′

|Sup(C) = C|Sup(C). The set of OC for colorings
C with a finite support is a base of clopen sets for the given compact perfect
topology.

Proposition 1. The set of patchworks over C is a compact set. Furthermore,
it contains the tilings of the closure of C.

Proof. Let Ti be a sequence of patchworks over C converging to a limit tiling T .
Consider the blueprints φi of these patchworks. For each cell z ∈ Z2, let vz be
the element (−z · T )|V of Υ . Let φ(z) be any φi(z) such that (−z ·φi(z))|V = vz

– such a φi(z) always exists by definition of patchworks as Ti converges to T .
The map φ is a blueprint for T .

Let Ci be a sequence of colorings in C converging to a limit tiling T . For
each Ci, let Pi be the largest pattern, for inclusion, such that Ci|Pi

= T|Pi
.

As the sequence Ci converges to T , the sequence Pi converges to Z2. Without
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loss of generality, consider that Pi is an increasing sequence of patterns. For
each i let δ(i) be the smallest j such that ∂Pi ⊆ Pj . Consider P ′

n = Pδn(1),
an increasing sub-sequence of Pi. Construct a blueprint φ as follows: for all
z ∈ Z2, let φ(z) = P ′

min{n|z∈P ′
n}. By construction, this blueprint is valid and its

patchwork is T . !

Corollary 1. Let Oi be a base of open sets of colorings and C be a set of
colorings containing at least one element of each Oi. The set of patchworks
over C is the whole set of tilings. !

In particular, the set of tiling constraints Υ , viewed as colorings, generates the
whole set of tilings. The larger set of colorings with finite support generates the
whole set of tilings. But this approach is heterogeneous: we combine colorings
to obtain tilings. Can we restrict ourselves to combinations of tilings? More
precisely, given a tiling constraint, can we recursively construct a recursive
family of tilings T such that the set of patchworks over T is the whole family
of tilings?

In the case of one-dimensional tilings, replacing Z2 by Z, it is straightforward
that the set of ultimately periodic tilings generates the whole set of tilings: the
set of ultimately periodic tilings is a dense set – from any tiling T and any
finite pattern P , one can construct an ultimately periodic tiling T ′ such that
T|P = T ′

|P . In the case of two-dimensional tilings, due to the undecidability of
the tiling problem [1, 19], there exists no such family. This result prohibits us
to obtain a recursive set of tilings whose closure under catenation give us the
whole set of tilings. Therefore, in the rest of the paper, we search for simplicity
rather than being exhaustive.

4 Ultimately periodic tilings

Bi-periodic tilings are among the most regular ones and correspond to the idea of
a background for cellular automata: a tiling B with two non-co-linear periodicity
vectors u and v such that B = u · B = v · B. As backgrounds are objects of
dimension 2, if one wants to mix several backgrounds in a same tiling, the
interface between two background is of dimension 1. The most regular kind of
interface corresponds to the idea of a particle: a tiling P with two non-co-linear
vectors, the period u of the particle such that P = u ·P and the period v of its
backgrounds such that for all position z ∈ Z2, the extracted one-dimensional
word (P(z + vi))i∈Z is ultimately periodic. Of course, several particles might
meet on the plane, leading to objects of dimension 0 that correspond to the
idea of a collision. In this paper, an ultimately periodic tiling of the plane is
such a collision.

Let "v(u, u′) denote the angular portion of the plane, on the right hand
side of u, starting in position v ∈ Z2 and delimited by the vectors u, u′ ∈ Z2.
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Formally, one might geometrically define a collision as follows (and depicted on
Fig. 5):

k = 2

u0 =
(1
2

)

u1 =
(3
1

)

u2 =
( 2
−2

)

u3 =
(−2
−2

)

u4 =
(−2

1

)

Fig. 5 Defining collisions through vectors

Definition 2. A collision is a tiling C for which there exists an integer k and
a finite cyclic sequence of n vectors (ui) ∈

(
Z2
)Zn such that, for all i ∈ Zn, C is

ui-periodic in z, i.e. C(z) = C(z+ui), for all positions z inside !kui(ui−1, ui+1).

Although it corresponds to intuition, this definition made it difficult to effec-
tively use collisions in constructions since it does not identify components of the
collision. To overcome this problem, we introduce constructive versions of colli-
sions. Ideas behind such definitions is that all elements can be represented with
a finite description. A background is entirely determined by two non-collinear
vectors of periodicity u and v and by a coloring of finite support C that tiles
the plane along u and v (i.e.

⊕
i,j∈Z2(iu + jv) · C is a tiling) (see Fig. 6). Such a

triple (C, u, v) is called background representation.
The same way, in a particle, the uni-periodic part can be characterised by

a vector u and a coloring with finite support C which repeats along u (I =⊕
k∈Z ku·C) is a frontier with two borders (L and R). The rest of particle can be

described using two backgrounds B and B′. The resulting coloring P = B|L ⊕
I ⊕B′

|R is require to be a tiling. Furthermore, we require to have a condition
ensuring that the different portion have some common “safety zone”. This is

done by adding the constraint that the function: φ : z →

⎧
⎨

⎩

P if z ∈ Sup(I)
B if z ∈ L
B′ if z ∈ R

is the blueprint of a patchwork. Such a tuple (B, C, u, B′) is called particle
representation.

