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Abstract. We extend the regular model checking framework so that
it can handle systems with arbitrary width tree-like structures. Config-
urations of a system are represented by trees of arbitrary arities, sets
of configurations are represented by regular hedge automata, and the
dynamics of a system is modeled by a regular hedge transducer. We
consider the problem of computing the transitive closure T + of a reg-
ular hedge transducer T . This construction is not possible in general.
Therefore, we present a general acceleration technique for computing
T +. Our method consists of enhancing the termination of the iterative
computation of the different compositions T i by merging the states of
the hedge transducers according to an appropriate equivalence relation
that preserves the traces of the transducers. We provide a methodology
for effectively deriving equivalence relations that are appropriate. We
have successfully applied our technique to compute transitive closures
for some mutual exclusion protocols defined on arbitrary width tree
topologies, as well as for an XML application.

1 Introduction

Regular Model Checking has been proposed as a general and uniform framework
to analyse infinite-state systems [21, 28, 12, 7]. In this framework, configura-
tions are represented by words or trees, sets of configurations by regular finite
word/tree automata, and the transitions of the system by a regular relation de-
scribed by a word/tree transducer. A central problem in regular model checking
is to compute the transitive closure of a regular relation given by a finite-state
transducer. Such a representation allows to compute the set of reachable con-
figurations of a system (thus enabling verification of safety properties) as well
as to detect loops between configurations if the transformations are structure
preserving (thus enabling verification of liveness properties) [12, 6]. However,
computing the transitive closure of a transducer is not possible in general since
the transition relation of any Turing machine can be represented by a regu-
lar word transducer. In fact, the major problem in regular model checking is
that a naive computation that consists in iteratively computing the different
compositions T i of a transducer T does not terminate in general. Therefore, a
main issue in regular model checking is to define general acceleration techniques
that will force the above iterative procedure to terminate for many practical
applications.
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During the last years, several authors addressed this issue. (1) First in the
case of regular word model checking where configurations are encoded as words.
These works have been successfully applied to reason about linear parametrized
systems (i.e., parametrized systems where the processes are arranged in a lin-
ear topology) [12, 23, 19, 13, 25, 3, 4], as well as systems that operate on
linear unbounded data structures such as lists, integers, reals, and even hybrid
automata [5, 11, 6], and programs with pointers [9]. (2) Then in the case of
regular tree model checking where configurations are represented by trees of ar-
bitrary sizes (but fixed arities). These works have been applied to the analysis
of parametrized systems with tree topologies [17, 19, 2, 1], and multithreaded
programs [22, 17, 14, 8, 26].

In this paper, we develop the regular model checking paradigm further, and
consider the more general case of regular hedge model checking, where config-
urations are represented by trees of arbitrary arities. Indeed, arbitrary width
tree-like structures are very common and appear naturally in many modeling
and verification contexts. We can mention at least three examples of such con-
texts:

– XML documents can be modeled by unranked trees whose nodes are labeled
with the tags of the document [29, 24]. For example, a document having n
pages, where page i has ki paragraphs can be represented by a tree whose
root has n children, and where the ith child has ki children. Since the num-
ber of pages and paragraphs in a document are arbitrary, unranked trees
are necessary to represent such documents. Then, transformations on XML
documents such as XSLT can be represented by relations on unranked trees.

– Configurations of multithreaded recursive programs can also be represented
by unbounded width trees where the leaves are labeled with the control points
of the program and the inner nodes with the sequential and the parallel op-
erators · and ‖. For example, a term ||(t1, . . . , tn) represents a configuration
where the terms t1, . . . , tn are in parallel. Since the number of parallel pro-
cesses can be arbitrarily large, we need unbounded width trees to accurately
represent such configurations. Then, actions of the program such as procedure
calls, launching of new threads, synchronisation statements, etc, can also be
represented by relations on unranked trees [15, 16].

– Many parametrized protocols are defined on tree topologies with unbounded
width. Indeed, in the case of tree networks, the number of processes and the
topology of the network (including the arities of the different nodes) are not
fixed. In this case, labeled trees of arbitrary width and height are needed to
represent configurations of tree networks of arbitrary numbers of processes:
each vertex in a tree corresponds to a process, and the label of a vertex is
the current control state of its corresponding process. Typically, actions in
such parametrized systems are communications between processes and their
sons or fathers. These actions correspond in our framework to tree relabeling
relations (transformations which preserve the structure of the trees). Exam-
ples of such systems are multicast protocols, leader election protocols, mutual
exclusion protocols, etc.
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We use hedge automata [18] to symbolically represent infinite sets of un-
ranked trees, and hedge transducers to model transformations on these trees.
Then, as in the case of regular word and tree model checking, the central prob-
lem is to compute the transitive closure of a hedge transducer T . Our aim is
then to define general techniques which can deal with different classes of re-
lations, and which can be applied uniformly in many verification and analysis
contexts such as those mentioned above.

