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Abstract. The Cops and Robbers game is played on undirected graphs where
a group of cops tries to catch a robber. The game was defined independently
by Winkler-Nowakowski and Quilliot in the 1980s and since that time has been
studied intensively. Despite of that, its computation complexity is still an open
question. In this paper we prove that computing the minimum number of cops
that can catch a robber on a given graph is NP-hard. Also we show that the
parameterized version of the problem is W[2]-hard. Our proof can be extended
to the variant of the game where the robber can move s times faster than cops.
We also provide a number of algorithmic and complexity results on classes of
chordal graphs and on graphs of bounded cliquewidth. For example, we show
that when the velocity of the robber is twice cop’s velocity, the problem is
NP-hard on split graphs, while it is polynomial time solvable on split graphs
when players posses the same speed. Finally, we establish that on graphs of
bounded cliquewidth (this class of graphs contains, for example, graphs of
bounded treewidth), the problem is solvable in polynomial time in the case
the robber’s speed is at most twice the speed of cops.

Key words: Pursuit-evasion games on graphs, complexity, parameterized
complexity, algorithms, cliquewidth

1 Introduction

Cops and Robbers is a pursuit-evasion game with two players cop C and robber
R which play alternately on a finite connected undirected graph G. Player C
has a team of cops who attempt to capture the robber. At the beginning of the
game C selects vertices and put cops on these vertices. Then R put the robber
on a vertex. The players take turns starting with C. At every move each of
the cops can be either moved to an adjacent vertex or kept on the same vertex.
(Several cops can occupy the same vertex at some move.) R responds by moving
the robber to some vertex along some path of length at most s, which does not
contain vertices occupied by cops. (In other words, cops are moving with a unit
speed and the speed of robber is s, and robber cannot run through a vertex
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occupied by a cop.) We say that a cop catches the robber at some move if at
that move they occupy the same vertex. Player C wins if in a finite number of
moves one of his cops catches the robber. Player R wins if he can avoid such
a situation. For an integer s and a graph G, we denote by cs(G) the minimum
number of cops sufficient for C to win on graph G against the robber moving
at the speed of s.

The variant of the game with s = 1, i.e. when cops and robber have the
same speed, was studied intensively. The game was defined (for one cop) by
Winkler and Nowakowski [25] and Quilliot [28] who also characterized graphs
with the cop number one. Aigner and Fromme [2] initiated the combinatorial
study of the problem with several cops and obtained a number of important
results. In particular, they observed that if a girth of G (the minimum length
of a cycle) is at least 5, then c1(G) is at least the minimum vertex degree of
G. Another interesting result proved in [2] is that on planar graphs 3 cops can
always catch the robber. This result can be generalized on graphs of bounded
genus [27, 31]. Andreae [5] extended the result of Aigner and Fromme to graphs
containing no fixed graph H as a minor. Different combinatorial (lower and
upper) bounds on the cop number for different graph classes are discussed in
[4, 13, 15, 16, 20, 22, 23] (see also the survey [3]).

There is a resemblance of Cops and Robbers game, at least for large values
of s → ∞, to the helicopter search game defined by Seymour and Thomas
[32], which is the game-theoretic interpretation of the well known treewidth
parameter. In Seymour-Thomas game the robber can move arbitrarily fast, but
players make their moves simultaneously. See the survey of Bodlaender for an
overview of pursuit-evasion games related to treewidth [7].

Despite of such an intensive study of the combinatorial properties of the
game almost no algorithmic results on this game are known. Perhaps the only
algorithmic result known about Cops and Robbers game (for s = 1) is the
observation that determining whether the cop number of a graph on n vertices
is at most k can be done by a backtracking algorithm which runs in time
O(nO(k)) (thus polynomial for fixed k) [6, 17, 19].