For collisions, the idea is basically the same (see Fig. 6) , the characterisation
is based on a coloring with finite support C for the non-periodic part and a finite
list of particles. Each particle defines a half-line starting form the center of the
collision. The support of all the particles and the center must form a star and
each consecutive pair of particles must have a common background to fill the
space between them. Some safety zone is also required as in particle. This is
formalised in the following definition:
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(a) a background (b) a particle (c) a collision

Fig. 6 Principle of construction

Definition 3. A collision representation is a pair (C, L) where C is a finite
pattern, L is a finite sequence of n particles Pi = (Bi, Ci, ui, B′

i), satisfying:

1. ∀i ∈ Zn, B′
i = Bi+1;

2. the support of I = C ⊕
⊕

i∈Zn,k∈N kui · Ci is a frontier with n borders;
3. For all i ∈ Zn, the support of C ⊕

⊕
k∈N (kui · Ci ⊕ kui+1 · Ci+1) is a frontier

with two borders: let Pi be the border on the right of Pi;
4. C = I ⊕

⊕
i Bi|Pi

is a tiling;

5. the function φ : z →

⎧
⎨

⎩

C if z ∈ Sup(C)
Pi if z ∈ Sup(

⊕
k∈N kui · Ci)

Bi if z ∈ Pi

is the blueprint of a

patchwork.

The set Sup(C) is called perturbation of the collision and Sup(
⊕

k∈N kui · Ci)
are called perturbation of the particle Pi.

The constructive definitions of particles, backgrounds and collisions provide
us with a finite representation that allows us to recursively manipulate them.
Contrary to intuition, representations are not invariant by translation. This
seems unavoidable since we want to have means of expressing the relative posi-
tion between two such representations. In the rest of the paper, we will always
assume that background, particles and collisions are given by a representation.

5 Finite catenations

A blueprint of finitely many collisions might produce a tiling which is not a
collision, however if the blueprint of the patchwork consists of finitely many
8-connected components, the patchwork is a collision. Using representations of
collisions, a more regular family of patchworks can be defined: a catenation
induces a patchwork combining collisions by binding pairs of similar particles
as depicted on Fig. 2.

To “bind” collisions using particles, we need two identical particles facing
each other such that the gap between them correspond to a integer number
of particles n. Two particles P = (B, C, u, B′) and P̃ = (B̃, C̃, ũ, B̃′) form a
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n-binding if ũ = −u (particles are facing each other), C̃ = (n − 1)u · C (they
have the same finite pattern and gap is n repetitions) , B̃ = (n − 1)u · B′ ,
B̃′ = (n−1)u ·B (backgrounds are the same). The set

⊕
0<i<n−1 iu · C is called

the perturbation of the n-binding.
Since we want to get rid of positions, we introduce the potential n-binding.

The idea is that given two collisions and one particle for each collision, the
particles P1 and P2 form a potential n-binding if up to a translation z, the
two particles form an n-binding (i.e. P1 and z ·P2 form a n-binding). One can
remark in case of potential n-binding, the translation vector z is unique.

Now the idea is that we can use potential n-binding to construct patchworks
since background is bi-periodic and does not cause heavy harm for checking
properties on it. The description needs to have collisions as points and particles
as lines. Particles can be half-infinite (if they are not part of potential n-binding)
or link two collisions. Since we work in the plane, it is sound to require that the
constructed element is planar and that the order of particles is compatible with
the collisions. At last, we add a connected condition to avoid problem with free
parts of the map. This leads to the following definition:

Definition 4. A catenation is a connected planar map where:

– vertices are labeled by collisions;
– edges are potentially semi infinite;
– edges extremities are labeled by particles;
– edges order in a vertex is compatible with the order on particles in the cor-

responding collision.
– finite edges (of extremities P1 and P2) are labeled with an integer n such

that P1 and P2 form a potential n-binding.

At this point, we want to transform the catenation into a patchwork. For this,
let us first study some necessary conditions. Since we deal with a planar map, it
is possible to define faces as elements of the dual of catenation. To transform a
catenation into a patchwork, it is necessary that every face can be transformed
into a patchwork. Since we have potential ni-bindings, the translation induced
between two consecutive collisions is fixed. Since the sequence of collisions in a
face is cyclic, it is sound to require that the sequence of corresponding transla-
tion sum up to zero when cycling. This will be the first condition. Now, with
this condition, it is possible to assign (up to a global constant) a translation to
every collision such that all edges are ni-bindings. With those objects, the ba-
sic idea is to construct a patchwork that corresponds to each collision, particle
or ni-binding on its perturbation. This implies that all perturbations does not
enforce contradictions. One easy way to get rid of this risk is just to require
that all perturbations are distinct (this will be our second condition). If these
conditions are met then we speak of valid catenation.

Proposition 2. It is possible to associate a patchwork (and therefore a space-
time diagram) to every valid catenation.
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Proof. To prove this result, we shall give a potential blueprint and show that
it satisfies the conditions. First of all, the condition on null translation after
a round on every faces induce a unique set of translation (up to a constant)
for every collision in the map since the map is connected. At this point, let us
consider the collisions with those translations.