The main contribution of this work is the definition of a general acceleration
technique on relabeling hedge transducers (tranducers that preserve the struc-
ture of the trees). Our technique works as follows: To enhance the termination of
the iterative computation of the different compositions T i, we merge equivalent
states using an appropriate equivalence relation, i.e., an equivalence relation
that preserves the traces of the transducers (for which collapsing two states
does not add new traces to the transducers). The main problem amounts then
to defining and computing appropriate equivalences. We provide a methodology
for deriving such equivalence relations. More precisely, we consider equivalence
relations induced by two simulation relations, namely a downward and an up-
ward simulation, both defined on hedge automata. We give sufficent conditions
on the simulations that guarantee appropriateness of the induced equivalence.
Furthermore, we define effectively computable downward and upward simula-
tions for which the induced relation is guaranteed to be appropriate. We have
successfully applied our technique to compute transitive closures of some mu-
tual exclusion protocols defined on arbitrary width tree topologies. We were
also able to handle an XML application. This effort is reported in Section 6.

Related work. There are several works on efficient computation of transitive
closures for word transducers [12, 19, 25, 5, 11, 6, 4] and tree transducers [17,
2, 1]. However, these works only consider trees where the arities are fixed,
whereas our framework allows to consider ranked as well as unranked trees.
In fact, our technique can be seen as an extension of the approach used in
[1] to hedge transducers. Note that arbitrary arities make this extension non-
trivial. In particular, the transition rules of the collapsed hedge transducer under
construction make use of regular languages over classes of tuples, these classes
themselves being potentially regular languages. This nesting of languages is
delicate to manipulate.

More recently, hedge automata have been used to compute reachability sets
of some classes of transformations, namely Process Rewrite Systems (PRS) [15]
and Dynamic Pushdown Networks (DPN) [16]. Compared to our work, these
algorithms compute the sets of the reachable states of the systems, whereas we
consider the more general problem of computing the transitive closure of the
system’s transducer. Moreover, our technique is general and can be uniformly
applied to all the classes of relabeling transformations, whereas the algorithms
of [15, 16] can only be applied to the specific class of PRS or DPN.

Outline. In Section 2, we give the definitions of hedge automata and transduc-
ers, and show how the ith iterations for a relabeling hedge transducer can be
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effectively computed. In Section 3, we describe our general semi-algorithm. In
Section 4, we define relations ∼ induced by downward and upward simulations,
and give sufficient conditions ensuring that ∼ is an appropriate equivalence re-
lation. We provide in Section 5 an effectively computable example of such an
equivalence. Finally, in Section 6, we show some examples on which we applied
our technique.

2 Hedge automata and transducers

2.1 Terms

Let Σ be an unranked alphabet and X be a fixed denumerable set of variables
{x1, x2, . . .}. The set TΣ[X ] of terms over Σ ∪ X is the smallest set such that:

– Σ ∪ X ⊆ TΣ[X ],
– if f ∈ Σ, t1, . . . , tn ∈ TΣ[X ] for some n ≥ 1, then f(t1, . . . , tn) ∈ TΣ[X ].

Terms without variables are called ground terms. Let TΣ be the set of ground
terms over Σ. A term t in TΣ[X ] is linear if each variable occurs at most once
in t. A context C is a linear term of TΣ[X ]. Let t1, . . . , tn be terms of TΣ,
then C[t1, . . . , tn] denotes the term obtained by replacing in the context C the
occurrence of the variable xi by the term ti, for each 1 ≤ i ≤ n.

As usual, a term in TΣ[X ] can be viewed as a rooted labeled tree u where
the leaves are labeled with variables or elements in Σ, and every internal node
N with a symbol λ(N) ∈ Σ, where λ is the labeling associated to u.

2.2 Hedge automata

To finitely represent infinite sets of terms, we use hedge automata [18]:

Definition 1. A Hedge automaton is a tuple A = (Q, Σ, F, δ) where Q is a
finite set of states, Σ is an unranked alphabet, F ⊆ Q is a set of final states,
and δ is a set of rules of the form f(L) → q, where f ∈ Σ, q ∈ Q, and L ⊆ Q∗

is a regular word language over Q.
A is deterministic if for every f ∈ Σ, if δ contains two rules f(L1) → q1

and f(L2) → q2, then L1 ∩ L2 = ∅.

We define a move relation →δ between ground terms in TΣ∪Q as follows: for
every two terms t and t′, we have t →δ t′ iff there exist a context C and a rule

r = f(L) → q ∈ δ such that t = C
[

f
(

q1(t1), . . . , qn(tn)
)

]

, q1 · · · qn ∈ L, and

t′ = C
[

q
(

f(t1, . . . , tn)
)

]

.

Let
∗
→δ denote the reflexive-transitive closure of →δ. A ground term t ∈ TΣ

is accepted by a state q if t
∗
→δ q(t). Let Lq = {t | t

∗
→δ q(t)}. A ground term t is

accepted by the automaton A if there is some state q in F such that t
∗
→δ q(t).
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The language of A, denoted by L(A), is the set of all ground terms accepted by
A. A set of terms L over Σ is hedge regular if there exists a hedge automaton
A such that L = L(A).

