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Abstract. We consider the problem of recovering a planted partition (e.g., a
small bisection or a large cut) from a random graph. During the last 30 years
many algorithms for this problem have been developed that work provably
well on models resembling the Erdős-Rényi model Gn,m. Since in these ran-
dom graph models edges are distributed very uniformly, the recent theory of
large networks provides convincing evidence that real-world networks, albeit
looking random in some sense, cannot sensibly be described by these models.
Therefore, a variety of new types of random graphs have been introduced.
One of the most popular of these new models is characterized by a prescribed
expected degree sequence. We study a natural variant of this model that fea-
tures a planted partition, the main result being that there is a polynomial time
algorithm for recovering (a large share of) the planted partition efficiently. In
contrast to prior work, the algorithm’s input only consists of the graph, i.e., no
further parameters of the distribution (such as the expected degree sequence)
are required.

1 Introduction

To solve various types of graph partitioning problems, spectral heuristics are
in common use. Such heuristics represent the input graph by a suitable matrix
and exploit the eigenvectors of that matrix in order to solve the combinatorial
problem of interest. Spectral techniques have been used to either cope with
“classical” NP-hard graph partitioning problems such as Graph Coloring or
Max Cut, or to solve less well defined problems such as recovering a “latent”
clustering of the vertices of a graph. Examples of such clustering problems occur
in information retrieval [4], scientific simulation [18], or bioinformatics [10].
Furthermore, an important advantage of spectral methods is their efficiency, as
there are very fast algorithms for computing eigenvectors, in particular in the
case of sparse graphs/matrices.

Despite their success in applications (e.g., [17, 18]), for most of the known
spectral heuristics there are counterexamples known showing that these algo-
rithms perform badly in the “worst case”. Thus, understanding the conditions
that cause spectral heuristics to succeed (as well as their limitations) is an im-
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portant research problem. To address this problem, quite a few authors have
performed rigorous analyses of spectral techniques on suitable models of ran-
dom graphs. Examples include Alon and Kahale [3] (Graph Coloring), Bop-
pana [5] (Minimum Bisection), and McSherry [15] (recovering a latent parti-
tion).

Since the random graph models studied in the aforementioned papers are
closely related to the simple models Gn,p and Gn,m pioneered by Erdős and
Rényi, the resulting graphs have a very simple degree distribution. In fact, the
vertex degrees are concentrated about a constant number of values. By contrast,
the recent theory of complex networks shows that in many cases real-world
instances of partitioning problems have a considerably more involved degree
distribution [1]. Since most spectral heuristics are very sensitive to fluctuations
of the degree distribution, this means that most of the previous spectral methods
do not apply to such real-world inputs. Indeed, none of the algorithms from [3,
5, 15] can cope with heavily-tailed degree distributions such as those resulting
from the ubiquitous “power law”.

Therefore, in the present paper we present and analyze a spectral heuristic
for partitioning random graphs with a general degree distribution (including,
but not limited to “power laws”). In fact, the result comprises sparse graphs,
i.e., the case that the average degree remains bounded as the number of vertices
grows. This case is of particular practical interest, as many real-world networks
turn out to be sparse [1].

The present work is an extension of our prior paper [9] on the same subject.
The crucial improvement that we achieve in the present work is that the al-
gorithm only requires the graph as an input. By contrast, the algorithm in [9]
requires further inputs (namely, parameters of the random graph model such
as the expected degree of each vertex), which generally will not be available in
practice. Hence, the present work is a step towards spectral methods that apply
to graphs with general degree distributions – and in fact to sparse graphs.

In Section 2 we describe the random graph model and state the main result.
Then, in Section 3 we discuss related work, and Section 4 contains the algorithm
and its analysis.

2 The random graph model and the main result

We consider random graphs with a planted partition and a given expected
degree sequence. The model coincides with the one studied in [9] and resembles
the model investigated in Dasgupta, Hopcroft, and McSherry [11]. Moreover, it
is based on the “given expected degrees” model of Chung and Lu [7], which we
modify in order to incorporate a planted partition.

Let V = {1, . . . , n} be the set of nodes. The first parameter of the model is
a symmetric 2 × 2-matrix Φ = (φij) of full rank with non-negative constants
as entries. Furthermore, for each vertex u there is a weight wu > 0; let w =
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∑
u∈V wu/n be the average weight. In addition, let V1, V2 be a partition of

V into two subsets; this is going to be planted partition that the algorithm is
supposed to recover. For each u ∈ V we let ψ(u) ∈ {1, 2} denote the index of
the subset u belongs to, that is u ∈ Vψ(u).