Similar result holds for every s ≥ 1. Given an integer k and a graph G on
n vertices, the question if cs(G) ≤ k can be answered (and the corresponding
winning strategy of k cops can be computed) by constructing the game graph
on 2

(
n+k−1

k

)
n nodes (every node of the game graph corresponds to a possible

position in G of k cops and one robber, taking into account two possibilities for
the turn), and then by making use of backtracking find if some cop-winning po-
sition can be obtained from an initial position. While the proof of the following
proposition is standard and easy (and we omit it here), it serves as the main
tool for obtaining all polynomial time algorithms in this work.

Proposition 1. For a given integer k ≥ 1 and a graph G on n vertices, the
question if cs(G) ≤ k can be answered in time

(n+k−1
k

)2 · nO(1) = nO(k).

Thus for every fixed k, one can decide in polynomial time if k cops can catch
the robber on a given graph G. There are several natural questions around
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Proposition 1. The first is, what is the complexity of the problem when k is
part of the input? Another question, is the problem fixed parameter tractable?
There are many search and pursuit-evasion problems which are fixed parameter
tractable, i.e. for which deciding if k searchers (cops) can catch evader (rob-
ber) on an n-vertex graph can be done in time O(f(k) · nO(1)) (we refer to
Bodlaender’s survey [7] for examples of such problems).

There are several variants of similar games like the k-pebbles game, or the
cat and k-mouse game, which solutions require nΩ(k) steps (see e.g. Adachi et
al. [1]). However, all these games are played on directed graphs or the games
should either start, or end in specified positions (holes or cheese for mouses),
and the proofs are strongly based on these specific properties. Following this line
of research, Goldstein and Reingold [17] proved that the version of the Cops and
Robbers game on directed graphs is EXPTIME-complete. Also they have shown
that the version of the game on undirected graphs when cops and robber are
given their initial positions is also EXPTIME-complete. They also conjectured
that the game on undirected graphs (for s = 1) is also EXPTIME-complete.
Again, their proofs strongly relies on the specific settings (adding directions or
fixing initial positions) and cannot be transferred to the standard Cops and
Robbers game on undirected graphs, and their conjecture is still open.

Our results. We prove that for every s ≥ 1, deciding if cs(G) ≤ k is NP-hard.
We also show that the parameterized version of the problem is W [2]-hard.
Loosely speaking, this means that the existence of a O(f(k) · nO(1))-time algo-
rithm deciding if cs(G) ≤ k, where f is a function only of the parameter k and
G is a graph on n vertices, would imply that FPT = W [2], which is consid-
ered to be very unlikely in parameterized complexity. (We refer to the books
[12, 14, 24] for an information on parameterized complexity.) We also show
that for s ≥ 2, the problem remains NP-hard and W [2]-hard even when input
is restricted to split graphs. We find it a bit surprising, especially for s = ∞,
i.e. when the speed of robber is not bounded, because all known search and
pursuit-evasion problems on undirected graphs which look quite similar to this
case, are polynomially solvable or at least fixed parameter tractable for chordal
graphs. For example, for helicopter search game [32] the minimum number of
cops equals treewidth plus one and can be easily calculated for chordal graphs.
For node searching (see [18]) the corresponding problem can be solved in poly-
nomial time for split graphs but remains NP-complete on chordal graphs. See
also [26] for related results. Note also that for s = 1 one cop always can capture
robber on the chordal graph [28]. By continuing investigating the complexity
of the problem on classes of chordal graphs, we show that for every fixed s,
the computation of cs(G) on interval graphs can be done in polynomial time.
Finally, we investigate the complexity of the problem on graphs of bounded
cliquewidth. We prove that on graphs of bounded cliquewidth the computation
of numbers cs(G) can be done in polynomial time for s = 1, 2. While most of
polynomial time algorithms on graphs of bounded cliquewidth (and treewidth)
are based on dynamic programming approach [11], this is not the case for the
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Cops and Robbers problem. Our proof is based on combinatorial bounds and
Proposition 1.

2 Cops and Robbers is NP hard

All this section is devoted to the proof of the following result

Theorem 1. For every s ≥ 1, the following problem is NP-hard

INSTANCE: A graph G and a positive integer k.
QUESTION: Is cs(G) ≤ k?