Intuitively, given an input term t, a run of A on t according to the move
relation →δ can be done in a bottom-up manner as follows: first, we assign
nondeterministically a state q to each leaf labeled with symbol f if there is in
δ a rule of the form f(L) → q s.t. ε ∈ L. Then, for each node labeled with
a symbol g, and having the terms t1, . . . , tn as children, we must collect the
states q1, . . . , qn assigned to all its children, i.e., such that ti

∗
→δ qi(ti), for

1 ≤ i ≤ n, and then associate a state q to the node itself if there exists in δ a
rule r = g(L) → q such that q1 · · · qn ∈ L. A term t is accepted if A reaches the
root of t in a final state.

Theorem 1. [18] The class of Hedge automata is effectively closed under de-
terminization and under boolean operations. Moreover, the emptiness problem
for Hedge automata is decidable.

2.3 Relabeling hedge transducers and relations

Definition 2. A Relabeling Hedge Transducer is a tuple T = (Q, Σ, F, ∆)
where Q is a finite set of states, Σ is an unranked alphabet, F ⊆ Q is a set of
final states, and ∆ is a set of rules of the form f(L) → q(g), where f, g ∈ Σ,
q ∈ Q, and L ⊆ Q∗ is a regular word language over Q.

As for hedge automata, a relabeling hedge transducer defines a move relation
→∆ between ground terms in TΣ∪Q as follows: for every two terms t and t′, we
have t →∆ t′ iff there exist a context C and a rule r = f(L) → q(g) ∈ ∆ such

that t = C
[

f
(

q1(t1), . . . , qn(tn)
)

]

, q1 · · · qn ∈ L, and t′ = C
[

q
(

g(t1, . . . , tn)
)

]

.

Let
∗
→∆ denote the reflexive-transitive closure of →∆. The transducer T

defines the following relation between unbounded width trees: RT = {(t, t′) ∈

TΣ × TΣ | t
∗
→∆ q(t′), for some q ∈ F}. Note that RT is structure preserving,

i.e., if (t, t′) ∈ RT , then t and t′ correspond to two different labelings of the
same skeleton tree.

Remark 1. Let f and g be two letters in Σ. We represent the pair (f, g) by f/g.
Let t and t′ be two terms corresponding to different labelings λ1 and λ2 of the
same underlying tree u. We define the term t/t′ as the labeling λ3 of u such
that for every node N of u, λ3(N) = λ1(N)/λ2(N).

A relabeling hedge transducer T = (Q, Σ, F, ∆) can be seen as a hedge
automaton A = (Q, Σ × Σ, F, δ) over the alphabet Σ × Σ, where δ is the
set of rules f/g(L) → q s.t. f(L) → q(g) ∈ ∆. Then it is easy to see that
L(A) = {t/t′ | (t, t′) ∈ RT }.

A relation R over TΣ is hedge regular if there exists a relabeling hedge
transducer T such that R = RT . We denote by Rn

T the composition of RT ,
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n times. As usual, R+

T =
⋃

n≥1
Rn

T denotes the transitive closure of RT . Let
L ⊆ TΣ be a hedge tree language. Then, we define the set RT (L) = {t′ ∈ Σ |
∃t ∈ L, (t, t′) ∈ RT }.

We show in what follows that hedge regular relations are closed under com-
position, and that they preserve regularity of hedge languages. First, we need
to define the product of regular word languages as follows:

Definition 3. Let L1, . . . , Ln be n regular word languages over the alphabet Q.
The product L1 ⊗ · · · ⊗ Ln is defined by:

L1 ⊗ · · · ⊗ Ln = {(q1
1 , . . . , q

1
n) · · · (qm

1 , . . . , qm
n ) | q1

i · · · q
m
i ∈ Li, 1 ≤ i ≤ n}

Let A1, . . . , An s.t. Ai = (Pi, Q, Ti, P
i
F , P i

0) be n word automata that rec-
ognize L1, . . . , Ln, where Pi are the sets of states, Q is the alphabet, Ti are
the transitions, and P i

F and P i
0 denote respectively the sets of final and ini-

tial states. It is easy to see that L1 ⊗ · · · ⊗ Ln is recognized by the automaton
A = A1 ⊗ · · · ⊗ An defined as follows: A = (P, Qn, T, PF , P0) such that:

– P = P1 × · · · × Pn;
– P0 = P 1

0 × · · · × P n
0 ;

– PF = P 1
F × · · · × P n

F ;
– T = {

(

(p1, . . . , pn), (q1, . . . , qn), (p′1, . . . , p
′
n)

)

| (pi, qi, p
′
i) ∈ Ti}.

Let A = (Q1, Σ, F1, δ1) be a hedge tree automaton and T = (Q2, Σ, F2, ∆2)
be a relabeling hedge transducer. Let B = (Q, Σ, F, δ) be the hedge tree automa-
ton such that Q = Q1×Q2, F = F1×F2, and δ is the set of rules g(L) → (q1, q2)
such that there exists two rules f(L1) → q1 ∈ δ1 and f(L2) → q2(g) ∈ ∆2 such
that L = L1 ⊗ L2.

Then we have the following:

Lemma 1. L(B) = RT

(

L(A)
)

.