Now, the random graph G = G(V1, V2,Φ, w1, . . . , wn) = (V, E) is obtained by
inserting each possible edge {u, v} with u, v ∈ V independently with probability

φψ(u),ψ(v) ·
wu · wv

w · n . (1)

Of course, we insist on the parameters Φ and wu being chosen such that each
of the above terms is bounded above by 1. Let du signify the degree of u ∈ V ,
and let w′

u be the expected degree. Then (1) yields

w′
u = E [du] =

wu

w · n ·
∑

v∈V

wv · φψ(u),ψ(v). (2)

We say that the random graph G = G(V1, V2,Φ, w1, . . . , wn) has some property
P with high probability (“w.h.p.”) if the probability that P holds tends to 1 as
n→∞, uniformly for any feasible choice of V1, V2, Φ and w1, . . . , wn.

Let us briefly discuss the meaning of the model’s parameters. As (2) shows,
the expected degree of u ∈ V is proportional to wu. Thus, the purpose of
the weights wu is to model the desired degree sequence (e.g., a power law).
Furthermore, the matrix Φ rules the edge density inside the classes V1, V2 and
the density of the bipartite graph consisting of the V1-V2 edges; for by (2) the
edge density of V1 (resp. V2) is proportional to φ11 (resp. φ22), and the V1-V2-
edge density is proportional to φ12 = φ21. Thus, the weight wu influences the
degree of u, while the matrix Φ yields what proportion of u’s neighbors belong
to V1 or V2.

For instance, to model a graph with a small bisection, we could set φ11 =
φ22 = 0.51 and φ12 = 0.49. Moreover, we let V1, V2 ⊂ V be two randomly chosen
disjoint sets of size n/2. Finally, setting wu = d · u 1

2 , we obtain a graph with a
power law degree distribution (with average degree about 2d) and a “planted
bisection” containing about 49% of all edges. Other examples include graphs
with planted independent sets, planted dense spots etc.

Theorem 1. There is a polynomial time algorithm A such that the following
holds. Let ε, δ > 0 be arbitrarily small but fixed, and let C = C(ε, δ) be a
sufficiently large constant. Moreover, assume that

1. |V1|, |V2| ≥ δn,
2. for all u ∈ V the weight wu satisfies εw ≤ wu ≤ n1−ε, and
3. the average weight satisfies w ≥ C.

Then w.h.p. A applied to G = G(V1, V2,Φ, w1, . . . , wn) outputs a partition V ′
1 , V ′

2

that differs from the planted partition V1, V2 on at most n · ln w /w 0.98 vertices;
that is, min{|V1△V ′

1 | + |V2△V ′
2 |, |V1△V ′

2 | + |V2△V ′
1 |} ≤ n · ln w /w 0.98.
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Note that the number of vertices that A may not classify correctly decreases
as w grows. Indeed, if w = O(1), i.e., if G is a sparse graph with average degree
O(1), then it is impossible to recover the partition V1, V2 perfectly. A simple
reason for this is that w.h.p. both V1 and V2 will contain a linear number Ω(n)
of isolated vertices. Nevertheless, a large share of the vertices gets partitioned
correctly w.h.p. Moreover, we emphasize that the input of the algorithm only
consists of the graph G; no further parameters of the model are revealed to A.

Although we have stated Thereom 1 only for a planted partition V1, V2 with
two classes, the techniques generalize to the case of an arbitrarily large but
bounded number k of classes. We omit the details to simplify the exposition.

3 Related work

The general relationship between spectral properties of the adjacency matrix of
a graph and clustering problems has been investigated thoroughly [2]. Usually
this relationship is based on some separation between the few largest eigen-
values in absolute value (which then represent the clusters) and the remaining
eigenvalues. Along these lines theoretically rigorous analyses of spectral meth-
ods have been conducted, mainly stating that a certain algorithm performs well
on a certain random graph model. Indeed, this has lead to provably efficient al-
gorithms for clustering problems in situations where purely combinatorial algo-
rithms do not seem to work; examples include Alon and Kahale [3] (3-coloring),
Boppana [5] (graph bisection), and McSherry [15] (recovering a “latent” par-
tition). In particular [3] has inspired further results (e.g., Flaxman’s work on
3-SAT [12]).

However, the aforementioned results do not yield spectral algorithms for
clustering graphs whose degree distribution features a heavy upper tail, e.g.,
a power law degree distribution. Nonetheless, these degree distributions occur
prominently in large real world networks [1]. In fact, Mihail and Papadim-
itriou [16] proved that in the case of a power-law the spectrum of the adjacency
matrix merely reflects the upper tail of the degree distribution, but provides
no clue on global graph properties (such as the presence of dense clusters or
a large cut). Furthermore, in the case of a heavily-tailed degree distribution it
is not an option to just remove high degree vertices, because significant parts
of the graph may just be ignored in this way. Thus, the adjacency matrix is
inappropriate to represent graphs with heavy-tailed degree distributions.

