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Abstract Wang tiles are unit size squares with colored edges. To know whether a
given finite set of Wang tiles can tile the plane while respecting colors on edges is
undecidable. Robinson’s tiling is an auto-similar tiling in which the computation of
a Turing machine can be carried out. By using this construction and by consider-
ing a strong notion of simulation between tilings, we prove computability results for
tilings. In particular, we prove theorems on tilings that are similar to Kleene’s recur-
sion theorems. Then we define and show how to construct reductions between sets
of tile sets. We generalize this construction to be able to transform a tile set with
a given recursively enumerable property into a tile set with another property. These
reductions lead naturally to a Rice-like theorem for tilings.

Introduction

In [17], Wang introduced the study of tilings with colored tiles. A tile is a unit size
square with colored edges. Two tiles can be assembled if their common edge has the
same color. To tile consists in assembling tiles from a tile set (a finite set of different
tiles) on the grid Z2. The tiles can be repeated as many time as needed, but cannot be
turned.

Two questions arose from these definitions. The first one, conjectured true by Wang,
was to know whether any tile set that can tile the whole plane can also tile it in a
periodic way, i.e., there exists two linearly independant vector u and v ∈ Z2 such that
for any position z ∈ Z2, the tiles at position z, z+u and z+v in the tiling are the same.
The second one, known as the domino problem, is to know if one can decide whether
a given tile set can generate a tiling of the plane.

Both of the questions were answered by Berger in [3]. In his thesis, Berger con-
structed for any Turing machine M and any input w, a tile set τM,w such that this tile
set can generate a tiling of the plane if and only if the computation of M stops on
the input w. This construction proved the undecidability of the domino problem, and
also proved that there exist aperiodic tile sets, i.e., tile set that produces only aperiodic
tiling (similarly, a tile set is said to be periodic if it generates at least one periodic
tiling). This technical construction was improved later, and simplified constructions of
aperiodic tile sets can be found in [16] and [1].

Since the main argument of Berger’s proof was to simulate the behavior of a given
Turing machine with a tile set, then one of the most important fact concerning tilings
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is that tilings can constitute a Turing equivalent computation model. This computation
model is particularly relevant as a model of computation on the plane.

The study of tilings has made possible the resolution of mathematical logical prob-
lems ([1]). Then researchers have been interested in studying the kinds of tilings that
one tile set can produce ([16] and more recently [5, 8, 12]). Others have defined tools
to quantify the regular structure of a tiling ([6, 2, 13]). Recently, notions of simulation
between tilings have been defined to obtain a first approach to computability results on
tilings ([12, 14]).

In this paper, we aim at proving computability results for tilings. To reach this goal,
we use the construction most used nowadays: Robinson’s tiling. In [16], Robinson
has built a tile set that generates only auto-similar aperiodic tilings. The construction
is based on a hierarchy of squares of ever increasing sizes. In each of these squares,
some zone can be used to simulate the behavior of a Turing machine. In [12], notions
of simulation and reduction between tilings and tile sets have lead to notions of uni-
versality for tilings and completeness for tile sets. Finer notions of simulation have
been defined in [14]. These notions rely on Robinson’s construction to study the com-
putability of problems related to simulation. In this paper, we make a heavy usage of
this construction to prove classical computability results for tilings.

In classical computability (recursion theory) all theorems derive from the enumer-
ation and s-m-n theorems. Kleene’s recursion (or fixed point) theorem is a direct ap-
plication of s-m-n. With tilings, an s-m-n approach would be unnatural because of the
particular geometrical nature of computation in this model. Nevertheless, Kleene’s the-
orem is a tool that seems to be more naturally fitted to be transposed on tilings. Our
goal in this paper is to show how a computability can be shaped on the geometrical
computation model of tilings, and not merely to use classical computability to obtain
tools on tilings. In traditional computability, Kleene’s theorem states that for any re-
cursive modification of programs M, there exists a program p which is a fixed point
for M, i.e., p and M(p) compute the same function. So two Turing machines can be
seen as equivalent if they compute the same function. To obtain a Kleene-like theorem
for tilings, we need notions of comparison of tile sets: one such notion is the exact
simulation. The general idea is to say that a tile set τ exactly simulates a tile set τ ′ if
τ generates a set of rectangles of equal sizes which are isomorphic to the tiles of τ ′.
From this, we can obtain Kleene-like theorems for tilings.