Let T = (Q, Σ, F, ∆), and let the relabeling hedge transducer Tn =
(Qn, Σ, Fn, ∆n) defined as follows: Qn = Qn, Fn = F n, and ∆n is the set of
rules of the form f(L) → (q1, . . . , qn)(g) such that there exist in ∆ rules of the
form fi(Li) → qi(fi+1), 1 ≤ i ≤ n, s.t. f1 = f , fn+1 = g, and L = L1⊗· · ·⊗Ln.

Then we can show that:

Lemma 2. RTn
= Rn

T .

3 Computing transitive closures

Our goal in this work is to compute a relabeling hedge transducer that recog-
nizes the transitive closure R+

T of a regular hedge relation RT . Unfortunately,
this is not possible in general since the transitive closures are not necessarily
hedge regular. Therefore, our purpose is to propose a semi-algorithm that, in
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case of termination, computes a relabeling hedge transducer that recognizes the
transitive closure R+

T .
More precisely, starting from a relabeling hedge transducer T , we derive a

transducer, called the history hedge transducer that characterizes the transitive
closure R+

T . The set of states of the history transducer is infinite. To tackle this
issue, we present a method (that is not guaranteed to terminate) for computing
a finite-state transducer which is an abstraction of the history transducer, based
on a notion of an equivalence relation on the states of the history transducer.
The abstract transducer can be generated on-the-fly by a procedure which starts
from the original transducer T , and then incrementally adds new states and
transition rules, merging equivalent states.

Let us first give the formal definition of the history hedge transducer:

Definition 4. The history hedge transducer of a relabeling hedge transducer
T = (Q, Σ, F, ∆) is the (infinite) transducer given by the tuple H = (QH , Σ, FH , ∆H)
such that: QH =

⋃

n≥1

Qn, FH =
⋃

n≥1

Fn, and ∆H =
⋃

n≥1

∆n.

Since Rn
T = RTn

(Lemma 2), and by definition RH =
⋃

n≥1

RTn
, it follows

that:

Theorem 2. R+

T = RH.

As mentioned previously, H cannot be computed in general since it has
an infinite number of states. To sidestep this problem, we will compute an
equivalent smaller transducer H∼ (that might be finite), obtained by merging
the states of H according to an equivalence ∼ on QH . This transducer is defined
as H∼ = (Q∼, Σ, F∼, ∆∼) such that:

– Q∼ = {q∼ | q ∈ QH}, where q∼ denotes the equivalence class of the state q
w.r.t. ∼;

– F∼ = {q∼ | q ∈ FH} is the set of equivalence classes of FH w.r.t. ∼;
– ∆∼ is the set of rules f(L∼) → s∼(g) such that f(L) → s(g) is a rule in ∆H ,

where L∼ is obtained from L by substituting each state q by its equivalence
class q∼.

We compute H∼ iteratively according to the following procedure:

1. We compute successive powers of T : H≤1, H≤2, H≤3,... (where H≤i =
⋃i

j=1
Tj) while collapsing states according to ∼. We obtain the sequence of

transducers H≤1
∼ , H≤2

∼ , H≤3
∼ ,...

2. If at step i we obtain that R
H

≤i−1

∼
= R

H
≤i

∼
, the procedure terminates.

This procedure is not guaranteed to terminate, but if it does, it is clear
that the obtained transducer H≤i

∼ is equivalent to H∼ (i.e. R
H

≤i

∼
= RH∼

). The
problem then amounts to defining an appropriate equivalence relation ∼ for
which RH∼

= RH. More generally, since a relabeling hedge transducer can be
seen as a hedge automaton (Remark 1), in the next section, we define for every
hedge automaton A an equivalence ∼ such that L(A∼) = L(A).
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4 Appropriate equivalences for hedge automata

Let A = (Q, Σ, F, δ) be a hedge automaton. We define in this section an ap-
propriate equivalence ∼ on the set of states Q such that L(A∼) = L(A). To
do so, we first define two simulation relations, namely a downward simulation
4down and an upward simulation 4up on Q, and then we show how to generate
an appropriate equivalence ∼ from these simulations.

4.1 Downward and upward simulations

We introduce here the notion of downward and upward simulation for hedge
automata:

Definition 5. [Downward Simulation]
A binary relation 4down on Q is a downward simulation iff for any symbol
f ∈ Σ, for all states q, r ∈ Q, we have:
Whenever q 4down r, f(L) → q ∈ δ, then for every states q1, . . . , qn ∈ Q s.t.
q1 · · · qn ∈ L, there exist states r1, . . . , rn ∈ Q and a rule f(L′) → r in δ such
that q1 4down r1, . . . , qn 4down rn, and r1 · · · rn ∈ L′.

It is easy to see that if q 4down r, then whenever a term t is accepted by
state q (i.e., t

∗
→δ q(t)), it is also accepted by state r.

Lemma 3. Let 4down be a downward simulation on Q. The reflexive closure
and the transitive closure of 4down are both downward simulations. Further-
more, there is a unique maximal downward simulation on Q.

Definition 6. [Upward Simulation]
Given a downward simulation 4down on Q, a binary relation 4up on Q is
an upward simulation w.r.t. 4down iff for any symbol f ∈ Σ, for all states
qi, ri ∈ Q, the following holds:
Whenever qi 4up ri and f(L) → q ∈ δ, then for every states q1, . . . , qn ∈ Q s.t.
q1 · · · qi · · · qn ∈ L, there exist states r1, . . . , rn, r ∈ Q and a rule f(L′) → r in δ
such that qj 4down rj , for j 6= i, r1 · · · rn ∈ L′, and q 4up r.