To cope with a heavily-tailed degree distribution, the Laplacian matrix has
been used in both theoretical (e.g. [6]) and practically oriented work [17]. How-
ever, for randomly generated graphs the Laplacian is significantly more difficult
to study than the adjacency matrix (because the entries are heavily dependent).
Nonetheless, Dasgupta, Hopcroft, and McSherry [11] showed that clustering
problems on sufficiently dense random graphs with a general degree distribu-
tion (say, average degree ≫ ln6(n), where n is the number of vertices) can be
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solved efficiently using the Laplacian. More precisely, [11] deals with essentially
the same model as considered in the present paper (though they additionally
deal with the case k > 2). However, the assumption that the average degree is
≫ ln6 n turns out to be crucial in [11] (because the paper employs the “trace
method” from Füredi and Komlós [13] for analyzing the Laplacian spectrum).
Hence, in comparison to [11] the new aspect of the present work is that our
result covers sparse graphs (of average degree O(1)), which seem most appro-
priate to model real networks [1]. In fact, the case of sparse graphs is posed as
an open problem in [11].

In a prior paper [9] we studied the same random graph model and presented
an algorithm for recovering (a large part of) the planted partition efficiently,
provided that the expected degree distribution (E [dv])v∈V is given as a further
input parameter to the algorithm. This assumption is crucial in that paper,
because the algorithm exploits the spectrum of the matrix M = (muv)u,v∈V

with entries

muv =
{

(E [du]E [dv])−1 if u, v are adjacent,
0 otherwise. (3)

In fact, in the sparse case (average degree O(1)), the vertex degrees dv are
not tightly concentrated about their means (as there tails of Poisson type), so
that it is impossible to recover/approximate the expected degree distribution
(E [dv])v∈V sufficiently well in terms of the actual degree distribution (dv)v∈V .
Therefore, the assumption that the algorithm is given the expected degree se-
quence is inevitable in order to set up the matrix (3). Of course, this assumption
is rather impractical, because it reduces the applicability of the algorithm to
artificially generated instances.

To avoid the assumption that the expected degree sequence is given to the
algorithm, we fix (3) by instead considering the matrix M = (muv)u,v∈V with
entries

muv =
{

(dudv)−1 if u, v are adjacent,
0 otherwise. (4)

Hence, we replace the expected degrees by the actual vertex degrees of the input
graph. In effect, while the entries of (3) are mutually independent (up to the
trivial dependence due to symmetry), the entries of (4) are mutually dependent.
This issue complicates the analysis of the algorithm – in particular, the analysis
of the spectrum of M – significantly; to cope with these new issues, we build
upon methods that we developed recently in [8]. Furthermore, the algorithm
needs to proceed more carefully, as the actual vertex degrees may deviate from
their means considerably. Thus, in comparison to [9] the contribution of the
present work is that we obtain a much more practical algorithm, and present
significantly more sophisticated techniques for analyzing its performance on
random graphs.
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4 The algorithm and its analysis

Throughout this section we keep the notation and the assumptions of Theorem 1.

4.1 Notation and preliminaries

If ξ is a vector, then ∥ξ∥ denotes its ℓ2-norm. Moreover, for a m× n matrix B
we let ∥B∥ = maxξ∈Rn, ∥ξ∥=1 ∥Bξ∥ denote the operator norm. The transpose of
B is written as Bt. Furthermore, 1 signifies the vector with all entries equal to
1 (in any dimension). If ξ ∈ RS and U ⊆ S, then ξ|U ∈ RS signifies the vector
obtained by replacing the i’th component of ξ by 0 if i /∈ U , whereas ξU ∈ RU

is obtained from ξ by deleting all entries ξv with v /∈ U . In addition, if B is a
m × n matrix and X ⊆ {1, . . . , m}, Y ⊆ {1, . . . , n}, then BX×Y denotes the
minor of B induced on X ×Y . Further, if M = (muv) is a matrix and X (resp.
Y ) is a set of rows (columns), then we set

sM (X, Y ) =
∑

x∈X

∑

y∈Y

mxy.

If u is a vertex of a graph G = G(V1, V2,Φ, w1, . . . , wn), then N(u) = {v :
{u, v} ∈ E} denotes the neighborhood of u. Moreover, for two sets U1, U2 of
vertices we define the volume of (U1, U2) to be

Vol(U1, U2) =
∑

u∈U1

∑

v∈U2

φψ(u),ψ(v) ·
wu · wv

w · n ;

if U1 and U2 are disjoint, then Vol(U1, U2) equals the expected number of U1-U2-
edges. In other words, if A = A(G) is the adjacency matrix, then Vol(U1, U2) =
E [sA(U1, U2)].

The following Chernoff bounds will prove useful in several places (cf. [14,
Theorems 2.1 and 2.8]).

Fact 2. Let X be the sum of independent 0–1 random variables. Then

1. Pr [X ≥ E [X ] + t] ≤ exp
(
− t2

2·(E[X]+t/3)

)

2. Pr [X ≤ E [X ]− t] ≤ exp
(
− t2

2·E[X]

)

for all t ≥ 0.