Moreover, the parameterized version

INSTANCE: A graph G.
PARAMETER: A positive integer k.
QUESTION: Is cs(G) ≤ k?

of the Cops and Robbers problem is W [2]-hard for every s ≥ 1.

2.1 Bipartite graphs with large girth and degrees of
vertices

Let us start with auxiliary results. We want to construct a bipartite graph
with girth at least six and large minimum vertex degree with some additional
properties. (Let us remind that the girth of a graph G is the minimum cycle
length in G.) The study of such graphs has a long history (see e.g. [8]). There are
different approaches for obtaining such graphs. Most of them are geometrical
or algebraic. For our reduction we use algorithmic construction which is based
on the construction of Krishnan et al. [21].

For positive integers n, m and r we construct a bipartite graph H(n, m, r)
with rmn2 edges and bipartition (X, Y ), |X | = |Y | = nm. Set X is partitioned
into sets U1, U2, . . . , Un, and set Y is partitioned into sets W1, W2, . . . , Wn,
|Ui| = |Wi| = m for i = 1, 2, . . . , n. We denote by Hi,j the subgraph of
H(n, m, r) induced by Ui ∪ Wj , and by degi,j(z) the degree of vertex z in
Hi,j . We also denote by E the set of edges in H(n, m, r) and by dist(x, y) the
distance between vertices x and y in H(n, m, r).

The graph H(n, m, r) is constructed by the following procedure which starts
from empty graph on vertices X ∪ Y and add edges according the following
rules:
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for k := 1 to rm do
let t := ⌈ k

m⌉;
if k is odd then

for i := 1 to n do
for j := 1 to n do

choose a vertex x ∈ Ui of minimum degree in Hi,j ;
let S := {z ∈ Wj : dist(x, z) > 1 and degi,j(z) < t + 1};
select a vertex y ∈Wj such that
dist(x, y) = maxz∈S dist(x, z); add (x, y) to E;

else
for j := 1 to n do

for i := 1 to n do
choose a vertex y ∈Wj of minimum degree in Hi,j ;
let S := {z ∈ Ui : dist(y, z) > 1 and degi,j(z) < t + 1};
select a vertex x ∈ Ui such that
dist(x, y) = maxz∈S dist(x, z); add (x, y) to E;

Value of t is called the phase number of the algorithm. Clearly, the algorithm
has to complete r phases. If k is odd then we say that n2 edges, added by the
algorithm for this value of k, are added during the odd phase t. Correspondingly,
if k is even then we say that n2 edges, added by the algorithm for this value of
k, are added during the even phase t.

The following lemma, which is the direct analog of Lemma 1 from [21], es-
tablishes the key invariants maintained by the algorithm. We omit the proof of
this lemma here.

Lemma 1. For every 1 ≤ t ≤ r the following holds:

1. When the algorithm completes an odd phase t, the average degree of vertices of
Ui in Hi,j is r and t−1 ≤ degi,j(x) ≤ t+1 for x ∈ Ui and i, j ∈ {1, 2, . . . , n};

2. When the algorithm completes an even phase t, the average degree of vertices
of Wj in Hi,j is r and t − 1 ≤ degi,j(y) ≤ t + 1 for y ∈ Wj and i, j ∈
{1, 2, . . . , n}.

It can be easily seen that if set S is empty then the algorithm cannot add
an edge. Next lemma gives sufficient condition, which makes such situation
impossible.

Lemma 2. If r < m+3
6 then the algorithm completes all r phases.

This lemma is a simplified version of the lemma 2 of [21] and we omit its
proof here.

Now we can summarize properties of the algorithm and of the graph
H(n, m, r) which will be used in our reduction.
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Lemma 3. Let m ≥ 2n(r + 1) (n(r+1)−1)6−1
(n(r+1)−1)2−1 . Then

1. The algorithm constructs graph H(n, m, r) in time O(r · m · n2);
2. For every vertex z ∈ V (Hi,j) and every i, j ∈ {1, 2, . . . , n}, we have r − 1 ≤

degi,j(z) ≤ r + 1;
3. For every vertex z, deg(z) ≤ n(r + 1).
4. The girth of H(n, m, r) is at least six.