It is easy to see that whenever q 4up r, for every context C and every terms
t1, . . . , tn, t′, t such that t = C[t1, . . . , ti, t

′, ti+1, . . . , tn] and

C[t1, . . . , ti, q(t
′), ti+1, . . . , tn]

∗
→δ s(t)

for a state s; then there exists a state s′, s 4up s′ such that:

C[t1, . . . , ti, r(t
′), ti+1, . . . , tn]

∗
→δ s′(t)

Lemma 4. Let 4down be a reflexive (transitive) downward simulation on Q,
and let 4up be an upward simulation w.r.t. 4down. The reflexive (transitive)
closure of 4up is also an upward simulation w.r.t. 4down. Furthermore, there
is a unique maximal upward simulation on Q.
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4.2 Induced equivalence

We define an equivalence relation derived from two binary relations:

Definition 7. Two binary relations �1 and �2 are said to be independent iff
whenever q �1 r and q �2 r′, there exists s such that r �2 s and r′ �1 s.
Moreover, the relation ∼ induced by �1 and �2 is defined as:

�1 ◦ �−1
2 ∩ �2 ◦ �−1

1 .

In [4], Abdulla et al. have shown the following fact:

Lemma 5. Let �1 and �2 be two binary relations. If �1 and �2 are reflexive,
transitive, and independent, then their induced relation ∼ is an equivalence
relation. Moreover, whenever x ∼ y and x �1 z, there exists t such that y �1 t
and z �2 t.

4.3 Defining an appropriate equivalence

Let A = (Q, Σ, F, δ) be a hedge automaton. Let 4down be a downward simula-
tion, and let 4up be an upward simulation w.r.t. 4down. Thanks to Lemmas 3
and 4, we suppose without loss of generality that 4down and 4up are reflexive
and transitive. Let � be a reflexive and transitive relation included in 4up such
that 4down and � are independent, and let ∼ be the relation induced by 4down

and �. It follows from Lemma 5 that ∼ defines an equivalence relation on states
of A. Suppose in addition that:

– whenever x ∈ F and x 4up y, then y ∈ F ; and that
– if X ∈ F∼ and x ∈ X , then x ∈ F .

In this case, we show that ∼ is an appropriate equivalence.

Theorem 3. L(A∼) = L(A).

5 An instance of an appropriate equivalence

Let us now come back to our relabeling hedge transducer T = (Q, Σ, F, ∆) and
its corresponding history transducer H = (QH , Σ, FH , ∆H). We suppose that
T is deterministic (this is not a restriction thanks to Theorem 1 and Remark
1). Recall that our purpose is to effectively compute an appropriate equivalence
relation ∼ on QH such that L(H∼) = L(H). We give in this section an example
of a computable equivalence ∼ on QH induced by a downward simulation 4down,
an upward simulation w.r.t. 4down, and a relation � satisfying the conditions
required in the previous section.

First, we need to introduce the notion of copying states:

Definition 8 (Copying States). Let q ∈ Q be a state:
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– q is a prefix copying state iff for every term t:

t
∗
→∆ q(t′) iff t = t′

– q is a suffix copying state iff for every term t, context C, and qF ∈ F :

C
[

q(t)
] ∗
→∆ qF

(

C ′[t]
)

iff C = C ′

Let S be a set in QH ×QH . We define the relation RS generated by S as the
smallest reflexive-transitive relation that contains S and that is a congruence
with respect to product, i.e., if

(

(q1, . . . , qn), (q′1, . . . , q
′
m)

)

∈ RS , then for any
s1, . . . , sk, s′1, . . . , s

′
l in QH ,

(

(s1, . . . , sk, q1, . . . , qn, s′1, . . . , s
′
l), (s1, . . . , sk, q′1, . . . , q

′
m, s′1, . . . , s

′
l)

)

∈ RS

Lemma 6. If the set S is a downward (resp. upward) simulation on QH, then
its generated relation �S is also a downward (resp. upward) simulation.

Let Qpref be the set of prefix copying states of T , and Qsuff be the set
of suffix copying states of T that are not in Qpref . Let 4down be the binary
relation on QH × QH generated by the set

{
(

(q, q), q
)

,
(

q, (q, q)
)

| q ∈ Qpref }

We show that 4down is a downward simulation:

Lemma 7. 4down is a downward simulation.

Let 4up be the binary relation on QH × QH generated by the set

{
(

(q, q), q
)

,
(

q, (q, q)
)

| q ∈ Qsuff }

Then we have:

Lemma 8. 4up is an upward simulation w.r.t. 4down.

Let �=4up. Then, we can show that � and 4down are independent:

Lemma 9. � and 4down are independent.

Let then ∼ be the relation induced by 4down and �. We show that the
conditions of Theorem 3 are satisfied:

Lemma 10. Whenever x ∈ FH and x 4up y, then y ∈ FH . Moreover, if X ∈
F∼ and x ∈ X, then x ∈ FH .