Finally, we collect a few simple observations concerning the random graph
model.

Lemma 3. Suppose that G = G(V1, V2,Φ, w1, . . . , wn) is a random graph.
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1. Let u1, u2 be two vertices belonging to the same set of the planted partition.
Then
wu1/w′

u1
= wu2/w′

u2
.

2. There exists a constant C = C(Φ, ε, δ) such that 1/C ≤ w′
u/wu ≤ C for all

u ∈ V .
3. The expected average degree of G equals w ′ =

∑
u∈V w′

u/n = Θ(w ).

Since by Lemma 3 the quotient wu/w′
u coincides for all u ∈ Vi, we abbreviate

Wi = wu/w′
u = Θ(1), and W = w /w ′ = Θ(1). (5)

4.2 The algorithm

The algorithm A for Theorem 1 reads as follows.

Algorithm 4.
Input: A graph G = (V, E).
Output: A partition V ′

1 , V ′
2 of V .

1. Calculate the average degree d =
∑n

u=1 du/n of G and set dm = d / ln d .
2. Construct the matrix M = (muv)u,v∈V as described in (4).
3. Let U = {u ∈ V : du ≥ dm} be the set of all vertices whose degree is “not

too small”.
4. Obtain M∗ from M by replacing any entry muv with (u, v) /∈ U × U by 0.
5. Let s1, s2 be the eigenvectors of M∗ with the two largest eigenvalues in ab-

solute value. Scale si such that ∥si∥ =
√

n.
6. If at least one of s1, s2 enjoys the following property:

There are c1, c2 ∈ R with |c1 − c2| > 1/4 such that more than
n/
√

dm vertices v ∈ U satisfy |si(v)− c1| ≤ 1/32 and more than
n/
√

dm vertices satisfy |si(v)− c2| ≤ 1/32,
(6)

then let s ∈ {s1, s2} be such an eigenvector. Furthermore, let V ′
1 be the

vertices whose corresponding entries in s are closer to c1 than to c2 and set
V ′

2 = V \V ′
1 . Otherwise, if neither s1 nor s2 enjoys (6), let V ′

1 = V and V ′
2 = ∅

(in this case, the algorithm fails).

Before we sketch the analysis of the algorithm, let us briefly discuss the
basic ideas that it is based on. In its first step, A just computes the average
degree and the value dm. This value is assumed to be a lower bound on the
degree that a vertex should typically have; that is, all vertices with degree
< dm are considered exceptional. Note that this is consistent with assumption
2. of Theorem 1, which entails that E [du] ≥ δε2 ·minφij>0(φij) · d > dm for all
u ∈ V .

Step 2 of the algorithm then sets up the matrix M , whose eigenvectors we
are going to use in order to partition G. Note that the entry corresponding
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to an edge {u, v} is normalized by the product dudv of the vertex degrees;
this normalization is crucial as it ensures that the upper tail of the degree
distribution does not dominate the spectrum of M (in contrast to the case of
the adjacency matrix, cf. Section 3).

While the normalization of the entries of M ensures that the upper tail of the
degree distribution does not dominate the spectrum of M , vertices of atypically
small degree may induce large eigenvalues (cf. [8]). Therefore, before computing
the dominant eigenvectors s1, s2 in Step 5, Steps 3 and 4 remove all entries of
M that involve low degree vertices. By the Chernoff bound (Fact 2), in this way
we just remove a tiny (though linear) fraction of the vertices.

Finally, Step 6 exploits the entries of s1 and s2 to compute a partition.
The basic insight is that the entries of s1 and s2 are essentially constant on
the two classes V1, V2, and that indeed the entries of s1 and s2 differ on each
class significantly; this second fact follows from our assumption that the density
matrix D has full rank. However, if s1 and s2 do not have these properties, then
the algorithm will fail to partition the graph correctly and just output a trivial
partition.

In order to analyze the algorithm (and thus to prove Theorem 1), we basically
need to study the eigenvalues and -vectors of M∗. The main ingredient of the
analysis is the following result on the spectrum of the minors M∗

Vi×Vj
, i.e., the

sub-matrices of M∗ consisting of the rows Vi and the columns Vj .

Theorem 5. With high probability the following holds for any two indices 1 ≤
i, j ≤ 2.

1.
1t

∥1t∥ · M
∗
Vi×Vj ·

1
∥1∥ = φij · Wi · Wj ·

√
|Vi|·|Vj |
w · n ·

(
1 ± O

(
dm

−0.49)) .

2. For any u, v with ∥u∥ = ∥v∥ = 1 and u ⊥ 1 or v ⊥ 1 we have the bound
∣∣ut · M∗

Vi×Vj · v
∣∣ = O

(
w −1.49 + dm

−1.5) = O(1/(w · dm
0.49)).