Proof. The first three items are immediate corollaries of Lemmata 1 and 2.
In order to prove 4, let us assume that a cycle of length g = 2p, p ≥ 1,

where g is the girth of H(n, m, r), was created during the phase t of the al-
gorithm. Without loss of generality, we can assume that the last edge (x, y)
of this cycle was added during odd phase t, and x ∈ Ui, y ∈ Wj . Let
D = {z ∈ Wj : dist(x, z) ≥ g}. Since vertex x had no neighbors in D, we have
that for every z ∈ D degi,j(z) = t + 1 during the even phase t. By Lemma 1,
|D| ≤ m

2 . Thus |Wj \ D| ≥ m
2 . Clearly dist(x, z) ≤ g − 1 = 2p − 1 for every

z ∈ Wj \ D. Let us estimate the number of vertices at distance at most 2p− 1
from x in H(n, m, r). Since the maximum vertex degree in H(n, m, r) is at most
n(r + 1), we have that the number of vertices at distance at most 2p− 1 from
x is at most

n(r + 1) + n(r + 1)(n(r + 1)− 1)2 + · · · + n(r + 1)(n(r + 1)− 1)2(p−1)

= n(r + 1)
(n(r + 1)− 1)2p − 1
(n(r + 1)− 1)2 − 1

.

Thus

n(r + 1)
(n(r + 1)− 1)6 − 1
(n(r + 1)− 1)2 − 1

≤ m

2
≤ n(r + 1)

(n(r + 1)− 1)2p − 1
(n(r + 1)− 1)2 − 1

,

which yields g = 2p ≥ 6. ⊓&

2.2 Proof of Theorem 1

Now we are ready to proceed with the proof of the main result of this section.
We use reduction from the well known NP-complete Minimum Dominating set
problem

INSTANCE: A graph G and a nonnegative integer k.
QUESTION: Does G contain a dominating set (i.e. a set of vertices D such
that every vertex of G is either in D, or is adjacent to a vertex of D) of
cardinality at most k?

Let G be a graph with the vertex set V (G) = {v1, v2, . . . , vn}. Let r = k + 2
and
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m =
⌈
2n(r + 1)

(n(r + 1)− 1)6 − 1
(n(r + 1)− 1)2 − 1

⌉
.

For every vertex vi ∈ V (G) we add 2m new vertices and make each new vertex
adjacent to vertices from N [vi] (in G). We use m of the new vertices to compose
the set Ui, and the other m vertices to compose the set Wi. Then we apply the
algorithm from the previous section to construct the bipartite graph H(n, m, r)
on the vertex set

(U1 ∪ U2 ∪ · · · ∪ Un) ∪ (W1 ∪W2 ∪ · · · ∪Wn).

Denote the resulting graph by G′. By Lemma 3, G′ is constructed in time
polynomial in n and k.

Now we prove that graph G has a dominating set of size at most k if and
only if cs(G′) ≤ k.

We say that vertex is dominated by the cop if this vertex is occupied by the
cop or some adjacent vertex is occupied by the cop.

Let S ⊆ V (G) be a dominating set in G of size ≤ k. Since cops placed in
vertices of S dominate all vertices of G′, for every vertex choice of robber he
will be caught after the first move of cops.

In opposite direction, let us assume that G has no dominating set of size k
and describe the strategy of the robber avoiding cops. Let S be the set of vertices
chosen by cops for their initial position. Since this set is not a dominating set
in G, we have that there is a vertex vi ∈ V (G) which is not dominated by
cops. Degree of every vertex of H(n, m, r) is at most n(r + 1) and thus k cops
dominate at most kn(r + 1) vertices in Ui. The set Ui contains m vertices,
therefore,

m =
⌈
2n(r + 1)

(n(r + 1)− 1)6 − 1
(n(r + 1)− 1)2 − 1

⌉
> kn(r + 1).