It follows then from Theorem 3 that:

Theorem 4. L(H∼) = L(H).

Remark 2. Note that both 4down and 4up are included in ∼ (this is due to the
fact that these relations are reflexive and symmetric).

Now, it remains to show how can the equivalence ∼ be effectively computed.
For this, we need to compute the sets of copying states Qpref and Qsuff .

This is described next.
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Input:

Hedge transducer T = (Q, Σ, F, ∆), and a state q.
Begin

d := {q}
Repeat

for each q1 ∈ d, and for each rule r = f(L) → g(q1),
add {q2 | L ∩ (Q∗q2Q

∗) 6= ∅} to d.
Until No more additions can be made
End

Output:

“Yes” if all rules r encountered were copying (i.e. such that f = g).
“No” otherwise.

Fig. 1. Determining whether a state is prefix copying.

5.1 Computing copying states

The algorithm for checking whether a state q is prefix copying is shown in
Figure 1. Intuitively, the algorithm works as follows: it tries to explore all rules
r useful for computing the language of T with q as the only accepting state. If
all such rules r are of the form f(L1) → f(q1), then q is indeed prefix-copying.

Input:

Hedge transducer T = (Q, Σ, F, ∆), and a state q.
Begin

up := {q}, side := ∅
Repeat

for each q1 ∈ up, and for each rule r = f(L) → g(q2)
such that L ∩ (Q∗q2Q

∗) 6= ∅, then
add q2 to up, and add {q′ | L ∩ (Q∗q′Q∗) 6= ∅ ∧ q′ 6= q} to side.

Until No more additions can be made
End

Output:

“Yes” if all rules r encountered were copying (i.e. such that f = g)
and all states in side are prefix-copying and there is a final state in up.
“No” otherwise.

Fig. 2. Determining whether a state is suffix copying.

The algorithm for checking whether a state q is suffix copying is shown in
Figure 2. Intuitively, the algorithm explores all rules r leading from state q to
a final state according to the move relation for T . We must first check that all
rules r encountered are copying rules. However, the test performed until now
only checks what lies on the path from q up to the root of an accepted context.
Therefore, we need to also check what’s happening to the child nodes along this
root path. This is the purpose of the variable side. Any subtree attached to a
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child of the root path is accepted by some state in side. Hence, we require that
all states in side are prefix copying.

6 Applications

In this section, we give the results of applying the procedure of Section 3 to the
analysis of two mutual exclusion protocols defined on arbitrary width tree-like
networks, and of an XML application.

6.1 The unranked simple token protocol

We consider the example of the unranked simple token protocol, which is a
mutual exclusion protocol defined on arbitrary width tree-like networks. Each
process stores a single bit which reflects whether the process has a token or not.
The process that has the token has the right to enter the critical section. In
this system, the token can move from a leaf upward to the root in the following
fashion: any process that currently has the token can release it to its parent.
Initially, the system contains exactly one token, located anywhere.

More formally, the passing of the token upward the tree can be represented
by the following relabeling hedge transducer T = (Q, Σ, F, ∆) where Q =
{q0, q1, q2}, Σ = {n, t}, F = {q2}, and ∆ contains the rules:

n(q∗0) → q0(n) (1) t(q∗0) → q1(n) (2)
n(q∗0q1q

∗
0) → q2(t) (3) n(q∗0q2q

∗
0) → q2(n) (4)

The intuition behind the states of the transducer is the following.

– State q0 is meant to accepts all “pairs” of identical trees where the token
doesn’t appear. This is a prefix-copying state.

– State q1 is an intermediate state meaning that the current node released the
token. Its parent then acquires the token.

– State q2 is the final state of the transducer. It accepts all “pairs” of trees in
which the token has moved one step upward. This is a suffix-copying state.

According to the algorithm of Figure 1, we get Qpref = {q0}, and with the
algorithm of Figure 2, we get Qsuff = {q3}.

Let us now apply the algorithm described in Section 3. We will compute the
different iterations H≤1

∼ , . . . ,H≤i
∼ . We terminate at step i if R

H
≤i−1

∼
= R

H
≤i

∼
.

Computing H≤1
∼ : Take each rule in T and substitute each occurence of a state

q with its equivalence class q∼ w.r.t. ∼.
n(q∗0∼) → q0∼(n) (1) t(q∗0∼) → q1∼(n) (2)

n(q∗0∼q1∼q∗0∼) → q2∼(t) (3) n(q∗0∼q2∼q∗0∼) → q2∼(n) (4)

Computing H≤2
∼ : Take H≤1

∼ and add rules
t(q∗0∼) → (q1, q0)∼(n) (5) = (2)⊗(1)

n(q∗0∼(q1, q0)∼q∗0∼) → (q2, q1)∼(n) (6) = (3)⊗(2)
n(q∗0∼(q2, q1)∼q∗0∼) → q2∼(t) (7) = (4)⊗(3)
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For example, rule (5) is obtained by composing rules (2) and (1). The re-
sulting product is the rule t((q0, q0)

∗) → (q1, q0)(n) (denoted (2)⊗(1) above).
Since (q0, q0) 4down q0 (q0 ∈ Qpref ) and 4down⊆∼ (Remark 2), we get that
(q0, q0) ∼ q0. Therefore, merging w.r.t. ∼, we get rule (5).