The assumptions of Theorem 1 ensure that the expression on the r.h.s. of 1. is
of order 1/w , whereas the expression in 2. is of order 1/(w · dm

0.49). Thus, the
intuitive meaning of Theorem 5 is that the dominant singular value of M∗

Vi×Vj

corresponds approximately to the singular vectors 1Vi and 1Vj . By combining
the estimates from Theorem 5 for all index pairs 1 ≤ i, j ≤ 2, we obtain the
following result concerning the eigenvectors of M∗.

Corollary 6. W.h.p. M∗ has exactly two eigenvalues whose absolute value is
Θ(1/w ), whereas all the other eigenvalues are O

(
1/(w · dm

0.49)
)

in absolute
value. Moreover, if s1, s2 are orthogonal eigenvectors of norm

√
n with the

largest two eigenvalues in absolute value, then there is an index j ∈ {1, 2}
such that

sj = α1|V1 + β1|V2 + γu, where u ⊥ 1|V1 ,1|V2 , ∥u∥ =
√

n

and |α− β| > 1
4 and γ = O(dm

−0.49).
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Corollary 6 implies that w.h.p. step 6 of A will succeed in finding a vector
that satisfies (6). Moreover, a simple calculation based on the above eigenvalue
bounds shows that the number of falsely classified vertices (i.e., the symmetric
difference of the partitions (V ′

1 , V ′
2) and (V1, V2)) is at most O(n/dm

0.98), whence
Theorem 1 follows.

The values of α and β correspond to the ci in the algorithm. If some vertex
classified falsely, its entry in sj is twisted due to its value in γ · u. Because
of the large distance between α and β, such entries are bounded below by
some constant. As |γ| = O(dm

−0.49) the value in u has to be Ω(dm
0.49). Since

∥u∥ =
√

n we have at most O(n/dm
0.98) such entries.

4.3 Proof of Corollary 6

At first we show that M∗ has the exactly two eigenvalues whose absolute value
is Θ(1/w ), whereas all the other eigenvalues are O

(
1/(w · dm

0.49)
)

in absolute
value. Let g, h be two vectors from the space spanned by 1|V1 and 1|V2 . Namely,
g = a1 ·1|V1/∥1|V1∥+a2 ·1|V2/∥1|V2∥ with a2

1 +a2
2 = 1 and h = b1 ·1|V1/∥1|V1∥+

b2 · 1|V2/∥1|V2∥ with b2
1 + b2

2 = 1. Note, ∥g∥ = ∥h∥ = 1. By Theorem 5 we have
with probability 1− o(1) that

htM∗g =
2∑

i,j=1

bi ·
1|Vi

∥1|Vi
∥ · M

∗ · aj ·
1|Vj

∥1|Vj
∥ =

2∑

i,j=1

bi · aj ·
1t · M∗

Vi×Vj · 1√
|Vi| · |Vj |

=
2∑

i,j=1

bi · aj · φij · Wi · Wj ·
√
|Vi| · |Vj |
w · n ·

(
1 ± O

(
dm

−0.49
))

=
2∑

i,j=1

(
bi · aj · φij · Wi · Wj ·

√
|Vi| · |Vj |
w · n

)
± O

(
1/
(
w · dm

0.49))

=
1
w

·
(
b1 b2

)
· P ·

(
a1

a2

)
± O

(
1/
(
w · dm

0.49))

with

P =

⎛

⎝W1 ·
√

|V1|
n 0

0 W2 ·
√

|V2|
n

⎞

⎠ ·
(
φ11 φ12

φ12 φ22

)
·

⎛

⎝W1 ·
√

|V1|
n 0

0 W2 ·
√

|V2|
n

⎞

⎠ .

Remember, Φ has full rank as well as both remaining factors of P . We conclude
that the matrix P has full rank. The Wi are Θ(1) as |Vi| /n, too. This shows
that the spectral properties of P are determined only by Φ, ε and δ and do
not rely on w1, . . . , wn or n. P has two eigenvectors with constant nonzero
eigenvalues. Let

(
e1 e2

)t and
(
f1 f2

)t be two orthonormal eigenvectors of P to
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the eigenvalues λ1 and λ2. Set

g1 = e1 ·
1|V1

∥1|V1∥
+ e2 ·

1|V2

∥1|V2∥
and g2 = f1 ·

1|V1

∥1|V1∥
+ f2 ·

1|V2

∥1|V2∥
.