Beyond Kleene-like theorems, we show how to construct reductions between sets of
tile sets. Reductions are fundamental notions in computability theory. Natural notions
of reductions between sets of tile sets are also fundamental for tilings. In fact, the idea
behind the construction of these reductions lies in Kleene’s recursion theorem with
parameters: to inject some property in the fixed point being constructed. The reduction
constructed is not only interesting for applications but also in itself: it shows how to
transform a tile set with a certain property into another tile set with another property. A
generalization of this construction leads to another main computability result: Rice’s
theorem. This theorem states that for any property P on the set of partial recursive
functions, if there exist at least one function which satisfies P and one which does
not then it is not decidable to know if a given Turing machine computes a function
satisfying the property P. Again with the exact simulation, we can state this theorem
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for tilings as follows: if A is a set of tile sets, then it is not decidable to know whether a
given tile set τ exactly simulates a tile set of A. We note that in [4], a first and different
approach to a Rice-like theorem for the local constraints has been done, where local
constraints are a tiling equivalent model. In this paper, the authors show that it is not
decidable to know whether two local constraints can produce the same set of tilings.
Our approach is different since we consider the exact simulation as the way to compare
tile sets. With the exact simulation, we show how to build reductions between tile sets
which lead naturally to a Rice-like theorem.

The main result of this paper is to obtain different Kleene-like theorems using
Robinson’s construction. We also show that some of these results can be proved with
another natural construction introduced in [9] to construct an aperiodic self-similar
tiling using Kleene’s theorem.

From there, we show how to construct reductions between sets of tile sets and obtain
a Rice-like theorem for tilings. The striking aspect of this work holds primarily in the
fact that these reductions exist and in the detailed description of their construction.

In Sec. 1, we recall the basic notions of tilings and simulation between tile sets and
recall the two main definitions of simulation, the total and the exact ones introduced in
[14]. In Sec. 2, we recall the construction of Robinson’s tiling and how it can carry out
the simulation of a Turing machine. In Sec. 3, we improve this construction to obtain
a famous result proved in [10]: the set of periodic tile sets is Σ1-complete. In Sec. 4,
we prove three Kleene-like theorems for tilings. In the last section, we define how to
construct reductions between sets of tile sets and prove a Rice-like theorem for tilings.

1 Notions of simulation

We begin with the basic notions of tilings. A tile is an oriented unit size square with
colored edges from C, where C is a finite set of colors. A tile set is a finite set of tiles. To
tile consists in placing the tiles of a given tile set on the grid Z2 such that two adjacent
tiles share the same color on their common edge. Since a tile set can be described with
a finite set of integers, then we can enumerate the tile sets, and τi designates the ith tile
set.

Let τ be a tile set. A tiling P generated by τ is called a τ-tiling. It is associated to
a tiling function fP where fP(x,y) gives the tile at position (x,y) in P. When we say
that we superimpose the tiles of a tile set τ on the tiles of a tile set τ ′, we mean that
for any tile t ∈ τ and any tile t ′ ∈ τ ′, we build a tile u = t× t ′ where the colors of the
sides of u are the cartesian product of the colors of the sides of t and t ′. Then two tiles
u1 = t1× t ′1 and u2 = t2× t ′2 match if and only if t1 and t2 match and t ′1 and t ′2 match.

Different notions of reduction have been introduced in [12] and in [14]. We recall
some of the notions relative to these reductions and we refer the reader to these papers
for detailed explanations and properties.

A pattern is a finite tiling. If it is generated by τ , we call it a τ-pattern. A finite set
of rectangular τ-patterns of even size is a τ-pattern set. By analogy with tilings, to tile
with a pattern set consists in placing the patterns on a regular subgrid of Z2 in such
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a way that the connection between two patterns respects the local constraint of color
matching. We call a tiling P generated by a pattern set M, an M-tiling. If M is a set of
τ-patterns, then for any M-tiling P, there exists a τ-tiling Q which is a representation
of P at the unit tile level.