The second condition ensure that perturbations of collisions, bindings and
particles are disjoint. Thus it is possible to define a blueprint linking any point
of such a perturbation to the corresponding collision, particle or binding. Let us
now study the points that are not mapped. Since the map is planar and particle
(and also bindings) are isolating, every left point belongs to one unique face.
On this face, the associated background with particles or collision or bindings
present is unique (bindings ensure that two consecutive collisions are the same
and collisions ensure this for consecutive particles and bindings). So we map
those points to the corresponding background.

The last point is to show that the constructed blueprint does really satisfy
the properties for patchwork. The first condition on definition is trivial since the
used valid coloration are tilings. Let us go now to the second and main point.

For this last part, let us study the different cases. For example, if we are
in a collision C perturbation. If the neighborhood is also in C perturbation or
in perturbation of binding, particle belonging to C or even of background with
this property, then the neighborhood is by definition equal to the original one
of a collision. the only difficult case is when in the neighborhood, there is a
perturbation originated from another element. For example let us suppose this
elements is in the perturbation from C′. In this case, in C we have in these
points some backgrounds or particles. But since perturbations do not overlap,
we are in the border of C′. As we have requested in our constructive version
representation to be patchworks, the border of C′ does correspond to the value
of backgrounds or particles present in C′. By definition of our catenations, the
backgrounds and particles are the same so elements of C′ are the same of those
in C.
The same arguments do also apply for other cases thus ending the proof. !

At this point, we have both a set of “simple” tilings (the collisions) and an
operation generating new tilings from this set (the valid catenation). Despite
being intuitive, catenations require to give explicitly the relative positions of
collision via the number of repetitions of particles. Intuitively, we would like
to give only the collisions involved and their organisation (as in Fig. 2c). With
this approach, it is possible to define an alternative to catenation that does not
require the number of repetitions to be given. The resulting element is called
catenation scheme. Formally, a catenation scheme is a catenation whose label
on finite edge where erased. Conversely, to go back from a catenation scheme
to a catenation, one need to give every finite edge a label. Such elements of NF

where F is the set finite edges of the catenation scheme is called affectation.
Moreover, it is called valid affectation if the resulting catenation is valid.

For a given catenation scheme, one natural question is whether it correspond
to a tiling. To bring an answer one idea is to search for valid affectation of
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the scheme. In case of finite catenation scheme, we can achieve a very strong
characterisation of this set and even compute it.

Theorem 1. The set of valid affectation of a finite catenation is a recursive
semi-linear set (i.e. a finite union of linear sets).

Proof. To prove the main theorem, we will show that being a valid affectation
of finite catenation scheme can be expressed with a formula in Presburger arith-
metic (i.e first order logic on integer with addition and comparison). Since the
set of solutions of formula in such arithmetic is a recursive semi-linear set [10]
this will conclude the proof. One can note that the construction of the solution
is explicit even if the complexity is non-elementary.

In our formula, the number of repetitions of each finite edge will correspond
to free variables. let us call them r1, . . . , rn. Since the conditions for valid cate-
nation are for each face, the global formula F will consists on the conjunction
of an elementary formula for each face: F = ∧f faceFf . For each face, let us
look at the two conditions. First one (going back to the same point after a turn
around the face) can be easily expressed: the translation induced by a particle
i is just ri times the vector of repetition of the particle ui (just note that the
direction of the particles is chosen in the face) which is a known constant. For
the translation induced by collision ϵc they are know constant. So the formula is
on the form Ff,1 = Σiparticles in the faceuiri +Σccollisionsϵc =

(0
0

)
. For the second

condition (non overlap of perturbation) it can be expressed with the conjunc-
tion that any pair of points of different perturbations are distinct. In the case
of collision perturbation, it is trivial since there is only a finite (and known)
number of perturbation points. For bindings, it is more difficult since the set of
points can be expressed with a universal quantifier with the following remark,
the set of points in the binding’s perturbation correspond to the set of points of
the particle perturbation Sup(Ci) (a finite number) for every integer n multiple
of the vector of repetition ui which is between 0 and the number of repetition
ri. thus the formula is on the form: ∀x, 0 < x < ri ⇒ ∧p∈Sup(Ci)p + uiri ̸= z
where z are points for the other considered perturbation. The same applies for
free particles (just omit the upper bound in the comparison).

With this, we have show how to construct the Presburger formula which
conclude the proof. !

With this theorem we achieve a very strong framework for cellular automata.
After have extracted a set of collisions, one can give the desired finite catenation
scheme and automatically check the necessary and sufficient conditions for that
scheme to exists. This method would make proves far more understandable
and could avoid the need to rely on combinatorial proves to ensure validity of
intuition. For now, the main limitation of those results are that only the field
of finite catenations are treated. One main goal of future work is to achieve
such kind of result for infinite catenation schemes. Due to the infinite nature of
such elements, such strong a characterisation is excluded but we hope to have
sufficient computable conditions for affectation of a wide range of “regular”
infinite catenations.
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