So there is a vertex u ∈ Ui which is not dominated by cops. The robber chooses
this vertex as his initial position. Suppose now that after some robber’s move
the robber occupies vertex u ∈ Ui which is not dominated by cops. If after the
next move of cops this vertex is still not dominated then the robber stays there.
If it it becomes dominated, then the robber do the following. Let S be the set of
vertices of G occupied by cops. Since this set is not a dominating set in G, there
is vertex vj ∈ V (G) which is not dominated by cops standing at S. The vertex
u has at least r − 1 = k + 1 neighbors in Wj . Since graph H(n, m, r) has the
girth at least six, we have that at least one of these neighbors is not dominated
by cops. Then the robber moves into this vertex (note that he moves along the
path of length 1). Clearly, this strategy of the robber gives him possibility to
avoid cops. This completes the NP-hardness part of the proof.

To prove W [2]-hardness, it is sufficient to observe that our reduction from
dominating set (which is W [2]-hard) is an FPT reduction.
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3 Complexity on Split and Interval graphs

A graph G is a split graph if the vertex set of G can be partitioned into sets
C and I, such that C is a clique, and I is an independent set. It is well known
that the treewidth of a split graph can be computed in linear time (actually it
is true for a larger class of chordal graphs). It is also well known that c1(G) = 1
on a superclass of chordal graphs and can be computed in polynomial time [25].
Also the treewidth of a chordal graph can be computed in polynomial time,
and thus the search game of Seymour-Thomas is tractable on chordal graphs.
However, for s ≥ 2 problem of computing of cs(G) becomes difficult even for
split graphs.

Theorem 2. For every s ≥ 2 the following problem is NP-hard:

INSTANCE: A split graph G, and a nonnegative integer k.
QUESTION: Is cs(G) ≤ k?

Moreover, for every s ≥ 2 the parameterized version of the problem is W [2]-
hard on split graphs.

Proof. The proof of this theorem uses the constructions from the proof of The-
orem 1. It is known that the Minimum Dominating set problem is NP-complete
(and its parameterized version is W[2]-hard) even when the input is restricted
to split graphs [29].

Let G be a split graph with clique C and independent set I = {v1, v2, . . . , vp}.
Let also r = k + 2 and m =

⌈
2(r + 1) r6−1

r2−1

⌉
. Each vertex vi ∈ I is replaced by

new m vertices, which form set Vi. Let N(vi) be the set of neighbors of vi in the
original graph G. We make every new vertex from Vi be adjacent to all vertices
from N(vi). Then we add m vertices forming a set W to the clique (i.e. these
vertices are joined by edges with each other and vertices of C). Now we construct
p copies of the graph H(1, m, r) with vertex sets V1 ∪W, V2 ∪W, . . . , Vp ∪W
(Vi = X and W = Y for each copy of H(1, m, r)). The resulting graph is
denoted by G′. Clearly, this graph is a split graph, and can be constructed in
polynomial time.

Now we prove that for any s ≥ 2, graph G has a dominating set of size at
most k if and only if cs(G′) ≤ k.

Suppose that S ⊆ V (G) is a dominating set in G and |S| ≤ k. Clearly we can
assume that S ⊆ C. It can be easily seen that S is a dominating set in G′. We
place cops in vertices of S, and for every possible choice of an initial position,
the robber would be captured after the first move of cops.

Assume now that for every S ⊆ V (G), |S| ≤ k, S is not a dominating set
of G, and describe the strategy of the robber. Suppose that cops have chosen
initial positions, and S is the set of vertices of G occupied by cops. Since this
set is not a dominating set in G, there is i ∈ {1, 2, . . . , p} such that vertices
of Vi are not dominated by cops standing on vertices of S. Since each vertex
u ∈ W is adjacent to no more than k + 3 vertices of Vi and k(k + 3) + 1 ≤ m,
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we have that there is vertex x ∈ Vi which is not dominated by cops standing on
vertices of W . The robber chooses this vertex as his initial position. Suppose
now that after some moves the robber occupies vertex x ∈ Vi which is not
dominated by cops. If after next move of cops this vertex is still not dominated,
then the robber stays there. Suppose that it became dominated. Let S be the
set of vertices of G occupied by cops. Since this set is not a dominating set in
G, there is j ∈ {1, 2, . . . , p} such that vertices of Vj are not dominated by cops
standing on vertices of S. Vertex x has at least k + 1 adjacent vertices in W .
So there is vertex y ∈ W which is adjacent to x and is not occupied by cops.
Now vertex y has at least k +1 neighbors in Vj . Since graph H(1, m, r) has the
girth at least six, at least one vertex z ∈ Vj in the neighborhood of y is not
dominated by cops. Then the robber can move from x to y and then to z. Such
a strategy provides the robber an opportunity to avoid capture.