From this remark we obtain notions of simulation. We say that a pattern tiling P
simulates a tiling P′ if there exists a function R from the patterns of P to the tiles of P′
such that if we replace the patterns of P by their corresponding tiles given by R, then
we obtain P′. In such a case, we write P′ !R P and say that P′ reduces to P. If R is not
determined, we denote the fact that P′ reduces to P by P′ ! P. The main thing in this
reduction is that R is not necessarily a one-to-one function. Different patterns of P can
represent the same tile of P′.

This is the least restrictive notion of simulation that we have. We require of a tile set
to be able to simulate the behavior of another tile set with patterns. This can be done by
any tile set that can produce rectangle patterns whose sides can encode colors. From
this simulation, we can define notions of universality for tilings and completeness for
tile sets: a tiling P is strongly universal if for any tile set τ , there exists a τ-tiling Q
such that Q ! P and a tile set τ is complete if for any tile set τ ′ and any τ ′-tiling Q
there exists a τ-tiling P such that Q ! P. Therefore, universality is a property of tilings.
A tiling is universal if it can simulate the behavior of at least one tiling for any tile set.
Completeness is a property of tile sets. A tile set τ is complete if for any tiling P it can
generate a tiling having the behavior of P.

In [14], two finer notions have been introduced:

Definition 1. Let τ and τ ′ be two tile sets. We say that τ totally simulates τ ′ if there
exist a,b ∈ Z and a reduction R from the a×b patterns of τ to the tiles of τ ′ such that
the two following conditions are respected:

1. for any τ ′-tiling Q, there exists a τ-tiling P such that Q !R P,
2. for any τ-tiling P, there exists a τ ′-tiling Q such that Q !R P.

We denote it by τ ′ !t τ (or τ ′ !R
t τ to specify the reduction R).

If τ ′ !t τ , then there exists a reduction R such that any τ-tiling can be cut in rectan-
gle patterns of size a×b such that if one replaces these patterns by their corresponding
tiles given by R then one obtains a τ ′-tiling. And the set of all τ ′-tilings that reduce to
a τ-tiling is exactly the set of all τ ′-tiling. The total simulation is thus more specific
than the simulation introduced in [12]. In this way, τ can be seen as a tile set which
computes in a same way than τ ′.

A tile set τ exactly simulates a tile set τ ′ if τ totally simulates τ ′ and if the reduc-
tion R between τ and τ ′ is one-to-one. In the total simulation, different patterns can
represent the same tile; in the exact one, any tile is represented by only one pattern. It
is this simulation that we use to prove our computability theorems for tilings.

To be able to study these notions of simulation, we now recall the classical Robinson
construction and some of its specific aspects that we will use later on.
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2 Basic notions of simulation of a tile set

Since Berger’s proof of the domino problem, we know that we can simulate a Turing
machine with a tiling. To any Turing machine M and any input w, we can associate
a tile set which simulates the behavior of the computation of M on w. Nowadays, the
most used construction to simulate a Turing machine is based on Robinson’s tile set
(Fig. 1). In [16], Robinson built an aperiodic tiling. This tiling is based on a hierarchy
of squares of ever-increasing sizes (Fig. 1.1) shows this hierarchy for the first three
levels. These squares are of sizes 2n + 1. The idea is to dedicate spaces (the white
spaces in Fig. 1.2) in each square of size 22n + 1 to simulate a Turing machine by
forcing the lowest southwest tile of any of these squares to have the tile representing the
initial state of M on the input w. For more details and explanations of this construction,
we refer the reader to [1].

obstruction color

2.1.