By the calculation above get

∣∣gt
1 · M∗ · g1

∣∣ =
∣∣∣∣
1
w

·
(
e1 e2

)
· P ·

(
e1

e2

)
± O

(
1/
(
w · dm

0.49))
∣∣∣∣

=
∣∣∣∣
1
w

· λ1 ± O
(
1/
(
w · dm

0.49))
∣∣∣∣ = Θ(1/w )

whereas

∣∣gt
1 · M∗ · g2

∣∣ =
∣∣∣∣
1
w

·
(
e1 e2

)
· P ·

(
f1

f2

)
± O

(
1/
(
w · dm

0.49))
∣∣∣∣

=
∣∣∣∣
1
w

· 0 ± O
(
1/
(
w · dm

0.49))
∣∣∣∣

Thus for 1 ≤ i, j ≤ 2 we have

∣∣gt
i · M∗ · gj

∣∣ =
{
Θ(1/w ) for i = j

O
(
1/
(
w · dm

0.49)) for i ̸= j
. (7)

For any unit-vector u ⊥ g1, g2 (what equals u ⊥ 1|V1 ,1|V2) we have by
Theorem 5 for all unit-vectors v

∣∣ut · M∗ · v
∣∣ ≤

2∑

i,j=1

∣∣ut
Vi

· M∗
Vi×Vj · vVj

∣∣ = O
(
1/
(
w · dm

0.49))

and analogously ∣∣vt · M∗ · u
∣∣ = O

(
1/
(
w · dm

0.49)) .

Both bounds and (7) together with the Courant-Fischer-characterization of
eigenvalues yield the first part of the claim.

We are left to show that M∗ w.h.p. has an eigenvector sj as desired. Let e
be an eigenvector of M∗ with norm ∥e∥ =

√
n to the eigenvalue Θ(1/w ) (in

absolute value). We can decompose e such that e = α · 1|V1 + β · 1|V2 + γ · u
for some u ⊥ 1|V1 ,1|V2 with ∥u∥ =

√
n. By Theorem 5 we conclude on the one

hand
∣∣et · M∗ · u

∣∣ = ∥e∥ · ∥u∥ · O
(
1/
(
w · dm

0.49)) = O
(
n/
(
w · dm

0.49))

as u ⊥ 1|V1 ,1|V2 . Because of et · M∗ = Θ(1/w ) · et we have on the other hand
∣∣et · M∗ · u

∣∣ = Θ(1/w ) ·
∣∣et · u

∣∣ = Θ(1/w ) · |γ| · utu = Θ(1/w ) · |γ| · n ,
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so that |γ| = O(dm
−0.49). Let s1, s2 be as in the lemma and

sj = αj · 1|V1 + βj · 1|V2 + γj · uj

the decomposition with uj ⊥ 1|V1 ,1|V2 and ∥uj∥ =
√

n as described. Assume
for a contradiction that we have |αj − βj | ≤ 1/4 for both j = 1, 2. As

n = st
j · sj = α2

j · |V1| + β2
j · |V2| + γ2

j · n

we get

α2
j + β2

j ≥ α2
j ·

|V1|
n

+ β2
j · |V2|

n
= 1− γ2

j ≥ 1−O(dm
−0.98) .

Clearly, for both j = 1, 2 we have |αj | > 1/2 or |βj | > 1/2, yielding that the
sign of αj equals the sign of βj for both j = 1, 2. We get

|α1 · α2 + β1 · β2| = |α1 · α2| + |β1 · β2| ≥
1
2
· 1
4

+
1
4
· 1
2

=
1
4

and

0 = st
1 · s2 =

∣∣α1 · α2 · |V1| + β1 · β2 · |V2| + γ1 · γ2 · ut
1 · u2

∣∣

≥ δn · |α1 · α2 + β1 · β2|− |γ1 · γ2| · n ≥ δn/4−O
(
n/dm

0.98
)

.

This is a contradiction since δ > 0 is constant and dm is large. So at least one
sj has |αj − βj | > 1/4. ⊓(

4.4 Proof of Theorem 5: The spectrum of M∗
Vi×Vj

The main difficulty in the (rather involved) proof of Theorem 5 is the fact that
the entries of M∗ are mutually dependent, because we normalize by the actual
vertex degrees (cf. Step 2 of the algorithm and (4)). Furthermore, in case of
sparse graphs (which is included in Theorem 1), it is possible that all (or most)
weights wu remain bounded as n → ∞. In this case the expected degrees are
bounded as well. In effect, the actual degrees of the vertices are not concentrated
about their expectations, but may deviate by up to Ω(log n/ log log n). Hence,
we need to cope with the dependence of the matrix entries as well as with
deviations of the vertex degrees from their expectations.

To this end, we mark vertices u ∈ Vi as “bad” if the number of u’s neighbors
in Vj is far from its expectation (of course, this is just a part of the analysis –
the algorithm cannot identify these “bad” vertices). Similarly, we mark vertices
from Vj as “bad”. Now, it is possible that some “good” vertices inside Vi and/or
Vj have many “bad” neighbors. We mark such vertices as “bad”, too. Repeating
this process, we obtain a subset Rij ⊆ Vi of “good” vertices, which firstly have
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about as many neighbors in Vj as expected and secondly have only a few “bad”
neighbors in Vj . Analogously we obtain “good” vertices Cij ⊆ Vj . Then, we
shall analyze the sub-matrix induced on Rij × Cij separately from the rest.