To establish the parameterized complexity on split graph we observe, that
the parameterized version of the dominating set problem remains to be W [2]-
hard on split graphs and that the described reduction from dominating set is
an FPT reduction. ⊓#

Another well known class of chordal graphs are interval graphs. An interval
graph is the intersection graph of a set of intervals on the real line, i.e. every
vertex corresponds to an interval and two vertices are adjacent if and only if the
corresponding intervals intersect. We show that for every interval graph G and
integer s, cs(G) can be computed in polynomial time. Actually the only property
of interval graphs we need is the existence in interval graphs dominating pairs.
A dominating pair in a connected graph G is a pair of two (not necessary
different) vertices u and v such that the vertex set of every u, v-path in G is a
dominating set. A caterpillar is a tree which consists of a path, called backbone,
and leaves adjacent to vertices of the backbone. For a graph G and integer p,
the p-th power of G, Gp is the graph on vertex set V (G), and vertices u, v are
adjacent in Gp if and only if the distance between them is at most p in G.

Lemma 4. Let T be a spanning caterpillar of a graph G, and let p be an integer
such that G is a subgraph of T p. Then cs(G) ≤ max{1, ps− 1}.

Proof. We describe a winning strategy for k = max{1, ps − 1} cops. Suppose
that P = (v1, v2, . . . , vr) is a backbone of T . Cops occupy first k vertices of the
backbone. Then they move along P simultaneously. If after some robber’s move
he is standing on the vertex adjacent to the vertex occupied by a cop, then this
cop makes capturing move.

For a vertex v we use N [v] to denote the closed neighborhood of v, i.e. the
set of all vertices adjacent or equal to v. We use induction to prove that if at
some step cops occupy vertices vi, vi+1, . . . , vi+k−1 then the robber cannot move

to any vertex of set
i+k−1⋃

j=1
N [vj ] without being captured after the next move of

cops. Clearly, this holds after the first move of cops. Let us consider the i-th
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move. By the induction assumption, before this move of cops the robber is at

some vertex x /∈
i+k−2⋃

j=1
N [vj ]. If he is going to move to vertex y ∈

i+k−1⋃
j=1

N [vj ] he

has to go along some path of length at most s which does not contain cops. Since

G ⊆ T p, the distance between x and y in T is at most ps. Then y ∈
i+k−1⋃

j=i
N [vj ],

i.e that y is adjacent to a vertex occupied by some cop and thus the robber is
caught at the next move of cops. ⊓$

Lemma 5. Let G be a connected graph with dominating pair. Then cs(G) ≤
5s− 1.

Proof. Let u and v be a dominating pair, and P be a shortest u, v-path in G.
Then P is the backbone of a spanning caterpillar T in G. Since P is a shortest
path, G ⊆ T 5. Now we apply Lemma 4. ⊓$

Combining Proposition 1 with Lemma 5, we obtain the following result.

Corollary 1. For every positive integer s, cs(G) can be computed in time nO(s)

on graphs with a dominating pair.

Corollary 1 yields polynomial time algorithms on many graph classes containing
a dominating pair. This include not only interval graphs and cocomparability
graphs, but more general class of AT-free graphs. (See [9, 10] for definition and
properties of AT-free graphs.)

4 Graphs of bounded cliquewidth

Cliquewidth is a graph parameter that measures in a certain sense the com-
plexity of a graph. This parameter was introduced by Courcelle, Engelfriet, and
Rozenberg [11].