Fig. 1 The hierarchical structure and the obstruction zone in Robinson’s tiling

In [12], a tile set is simulated by a Turing machine, in the sense that for any tile
set τ , we build a Turing machine Mτ that produces space×time diagrams of same size
which are isomorphic to the tiles of τ , where the size of the space×time diagrams are
the length and width of the diagrams , i.e., the time and space needed to reach a final
state.. This can be done with a Turing machine that takes as input two integers: i, the
code of the index of a tile set, and j, the code of a color of τi. The Turing machine
checks if j is the code of a color of the south side of τi. If yes, it computes in a non-
deterministic way a tile of τi with south color j, as shown in Fig. 2. Then we can
simulate this Turing machine in Robinson’s tiling and obtain a tile set which simulates
totally or exactly, depending on the conditions used, another tile set. For a detailed
explanation we refer the reader to [12] and also [14] where constructions of particular
tile sets with simulation conditions are built.
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Fig. 2 The space×time di-
agram of a Turing machine
representing the simulation of
a tile
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3 Periodicity if and only if a Turing machine stops

In this section we use the construction making possible the simulation of a Turing
machine in Robinson’s tiling in order to obtain a well known result proved in [10]: the
undecidability of the periodic tilability of the plane. The explanations that follow are
an introduction to the construction that we will use in the following sections to prove
computability results for tilings.

Robinson’s tiling is a tiling with a hierarchy of squares of ever increasing sizes. The
squares of level one are of size 3 and the squares of level i are of size 2i + 1. We can
see that the squares of level n are based on a regular subgrid of Z2 where two lines
and two columns are separated by 2n− 1 tiles. Actually, one can note that these lines
and columns are composed of the alternation of two different sequences of 2n−1 tiles
separated by corner tiles, one of these sequences representing the side of a square of
the nth level. We call this subgrid on which is based the squares of level n, the nth grid.
Therefore, the sides of any squares of level n is part of the nth grid.

We can tile Robinson’s tiling in a sequence of stages: at stage one, we tile the first
grid on Z2. At stage n, we tile the nth grid and modify, if needed, the tiles of the
lowest grids with which the nth grid intersects. This can be done without changing the
structure of squares made until this stage. We can proceed like that until the end of the
process and we will obtain Robinson’s tiling. But we can see that after having tiled
the nth level, if we choose to add to our tiling a simple grid, i.e., a grid that does not
contains square of the Robinson hierarchy, of same size than the nth grid, and translated
in such a way that its corner tiles are in the middle of the squares of the nth grid, then
we complete the tiling and make it periodic since we have stopped the self-similarity.
Fig. 3 shows the black grid which is inserted in the tiling.

We add to Robinson’s tile set special tiles that can generate squares of Robinson’s
tiling marked with a special color. Thus, at a certain level n, we can decide to tile the
nth grid either with the tiles of Robinson’s tile set or with the special marked tiles.
The special colored tiles have the particularity to not allow squares of higher level to
intersect it. Therefore, when one has decided to tile a level with these special tiles,
then the self-similarity of Robinson’s tiling stops. The only way to complete the tiling,
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Fig. 3 The blocking color
(dark gray) forces the com-
pletion of the tiling by adding
a regular subgrid (black) that
stops the self-similarity of
Robinson’s tiling (clear gray)

is to do as said in the previous paragraph: we tile a simple grid and, by stopping the
self-similarity, we obtain a periodic tiling.

Fig. 3 shows what happens when one decides to tile the squares of level n with
the blocking color (here, in black gray). Since no other square of higher level can be
added to the tiling, the only way to complete the tiling is to add a simple grid formed
of squares of sizes 2n +1 (here, in black).

We now have to add a condition to force to tile with the special colored tiles. Let M
be a Turing machine. We build the tile set τM which simulates M on the empty input.
On the lowest southwest tile of any square of level 2n, we begin the simulation of M
with τM with the condition that if a final state is reached before reaching the perimeter
of the square, then a special color is sent to the north side of the square that forces the
perimeter of the square of level 2n - and thus the whole (2n)th grid - to be tiled with
the special colored tiles. Then the self-similarity is stopped and the tiling is periodic if
and only if M stops on the empty input.

To be more precise, we can compute the exact period of this tiling. If we choose
to stop the self-similarity of Robinson’s tiling at the level 2n, then the squares of the
hierarchy are of size 22n +1 and at least 22n−1 tiles separate two sides of two squares
of level 2n. Therefore, the smallest period is a square of size 22n+1. In Fig. 3, the period
is represented by a square composed of four blue squares.

In the following sections, we used these different constructions to obtain com-
putability results for tilings.