More precisely, the sets Rij ⊆ Vi and Cij ⊆ Vj are the outcome of the fol-
lowing process. Let c be a sufficiently large constant (the value gets determined
later), and let A = A(G) be the adjacency matrix of G.

1. Let R′ = {u ∈ V : ∀j′ : |sA(u, Vj′)−Vol(u, Vj′)| ≤ Vol(u, Vj′ )0.51}.
2. Let C′ = {v ∈ V : ∀i′ : |sA(Vi′ , v)−Vol(Vi′ , v)| ≤ Vol(Vi′ , v)0.51}.
3. Set R′

ij := R′ ∩ Vi and C′
ij := C′ ∩ Vj .

4. While there is some u ∈ R′
ij with

sA(u, Vj \ C′
ij) ≥ Vol(u, Vj) · c/dm then R′

ij := R′
ij \ {u}.

5. While there is some v ∈ C′
ij with

sA(Vi \ R′
ij , v) ≥ Vol(Vi, v) · c/dm then C′

ij := C′
ij \ {v}.

6. Repeat Steps 4 – 5 until R′
ij and C′

ij remain unchanged.
7. Rij := R′

ij . Cij := C′
ij .

We abbreviate Rij by R and Cij by C, Vi \Rij by R , and Vj \Cij by C . Due
to the first step of the above process all u ∈ R and v ∈ C satisfy

|sA(u, V )−Vol(u, V )| ≤ 2 · Vol(u, V )0.51,

|sA(V, v)−Vol(V, v)| ≤ 2 · Vol(V, v)0.51.
(8)

Let us briefly discuss the above process. For a vertex u ∈ V1 the standard
deviation of the number sA(u, Vj) of neighbors of u in Vj from its expectation
Vol(u, Vj) is of order O(Vol(u, Vj)0.5) (because sA(u, Vj) is a sum of independent
0/1-random variables). Therefore, the Chernoff bound (Fact 2) entails that
w.h.p. “most” of the vertices in Vi belong to R′. Moreover, the larger Vol(u, Vj),
the more likely it is that u ∈ R′. Hence, we expect Vol(Vi \ R′, Vj) (as well as
Vol(Vi, Vj \C′)) to be fairly small. Consequently, as a vertex removed from R′

ij

in Step 4 has relatively many neighbors inside the set Vj \C′
ij of small volume,

we expect that Step 4 will remove only a small number of vertices. Thus, the
final sets R and C should constitute the dominant fraction of the volume of G.
The following lemma, whose proof is omitted, shows that this is actually the
case.

Lemma 7. W.h.p. we have Vol(R , Vj) ≤ n/dm
4, Vol(Vi, C ) ≤ n/dm

4, and
Vol(R , C ) ≤ n/dm

8.

A consequence of Lemma 7 is that both R and C contain only a few vertices.
For by the choice of dm (cf. Step 1 of A) for all u ∈ Vi and all v ∈ Vj we have

dm ≤ Vol(u, Vj) ≤ Vol(u, V ) = w′
u and dm ≤ Vol(Vi, v) ≤ w′

v . (9)
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Thus, dm ·
∣∣R
∣∣ ≤ Vol(R , Vj) ≤ n/dm

4, which yields
∣∣R
∣∣ ≤ n/dm

5. As δ·n ≤ |Vi|,
we get

∣∣R
∣∣ ≤ |Vi|

δ · dm
5 ≤

|Vi|
dm

4 and |R| = |Vi|−
∣∣R
∣∣ ≥ |Vi| ·

(
1− 1

dm
4

)
, (10)

(provided that w > 1/δ2 is sufficiently large). Analogously,
∣∣C
∣∣ ≤ |Vi| /dm

4 and |C| ≥ |Vi| ·
(
1− 1/dm

4) . (11)

To proceed, we subdivide M∗
Vi×Vj into four parts M∗

R×C , M∗
R×C , M∗

R×C ,
and M∗

R×C , which we shall analyze separately. With respect to M∗
R×C , we

have the following.

Lemma 8. With high probability we have

1. 1t · M∗
R×C · 1 = φij · Wi · Wj ·

|R| · |C|
w · n ·

(
1 ± O(1/dm

0.49)
)

= Θ(n/w ),

2. |ut · M∗
R×C · v| = O

(
1/w 1.49

)
for any u, v with ∥u∥ = ∥v∥ = 1 and u ⊥ 1

or v ⊥ 1, and
3. ∥M∗

R×C∥ = Θ (1/w ) .