Let G be a graph, and k be a positive integer. A k-graph is a graph whose
vertices are labeled by integers from {1, 2, . . . , k}. We call the k-graph consisting
of exactly one vertex labeled by some integer from {1, 2, . . . , k} an initial k-
graph. The cliquewidth is the smallest integer k such that G can be constructed
from initial k-graphs by means of repeated application of the following three
operations:

– Disjoint union (denoted by ⊕).
– Relabeling: changing all labels i to j (denoted by ρi→j).
– Join: connecting all vertices labeled by i with all vertices labeled by j (denoted

by ηi,j).

If graph G has cliquewidth k it is possible to construct the expression tree
for G. The expression tree is a rooted tree T of the following form:
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– The nodes of T are of four types i, ⊕, η and ρ.
– Introduce nodes i(v) are leaves of T , corresponding to initial k-graphs with

vertices v, which are labeled i.
– A union node ⊕ stands for a disjoint union of graphs associated with children.
– A join node ηi,j with one child is associated with the k-graph, which is the

result of join operation for the graph corresponding to the child.
– A relabel node ρi→j also with one child is associated with the k-graph, which

is the result of relabeling operation for the graph corresponding to the child.
– The graph G is isomorphic to the graph associated with the root of T (with

all labels removed).

For node v of T we denote by Tv the subtree of T induced by v and it’s descen-
dants, and by Gv is denoted k-graph associated with this node. Clearly, Tv is
the expression tree for Gv.

Theorem 3. Let G be a connected graph with cliquewidth k. Then c1(G) ≤ k
and c2(G) ≤ 2k.

Proof. If our graph has one vertex then the statement is trivial. So assume that
G contains at least two vertices.

We start with the first bound. Let T be an expression tree for G. We describe
a cops strategy, which is constructed by tracing of T starting from the root.
The key idea of the cop’s strategy is to force the robber stay in vertices of graph
Gv, where v is a child of considered node of T .

It is assumed that at the beginning cops occupy some vertices of G. We say
that a cop moves to vertex z if he is moved to this vertex by a sequence of
moves. In the process of the pursuit cops are assigned to sets of vertices of the
graph. Correspondingly, these cops (sets) are called assigned, and other cops
are called free.

Let u be a vertex of T . It is assumed inductively that the robber occupies
some vertex of Gu, and that all vertices of V (Gu), which are adjacent to vertices
of V (G) \ V (Gu), are dominated by assigned cops. Suppose that S1, S2, . . . , Sr

are disjoint sets of vertices of Gu, to which cops are assigned. The cop assigned
to the set Si occupies some vertex, which is adjacent to all vertices of this set,
and every set has exactly one assigned cop. If u is the root, then r = 0. Now
we consider different cases.
Case 1. u is an introduce node. Since this vertex is dominated by some cop, this
case is trivial.
Case 2. u is a union node. Let v1, v2, . . . , vt be the children of u. Since Gu is
a disjoint union of Gv1 , Gv2 , . . . , Gvr , we have that the robber can stay only
in vertices of the graph Gvi for some 1 ≤ i ≤ r. If for some j ∈ {1, 2, . . . , r}
Sj ∩ V (Gvi) = ∅, then the cop assigned to this set is declared free. For other
sets we put Sj = Sj ∩ V (Gvi). Finally, we put u = vi and cops proceed with
the new list of assigned sets.
Case 3. u is a join node ηi,j with the child v. Let X ⊆ V (Gu) be the set of
vertices labeled by i, and Y ⊂ V (Gu) be the set of vertices labeled by j. If X is
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not included in the list of assigned sets, then vertex z ∈ Y is chosen, some free
cop is moved to this vertex, and this cop is assigned to X . Similarly, if Y is not
included to the list of assigned sets then vertex z ∈ X is chosen, some free cop
is moved to this vertex and is assigned to Y . The game proceeds with the new
list of assigned sets for u = v.
Case 4. u is a relabel node ρi→j with the child v. Let X ⊂ V (Gu) be the set of
relabeled vertices. If for some t ∈ {1, 2, . . . , r}, X ⊂ St, then set St is partitioned
into X and St \X , and one additional free cop is moved to a vertex dominating
X . This cop is assigned to X and the one that was assigned to St is assigned to
St \ X . Then cops proceed further with the new list of assigned sets for u = v.