4 Kleene-like theorems for tilings

The first result we want to obtain is a theorem like Kleene’s fixed point theorem but
for tilings. Kleene’s theorem, in classical computability, states that for any recursive
function f , there exists a Turing machine Me

1 such that the function computed by the

1 Where Me denote the eth Turing machine according to an acceptable enumeration of Turing Ma-
chines
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Turing machine Me is the same than the one computed by Mf (e). We can state it as
follows: for any recursive modification of programs f , there exists a program p such
that p and its modification f (p) give the same result when computing on the same
input. For tilings, we cannot compare functions but we can compare their behavior.
We have in the exact simulation the notion of comparison that we need. Therefore, a
Kleene-like theorem for tilings can be stated as follows: for any modification f of tile
sets, there exists a tile set τ such that τ exactly simulates the modification of τ by f .

Theorem 1. Given a recursive function f , there exists an e such that τe simulates ex-
actly τ f (e).

Proof. Let f be a recursive function and Mf a Turing machine which computes f .
Let M be the Turing machine that has the following behavior: when the input is the
empty word, M computes an integer i. After having computed i, M simulates Mf on
the input i. We consider Robinson’s tiling where the lowest southwest corner of each
square of level n, and thus of size 22n +1, of the hierarchy of Robinson’s tiling is a tile
representing the initial state of M. The simulation of the computation of M is made in
this square until it has computed the value f (i). When this value has been computed,
a special color is sent to the north board of the square that colors the whole perimeter
of this square with this special color (Fig. 4.1). This special color is also a blocking
color, i.e., the self-similarity of Robinson’s tiling is stopped. Then we send the bits
composing f (i) to the south board of the square. This can be done by superimposing
the bits of f (i) on the computation tiles.

Therefore, the first line of the square is marked with the bits of f (i) and with the
special color, as well as the whole perimeter of the square. When the square is marked
with the special color, the computation of a new Turing machine, say N, can begin. N
is a Turing machine which takes as inputs an integer x, the index of a tile set, and an
integer y, the index of a color of τx and computes a tile of the tile set τx with south
color y, i.e., the space×time diagram of the computation of N on x and y is isomorphic
to a tile of τx with south color y. In our tiling, we want to simulate a tile of the tile set
τ f (i). Since we already have the bits of f (i) on the first line, we just need to add an
integer y, following f (i), which represents the index of a color of the tile set τ f (i), and
then begin the computation of N on f (i) and y (Fig. 4.2).

If y is not a south color of a tile of τ f (i), then the computation enters an error state,
and the tiling cannot be completed. Therefore, the tiling process keeps going on if and
only if we have chosen a valid color y. Then N computes the simulation of a tile with
south color y. Thus, there exists a level 2n such that any square of this level carries out
the computation of a tile of τ f (i).

The last thing that has to be done, to guarantee that two neighboring squares of level
2n carry out the simulation of two tiles that match, is to send the codes of the colors
on the sides of the squares of level 2n outside the square. This guarantees that the zone
between two neighboring squares contains the code of a common color.

Those squares of level 2n are the biggest of the tiling, since the self-similarity has
been stopped. Two squares, carrying out the simulation of the same tile, are composed
exactly of the same tiles. There exists only one way for a square to carry out the
simulation of a given tile. Therefore, the reduction is an isomorphism and the tile set
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Fig. 4 The computation of M and N in a square of computation of Robinson’s tiling

can simulate any tiling generated by τ f (i) and does not generate a tiling that does not
simulate a τ f (i)-tiling. Therefore, the simulation is exact.

We would like for our tile set to have access to its own index to be able to simulate
itself but modified by f . This is not an all natural fact, since each time that we add
tiles to our tile set to try to encode the code of the tile set, we change the code of the
tile set. To prove this, we need Kleene’s theorem with parameters which states that
for any recursive function g with two parameters, there exists a recursive function n
such that for any index of Turing machine e, Mn(e) and Mg(n(e),e) compute the same
function. We consider a recursive function g which takes as inputs a tile set that gener-
ates Robinson’s tiling, or a Turing machine able to simulate this tile set, and a Turing
machine M, and outputs the code g(Robinson’s tile set,M) of a Turing machine which
has the following behavior: it computes the index of the tile set which is the simulation
of M in Robinson’s tiling. By Kleene’s theorem, there exists a function n such that
Mn(M) = Mg(n(M),M). Here, n(Robinson’s tile set) is our fixed point and represents a
Robinson tiling which has access to its own code. This proves that when we simulate a
Turing machine in a tiling, we can always suppose that we can do it by having access
to the code of this tile set written somewhere in the tilings that it generates.