Note that rule (7) has been simplified. Indeed, performing the product of
the rules (4) and (3) yields the rule n(L) → q2∼(t), where L is the following
regular word language: (q0, q0)

∗(q2, q0)(q0, q0)
∗(q0, q1)(q0, q0)

∗ + (q0, q0)
∗(q0, q1)

(q0, q0)
∗(q2, q0)(q0, q0)

∗ + (q0, q0)
∗(q2, q1)(q0, q0)

∗. For the sake of brevity, We
omit the first part of L since the states (q2, q0) and (q0, q1) are not reachable.

Computing H≤3
∼ : Take H≤2

∼ and add the following rules obtained as described
previously:

n(q∗0∼(q1, q0)∼q∗0∼) → (q2, q1, q0)∼(n) (8) = (3)⊗(5) = (6)⊗(1)
n(q∗0∼(q2, q1, q0)∼q∗0∼) → (q2, q1)∼(n) (9) = (7)⊗(2) = (4)⊗(6)

Computing H≤4
∼ : Take H≤3

∼ and add the following rule:
n(q∗0∼(q2, q1, q0)∼q∗0∼) → (q2, q1, q0)∼(n) (10) = (9)⊗(1) = (4)⊗(8)

The procedure terminates at step 4, since subsequent iterations do not
change the accepted language.

6.2 The unranked two-way token protocol

This mutual exclusion protocol is similar to the Simple Token Protocol above,
with the following difference: the node that currently owns the token can release
it to its parent neighbor, or it can release it to one of its child neighbors. Thus,
the token can move upward, as well as downward inside the tree of processes.

Formally, these transformations can be represented by the following relabel-
ing hedge transducer T = (Q, Σ, F, ∆), where Q = {q0, q1, q2, q3}, Σ = {n, t},
F = {q3}, and ∆ contains the rules:

n(q∗0) → q0(n) (1) n(q∗0) → q1(t) (2) t(q∗0) → q2(n) (3)
t(q∗0q1q

∗
0) → q3(n) (4) n(q∗0q2q

∗
0) → q3(t) (5) n(q∗0q3q

∗
0) → q3(n) (6)

The intuition behind the states of the transducer is as follows:

– State q0 accepts all “pairs” of identical trees where the token never appears.
This state is prefix-copying.

– State q1 is the intermediate state denoting that the current node just acquired
the token. Its parent neighbor releases the token.

– State q2 is also an intermediate state. It means that the current node releases
the token. The parent node acquires the token.

– State q3 is the final state. It accepts all “pairs” of trees in which the token
has moved one step upward or downward. This state is suffix-copying.

Computing H≤1
∼ : Take T and replace occurences of a state in a rule of ∆ with

its equivalence class w.r.t. ∼.
n(q∗0∼) → q0∼(n) (1) n(q∗0∼) → q1∼(t) (2)
t(q∗0∼) → q2∼(n) (3) t(q∗0∼q1∼q∗0∼) → q3∼(n) (4)

n(q∗0∼q2∼q∗0∼) → q3∼(t) (5) n(q∗0∼q3∼q∗0∼) → q3∼(n) (6)
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Computing H≤2
∼ : Take H≤1

∼ and add rules
n(q∗0∼) → (q0, q1)∼(t) (7) = (1)⊗(2)

n(q∗0∼(q0, q1)∼q∗0∼) → (q1, q3)∼(n) (8) = (2)⊗(4)
t(q∗0∼(q1, q3)∼q∗0∼) → q3∼(n) (9) = (4)⊗(6)

t(q∗0∼) → (q2, q0)∼(n) (10) = (3)⊗(1)
n(q∗0∼(q2, q0)∼q∗0∼) → (q3, q2)∼(n) (11) = (5)⊗(3)
n(q∗0∼(q3, q2)∼q∗0∼) → q3∼(t) (12) = (6)⊗(5)

t(q∗0∼) → (q2, q1)∼(t) (13) = (3)⊗(2)
n(q∗0∼(q2, q1)∼q∗0∼) → q3∼(n) (14) = (5)⊗(4)

n(q∗0∼(q2, q0)∼q∗0∼(q0, q1)∼q∗0∼) → q3∼(n) (14) = (5)⊗(4)
n(q∗0∼(q0, q1)∼q∗0∼(q2, q0)∼q∗0∼) → q3∼(n) (14) = (5)⊗(4)

n(q∗0∼) → (q1, q2)∼(n) (15) = (2)⊗(3)
t(q∗0∼(q1, q2)∼q∗0∼) → q3∼(t) (16) = (4)⊗(5)