The proof of Lemma 8 is based on the fact that on R × C the vertex degrees
behave at least roughly as expected. Therefore, we can relate the spectrum of
M∗

R×C to the spectrum of MR×C , where M is the matrix from (3). Since the
entries of M are mutually independent (up to the trivial dependence resulting
from symmetry), the analysis of its spectrum is significantly simpler than the
analysis of M ; in fact, this analysis has been carried out in [9]. Nonetheless, in
order to relate MR×C and M∗

R×C , we need to analyze the degree distribution
of G thoroughly, which requires considerable technical work (omitted).

As a next step, we analyze the three “small” blocks M∗
R×C , M∗

R×C and
M∗

R×C .

Lemma 9. With high probability we have that ∥M∗
R×C ∥, ∥M∗

R×C∥ and
∥M∗

R×C ∥ are O(dm
−1.5).

The proof of Lemma 9 is based on combinatorial ideas, and, in particular, the
fact that the volumes of R and C are relatively small (cf. Lemma 7). Therefore,
for instance the subgraph induced on R × C has a very simple combinatorial
structure (it is essentially forest-like), which allows a direct analysis of M∗

R×C .
Details are omitted.

4.4.1 Proof of Theorem 5. With respect to the first statement, we have

1t · M∗
Vi×Vj · 1 = 1t · M∗

R×C · 1 + 1t · M∗
R×C · 1+

1t · M∗
R×C · 1 + 1t · M∗

R×C · 1 . (12)
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Item 1. of Lemma 8 gives for the first term

1t · M∗
R×C · 1 = φij · Wi · Wj ·

|R| · |C|
w · n · (1 ± O(1/dm

0.49))

(10),(11)
= φij · Wi · Wj ·

|Vi| · |Vj |
w · n · (1 ± O(1/dm

0.49)) .

Lemma 9 shows that the second summand in (12) is bounded by

∣∣1t · M∗
R×C · 1

∣∣ ≤
√
|R| ·

∣∣C
∣∣ · ∥M∗

R×C ∥
(11)
≤
√
|Vi| · |Vj | /dm

4 · O(dm
−1.5)

=
√
|Vi| · |Vj | · O

(
dm

−3.5) =
√
|Vi| · |Vj | · O(1/(w · dm

0.49)) .

The same bound holds for both
∣∣1t · M∗

R×C · 1
∣∣ and

∣∣1t · M∗
R×C · 1

∣∣. Di-
viding each summand for (12) by

√
|Vi| · |Vj | we get the desired bound on

1t

∥1t∥ · M
∗
Vi×Vj ·

1
∥1∥ .

For the second item of Theorem 5 we assume that u ⊥ 1, yielding ut · (1|R +
1|R ) = 0, so that

∣∣ut · 1|R
∣∣ =

∣∣∣ut · 1|R

∣∣∣ ≤ ∥u∥ · ∥1|R ∥ ≤
√∣∣R

∣∣ . (13)

We decompose u as u = a · 1|R /∥1|R∥ + b · ul with ∥ul∥ = 1 and ul ⊥ 1|R.
Clearly ul|R ⊥ 1|R, too, and a2 + b2 = 1. A straightforward computation yields

|a| =
∣∣∣∣u

t ·
1|R

∥1|R∥

∣∣∣∣
(13)
≤

√∣∣R
∣∣

∥1|R∥
(10)
< 2/dm

2 . (14)

Let v be some arbitrary unit-vector. Then we can rewrite
∣∣ut · M∗

Vi×Vj · v
∣∣ as

∣∣∣ut · M∗
Vi×Vj ·

(
v|C + v|C

)∣∣∣ ≤
∣∣ut · M∗

Vi×Vj · v|C
∣∣+ ∥M∗

R×C ∥+ ∥M∗
R×C ∥ .

The second and the third summand are O(dm
−1.5) by Lemma 9. The first one

we bound as follows

∣∣ut · M∗
Vi×Vj · v|C

∣∣ =
∣∣∣∣

(
a ·

1t
|R

∥1t|R∥
+ b · ul

)
· M∗

Vi×C · vC
∣∣∣∣

≤ |a| · ∥M∗
R×C∥+ |(b · ul) · M∗

Vi×C · vC |
(14)
< 2/dm

2 · O(1/w ) +
∣∣∣b ·
(
ul|R + ul|R

)
· M∗

Vi×C · vC
∣∣∣

≤ O
(
dm

−1.5)+ |ulR · M∗
R×C · vC | + ∥M∗

R×C∥
= O

(
dm

−1.5)+ O
(
w −1.49

)
+ O

(
dm

−1.5) .
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We got the last step because of ul|R ⊥ 1|R and Lemma 8. So,
∣∣ut · M∗

Vi×Vj · v
∣∣

is O
(
w −1.49

)
+ O

(
dm

−1.5
)

as desired. The case v ⊥ 1 and u arbitrary can be
handled analogously. ⊓#
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