Therefore, we can suppose that there exists M which gives the index i of its own tile
set and thus, the tile set simulated exactly itself modified by f . This proves that this
tile set τi exactly simulates τ f (i). ⊓"

We now show another version of Kleene’s theorem on tilings: Kleene’s theorem
with parameters. This theorem in a classical computability setting is of great useful-
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ness, as shown at the end of the previous proof. This theorem states that for any re-
cursive function f , there exists a recursive function n such that Mn(y) = Mf (n(y),y). For
tilings, we expect to obtain a similar result.

Theorem 2. For any recursive function f with two parameters, there exists a recursive
function n such that for any tile set τi, τn(i) exactly simulates τ f (n(i),i).

Proof. Let f be a recursive function which takes as input two indexes i, j of tile sets
and transforms them in a tile set τ f (i, j).

Let Mf be the Turing machine with the following behavior: it takes as input two
integers x and y and computes f (x,y).

As we did before, to obtain the inputs x and y we can use two Turing machines Mx

and My which compute, from the empty input, respectively x and y. Let τM be the tile
set that simulates the Turing machine M which has the following behavior: it simulates
Mx and My from the empty input and then simulates Mf on x and y to obtain f (x,y).

We simulate the behavior of these Turing machines with τM in Robinson’s tiling.
To do that, the lowest southwest tile of any square of size 22n + 1 contains the tile
representing the initial state of M: then, the tiling τM generates two integers x and y
and computes f (x,y). We send to the southeast line of the square, the bits of f (x,y),
to have a plain access to this code. They represent the index of the tile set we want
to simulate. As we did before, the final state of M sends a special color to the north
side of the square that forces the perimeter of the square to be colored with this special
color. This special color triggers the computation of a new Turing machine, say N,
that simulates the tiles of the tile set f (x,y). If the square is big enough to carry out
the computation of the tiles of the tile set of index f (x,y), then a blocking color is
sent to the north side of the square of computation which forces the whole perimeter
of the square to be colored with this blocking color and stops the self-similarity of
Robinson’s tiling. As we have seen in the previous proof, stopping the self-similarity
allows the simulation to be exact.

Therefore, we have a tile set τMx,My , depending on Mx and My, which simulates ex-
actly the tile set τ f (x,y). For any tile set τi, and any Turing machine Mi which computes
i when given the empty input, by using Kleene’s theorem with parameters, we have
seen that we can find a Turing machine M x such that M x outputs the index of the
tile set τM x,Mi , i.e., the tile set that has the following behavior: it simulates M x on the
empty input, which gives the code of the tile set, say k; then it simulates Mi which out-
puts i and computes f (k, i). Finally, it simulates the tile set with index f (k, i). Let n be
the recursive function that transforms the index i into the index of the tile set τM x,Mi ,
i.e., k. Therefore, n(i) is a fixed point. Indeed, τn(i) = τM x,Mi exactly simulates the tile
set τ f (M x(ε),Mi(ε)) = τ f (n(i),i). ⊓"

The two previous theorems can be proved without using Robinson’s construction.
To do that, we can use the construction introduced in the paper [9]. In this paper,
the authors use Kleene’s recursion theorem to build an aperiodic tiling. The idea is
to cut Z2 with rectangular equal patterns, where each tile of the rectangle knows its
position in this rectangle. This can be done by using a special tile for any position of
these rectangles. Then one superimposes on each rectangle the computation of a Turing
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Fig. 5 The computation of M and N in a square of computation of Robinson’s tiling

machine simulating a tile of a tile set. One can modify this tile set, say τ , in such a way
that each rectangle simulates a tile of τ . By using Kleene’s recursion theorem, one
obtains a tile set that simulates itself and thus, cannot be periodic.