Computing H≤3
∼ : Take H≤2

∼ and add rules
n(q∗0∼(q0, q1)∼q∗0∼) → (q0, q1, q3)∼(n) (17) = (1)⊗(8)

n(q∗0∼(q0, q1, q3)∼q∗0∼) → (q1, q3)∼(n) (18) = (2)⊗(9)
n(q∗0∼(q2, q0)∼q∗0∼) → (q3, q2, q0)∼(n) (19) = (11)⊗(1)

n(q∗0∼(q3, q2, q0)∼q∗0∼) → (q3, q2)∼(n) (20) = (12)⊗(3)
n(q∗0∼(q2, q0)∼q∗0∼(q0, q1, q3)∼q∗0∼) → q3∼(n) (21) = (14)⊗(6)
n(q∗0∼(q0, q1, q3)∼q∗0∼(q2, q0)∼q∗0∼) → q3∼(n) (21) = (14)⊗(6)
n(q∗0∼(q3, q2, q0)∼q∗0∼(q0, q1)∼q∗0∼) → q3∼(n) (22) = (6)⊗(14)
n(q∗0∼(q0, q1)∼q∗0∼(q3, q2, q0)∼q∗0∼) → q3∼(n) (22) = (6)⊗(14)

Computing H≤4
∼ : Take H≤3

∼ and add rules
n(q∗0∼(q0, q1, q3)∼q∗0∼) → (q0, q1, q3)∼(n) (23) = (1)⊗(18)
n(q∗0∼(q3, q2, q0)∼q∗0∼) → (q3, q2, q0)∼(n) (24) = (6)⊗(19)

n(q∗0∼(q3, q2, q0)∼q∗0∼(q0, q1, q3)∼q∗0∼) → q3∼(n) (25) = (6)⊗(21)
n(q∗0∼(q0, q1, q3)∼q∗0∼(q3, q2, q0)∼q∗0∼) → q3∼(n) (26) = (22)⊗(6)

The procedure terminates at step 4, since subsequent iterations have the
same language.

Note that some rules have been omitted if they contain unreachable states.
Some redundant rules have been omitted as well, for the sake of simplicity.

6.3 An XML application

Figure 3 represents an XML document that stores the informations about the
clients of a store and the items they bought. Each client has four fields: name,
address, the different items that were bought, and the status of the order, i.e.,
whether the order is treated or not. status is 1 if the order is being treated, 0 if
it has not been treated yet, and 2 if its treatment is finished. Initially, the first
client has status 1, and the others 0. This document can be represented by the
tree of Figure 4. Note that we need here arbitrary-width trees since the number
of clients and the number of bought items are arbitrary.
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<clients>
<client>

<name> Philipp </name>
<address> · · · </address>
<status> 1 </status>
<items>

<item> bed </item>

<item> chair </item>

· · ·
<item> fridge </item>

</items>
</client>
<client>

<name>Maria </name>
<address> · · · </address>
<status> 0 </status>
<items>

<item> TV </item>

<item> radio </item>

· · ·
<item> closet </item>

</items>
</client>
· · ·

</clients>

Fig. 3. Part of a document containing information about the clients of a store

bed chair
fridge TV radio closet

clients

client

name address

Philipp Maria ......

client client

name address status status

1 0

items items

Fig. 4. The previous XML document as a tree

The store has a software that treats the clients in the order they appear
in the XML document. The effect of one action of the software consists in
changing the status of the current client (resp. the next one) to 2 (resp. to 1) to
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express that the treatment of the current client is over, and that now we moved
to the treatment of the next client. This transformation can be represented
by the following relabeling hedge transducer τ = (Q, Σ, F, ∆), where Q =
{q, q1, q

′
1, q

′′
1 , q2, q

′
2, q

′′
2 , qf}; F = {qf}; Σ = Σ′ ∪ {name, address, item, items,

status, client, clients, 1, 0, 2}, where Σ ′ is a finite alphabet that corresponds to
the names, addresses, etc, and that is not relevant for us in this application;
and ∆ contains the following rules:

– For every f ∈ Σ, f(q∗) → q(f);
– 1(ε) → q2(2): 1 is changed to 2;
– status(q2) → q′2(status);
– client(q∗q′2q

∗) → q′′2 (client);
– 0(ε) → q1(1): 0 is changed to 1;
– status(q1) → q′1(status);
– client(q∗q′1q

∗) → q′′1 (client);
– clients(q∗q′′2 q′′1 q∗) → qf : we make sure that the client whose “1” has been

changed into “2” is adjacent in the document (and therefore in the tree) to
the client whose “0” has been changed into “1”.

In order to check the behavior of this software, we need to compute the
transitive closure τ+. Our technique terminates in this example and computes
τ+. We skip here the details since they are similar to the previous examples.

7 Conclusion

In this paper, we have extended the regular model checking framework so that it
can handle systems with arbitrary width tree-like structures. Since the central
problem in regular model checking is the computation of transitive closures
of transducers, the main contribution of this paper is a general acceleration
technique that computes the transitive closure of a given hedge transducer. The
technique is based on defining and effectively computing an equivalence relation
used to collapse the states of the transitive closure of the hedge transducer. We
have successfully applied our technique to compute transitive closures for (1)
some mutual exclusion protocols defined on arbitrary width tree topologies; and
(2) XML document transformations.

As future work, it would be interesting to see if one can extend our technique
to handle non-structure preserving transducers. It would also be of interest to
see if we can combine our simulation-based technique with other regular model
checking techniques such as abstraction [11, 10] or learning [27, 20].
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