By following this strategy, Cop player is guaranteed that at some moment
he reaches a position in the game when it is his turn to make a move and that
the robber occupies a vertex of some assigned set. Since each of the assigned
vertices is dominated by a cop, it follows that at some moment Cop player can
win the game by catching the robber.

Let us prove that k cops are sufficient to perform this strategy. We use here
the following property: For every u ∈ V (T ) with assigned sets S1, S2, . . . , Sr, no
label is used on vertices from two different sets. This property can be shown by
inductive arguments. By definition, it holds when u is the root of T . Suppose
that after some step of the pursuit two different sets Si and Sj have vertices with
same label. But it means that in the process of construction of G from Gu these
sets have to be subjected to relabeling and join operations simultaneously. Then
all vertices of these sets should be included into one assigned set after some join
operation. Thus r ≤ k, which yields that c1(G) ≤ k.

The second bound is proved similarly. Main difference is that we assign not
one but two cops to a set. Let u be a vertex of T . For the case s = 1 cops
were able to succeed by dominating all vertices of V (Gu), which are adjacent
to vertices of V (G) \ V (Gu). In the case s = 2, this is not sufficient and cops
also have to control all vertices of V (G) \V (Gu), which are adjacent to vertices
of V (Gu). Except this, the proof of this bound is almost identical to the case
of s = 1 and we omit it here. ⊓%

In combination with Proposition 1, Theorem 3 implies that

Corollary 2. For every graph G of bounded cliquewidth the numbers c1(G) and
c2(G) can be computed in polynomial time.

Let us remark that the results of this section cannot be extended for s ≥ 3
because cs(G) is not bounded by the cliquewidth of a graph. Consider, for
example, complete n-partite graph with partition sets V1, V2, . . . , Vn, |Vi| = n
for every i ∈ {1, 2, . . . , n}. Then we add n vertices v1, v2, . . . , vn and for every
i ∈ {1, 2, . . . , n} make vi adjacent to all vertices from Vi. Let Gn be the resulting
graph. It is easy to see that this graph has cliquewidth at most 3 and that
cs(Gn) = n for s ≥ 3.



On tractability of Cops and Robbers game 183

5 Open problems

Many interesting algorithmic question around Cops and Robbers game remain
open and we conclude with asking some of them.

– The most challenging question is due to Goldstein and Reingold in [17]: Is
the testing of c1(G) ≤ k EXPTIME-complete? If the answer is ”yes”, is the
problem EXPTIME-complete for every fixed s? Can it be so that for large s,
say for s ≥

√
n, the problem is in NP?

– We have shown that for every graph G of bounded cliquewidth and s ≤ 2,
the number cs(G) can be computed in polynomial time. What is the com-
putational complexity of the problem on graphs of bounded cliquewidth for
s = 3 or for s =∞?

– For a graph G of treewidth k, for every s ≥ 1, it is possible to prove that
cs(G) ≤ k + 1, which implies that cs(G) can be computed in time nO(k).
What is the parameterized complexity of computing cs with the treewidth
(or the cliquewidth) of a graph as a parameter?

– In the proof of Theorem 1, for a given graph G on n vertices, we construct a
graph G′ on O(n10) vertices such that γ(G) = cs(G′), where γ(G) is the dom-
ination number of G. Combined with the non-approximability for dominating
set problem [30], this implies the following

Corollary 3. There is a constant c > 0 such that there is no polynomial time
algorithm to approximate cs(G) within a multiplicative factor c log n, unless
P = NP .

An interesting question here is if there is an n1−ε-approximation algorithm
for the Cops and Robbers game.

– We have shown that for every fixed s, the solution of the Cops and Robbers
game can be solved in polynomial time on interval graphs. Can c∞(G) be
computed in polynomial time on interval graphs?
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