We can also use this construction to prove our theorem. Since we can know the
time needed to compute x, y and f (x,y) then we can apply the same argument and
simulate Mx, My, the computation of f (x,y) and the simulation of the tiles of f (x,y) in
a determined rectangle. The conclusion is the same than in the previous proof. We just
have to simulate, as before, the tile set which simulates itself modified by f . Therefore,
the recursive function n, that takes as input the code i of a tile set, and outputs the code
n(i) of a tile set which computes: Mn(i), Mi, and the tiles of the tile set with index
f (Mn(i)(ε),Mi(ε)) = f (n(i), i), is a fixed point and τn(i) exactly simulates the tiles of
the tile set τ f (n(i),i).

Another version of Kleene’s theorem that we prove is the doubled-fixed point the-
orem: if f and g are two recursive functions of two variables, then there exist a and
b such that: Ma = Mf (a,b) and Mb = Mg(a,b). In the context of tilings, we obtain the
following theorem:

Corollary 1. Let f and g be two recursive functions of two variables. Then there exist
two indexes k and j of tile sets such that τk exactly simulates f (k, j) and τ j exactly
simulates g(k, j).

Proof. We use the two Kleene-like theorems we have just introduced. Since f is a re-
cursive function with two variables, then, by theorem 2, there exists a recursive func-
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tion n such that for any index i of a tile set, n(i) exactly simulates the tile set with index
f (n(i), i). Now, by theorem 1, there exists a tile set of index j which exactly simulates
the tile set g(n( j), j). Then set k = n( j). ⊓"

In the next section we show how we can reduce properties between tilings to study
their computability, and obtain a Rice-like theorem for tilings and simulation.

5 Reductions of properties and Rice-like theorem for tilings

The construction used in the previous section can be modified to obtain other com-
putability results for tilings. This construction can be slightly adapted to obtain the
simulation of a certain tile set if a condition is fulfilled. Thereby, we are able to study
the computability of different properties on tilings.

We consider the set AP = { i |τi has the property P }, where P is a property on the
tilings generated by τi. One example can be the set Aper, the set of tile sets that gen-
erates a periodic tiling. We prove the following theorem, that has first been proved in
[10]:

Theorem 3. Aper ≡K0, where K0 is the set of pairs ⟨i,w⟩ such that the Turing machine
Mi stops on the input w, and thus is Σ1-complete.

Proof. In Sec. 3, we have shown that K0 ≤1 Aper. It suffices to show that Aper is in Σ1.
The property “τ is periodic” can be defined as follows: there exists an n such that τ
generates a pattern of size n which is a periodic pattern. Thus, Aper can be defined with
an ∃ arithmetical property. ⊓"

To prove the previous theorem, we have reduced the halting problem to the problem
to know whether a tile set generates periodicity, by forcing a tile set to have a property
if a Turing machine halts on a given input. This kind of argument can be generalized to
tile sets to obtain reduction between sets of tile sets. We have the following definition:

Definition 2. Let A and B be two sets of tile sets. A reduces to B (noted A≤ B) if there
exists a recursive function f such that i ∈ A⇔ f (i) ∈ B.

We show a first kind of reduction between sets of tile sets by proving that the set of
periodic tile sets reduces to non-recursive tile sets, i.e., tile sets that produces only non
recursive tilings of the plane.

Theorem 4. Let Bnr be the set of non recursive tile sets, i.e., tile sets that produce only
tilings of the plane which cannot be defined by a recursive function. Then Aper ≤ Bnr
and thus, Bnr is not a recursive set.

Proof. Let τ be a periodic tile set and ρ be a non-recursive tile set. Since [11] and
[15], we know that such tile sets exist. Let M be the Turing machine that enumerates
the rectangle patterns generated by τ and which stops if and only if τ generates a



Computability of Tilings 199

periodic pattern. As we did before, we simulate M in Robinson’s tiling and we block
the self-similarity of Robinson’s tiling if a final state is reached. Thus, if a period exists,
then there exists a level of squares which is all tiled with the blocking color.

We want for our property of generating only non-recursive tilings to appear if and
only if τ generates a periodic tiling. We have shown that we can simulate a tile set τ
with another tile set, by inserting in Robinson’s tiling the simulation of a Turing ma-
chine that has the particularity to produce space×time diagrams which are isomorphic
to the tiles of τ . Therefore, if a square is marked with the blocking color, it allows the
beginning of the computation of a new Turing machine, say N, which has the particu-
larity to produce space×time diagrams which are isomorphic to the tiles of ρ . Without
loss of generality, we can consider that N takes always less time and space than M to
reach a final state, and thus, if a square can carry out the computation of M, it can also
carry out the one of N. Let τ ′ be this tile set. A simulation of a tile of ρ by τ ′ is made
in a square if and only if the computation of M stops in this square. By adding the
condition that the color of the sides of the squares of level n are sent outside the square
to force the matching with the neighboring squares, then we obtain the simulation of a
ρ-tiling. This tiling cannot be recursive, since it would imply that the tiling it simulates
is recursive too. If τ does not generate a periodic tiling, then the squares never carry
out the simulation of tiles of ρ and thus, the tile set τ ′ can generate recursive tilings.

By construction, we have that the self-similarity is stopped and the simulation of the
tiles of ρ is made if and only if τ is periodic. As seen before, τ ′ exactly simulates ρ and
thus τ ′ cannot be recursive. Therefore, τ is periodic if and only if τ ′ is not recursive.

The reduction that associates to any tile set τ , the tile set τ ′ shows that Bnr is not a
recursive set. ⊓$

In the previous proof, we have reduced the property of being periodic to the property
of being non recursive. This construction can be generalized to obtain other reductions.
The main argument of the proof is that, as for Kleene’s theorem with parameters,
we can inject in a tiling the computation of a program who checks if a property is
satisfied in order to obtain a tiling with another property if the previous one is satisfied.
The property that we want to verify can be any property P such that it is recursively
enumerable to know whether a tile set satisfies it or not. Therefore, we can reduce
tile sets satisfying a recursively enumerable property to tile sets with another property.
Such recursively enumerable property can be, for example: τ does not tile the plane, τ
simulates exactly ρ (where ρ is fixed), τ generates patterns using all its tiles. . .. Then,
if the property is satisfied, we can trigger the start of an exact simulation of a tile set
satisfying another property.

By generalizing this kind of construction, we can obtain a Rice-like theorem for
exact simulation of sets of tile sets. The only thing we need, is to have a set of tile sets
such that if a tile set τ satisfies the property, then any tile set simulating exactly τ has
the property too. We define formally this property:

Definition 3. Let A be a set of tile sets. A is an exact index set if for any index i ∈ A of
a tile set, if a tile set τ j exactly simulates τi then j ∈ A.

Rice’s theorem for Turing machines states that to know whether a Turing machine
accepts a language which is in a set A of recursively enumerable languages is not
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decidable except if A is trivial (empty or if it contains all enumerable languages). We
can compare Turing machines by the functions they accept. For tile sets, we do not
have a notion of function to compare them. Therefore, if we want a Rice-like theorem
for tile sets, the set of tile sets has to be an exact index set and contains the tile sets
which “compute” in a same way.

Theorem 5. Let A be an exact index set. Then the set A is recursive if and only if A is
trivial, i.e., A ̸= N and A ̸= /0.

Proof. Let A be an exact index set. Since A is not trivial, thus there exist at least one
index i ∈ A and one index j ̸∈ A. We first suppose that Robinson’s tile set is not in A.

We will reduce Lper to LA as we did in the previous proof. For that, we just have to
build from a tile set τk, a tile set τ f (k) such that τ f (k) simulates τi - whose index is in A
- if τk is periodic, and does not simulate it if τk is not periodic. Therefore, this tile set
is in A since A is an exact index set.

If τk is not periodic, then the only tile set that τ f (k) exactly simulates is Robinson’s
tile set.

Therefore, τk ∈ Lper⇔ τ f (k) ∈ LA.
If Robinson’s tile set is in A, then we just have to consider LA instead of L(A). ⊓%

To have a better intuitive understanding of this theorem, we can state it as follows:
let P be a property on the tilings generated by a tile set satisfying the following state-
ment: if τ satisfies P, then any τ ′, that exactly simulates τ , satisfies P. Then to know
whether a given tile set satisfies P or not is undecidable except if any or no tile set
satisfies P.
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