
Fast Cellular Automata with Restricted

Inter-Cell Communication:

Computational Capacity

Martin Kutrib1 and Andreas Malcher2

1 Institut für Informatik, Universität Giessen
Arndtstr. 2, D-35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

2 Institut für Informatik, Johann Wolfgang Goethe Universität
D-60054 Frankfurt am Main, Germany

a.malcher@em.uni-frankfurt.de

Abstract. A d-dimensional cellular automaton with sequential input
mode is a d-dimensional grid of interconnected interacting finite au-
tomata. The distinguished automaton at the origin, the communication
cell, is connected to the outside world and fetches the input sequen-
tially. Often in the literature this model is referred to as iterative ar-
ray. We investigate d-dimensional iterative arrays and one-dimensional
cellular automata operating in real and linear time, whose inter-cell
communication is restricted to some constant number of bits indepen-
dent of the number of states. It is known that even one-dimensional
one-bit iterative arrays accept rather complicated languages such as
{ap | p prim} or {a2

n

| n ∈ N} [16]. We show that there is an infinite
strict double dimension-bit hierarchy. The computational capacity of
the one-dimensional devices in question is compared with the power of
communication-restricted two-way cellular automata. It turns out that
the relations are quite different from the relations in the unrestricted
case. On passing, we obtain an infinite strict bit hierarchy for real-time
two-way cellular automata and, moreover, a very dense time hierarchy
for every k-bit cellular automata, i.e., just one more time step leads to
a proper superfamily of accepted languages.

Key words: Cellular automata; Iterative arrays; Restricted communi-
cation; Formal languages; Computational capacity; Parallel computing

1 Introduction

Devices of homogeneous, interconnected, parallel acting automata have exten-
sively been investigated from a computational capacity point of view. The spec-
ification of such a system includes the type and specification of the single au-
tomata (sometimes called cells), their interconnection scheme (which can imply
a dimension to the system), a local and/or global transition function and the
input and output modes. Multidimensional devices with nearest neighbor con-

152 M. Kutrib and A. Malcher

nections whose cells are finite automata are commonly called cellular automata.
If the input mode is sequential to a distinguished communication cell, they are
called iterative arrays (IA). In connection with formal language recognition
IAs have been introduced in [5], where it was shown that the language family
accepted by real-time IAs forms a Boolean algebra not closed under concate-
nation and reversal. In [4] it is shown that for every context-free grammar a
two-dimensional linear-time IA parser exists. In [6] a real-time acceptor for
prime numbers has been constructed. A characterization of various types of IAs
in terms of restricted Turing machines and several results, especially speed-up
theorems, are given in [7, 8]. Several more results concerning formal languages
can be found (e.g., in [12, 13]).

In order to investigate the computational capacity of a device, there is a
particular interest in infinite hierarchies of language families defined by bound-
ing some resources. In [9] a dense IA time hierarchy beyond linear time has
been proved. The gap between real time and linear time has been closed in [2].
Further hierarchies depending on the amount of nondeterminism and the num-
ber of alternating transitions performed by the communication cell are shown
in [1, 3]. Descriptional complexity issues are studied in [10].

All these results concern iterative arrays where the states of the neighboring
cells are communicated in one time step. That is, the number of bits exchanged
is determined by the number of states. A natural and interesting restriction of
IAs is to restrict the number of bits by some constant being independent of the
number of states. Iterative arrays with restricted inter-cell communication have
been investigated in [15, 16], where algorithmic design techniques for sequence
generation are shown. In particular, several important infinite, non-regular se-
quences such as exponential or polynomial, Fibonacci and prime sequences can
be generated in real time. Connectivity recognition problems are dealt with
in [14], whereas in [17] the computational capacity of one-way cellular automata
with restricted inter-cell communication is considered.

Here we investigate d-dimensional iterative arrays and one-dimensional cel-
lular automata operating in real and linear time. The inter-cell communication
of the array is restricted to some constant number of bits, in order to determine
the power and nature of the communication bandwidth in massively parallel
devices. The paper is organized as follows. In Section 2 we define the basic no-
tions and the main model in question, i.e., d-dimensional iterative arrays with
restricted inter-cell communication. Section 3 is devoted to dimension and bit
hierarchies. We show that there is an infinite strict double hierarchy. That is, for
every dimension real-time (k+1)-bit restricted iterative arrays are strictly more
powerful than real-time k-bit restricted iterative arrays, and for every k-bit re-
striction real-time (d+1)-dimensional k-bit restricted iterative arrays are strictly
more powerful than real-time d-dimensional k-bit restricted iterative arrays. In
Section 4 we consider one-dimensional devices. The computational capacity of
the devices in question is compared with the power of communication-restricted
two-way cellular automata. It turns out that the relations are quite different
from the relations in the unrestricted case. On passing, we obtain an infinite

Fast Cellular Automata with Restricted Inter-Cell Communication 153

strict bit hierarchy for real-time two-way cellular automata and, moreover, a
very dense time hierarchy for every k-bit cellular automata, i.e., just one more
time step yields to a proper superfamily of accepted languages.

2 Definitions and Preliminaries

We denote the rational numbers by Q, the integers by Z, the non-negative
integers by N, and the positive integers {1, 2, ...} by N+. The empty word is
denoted by λ, the reversal of a word w by wR, and for the length of w we
write |w|. The set of words over some alphabet A whose lengths are at most
l ∈ N is denoted by A≤l. Set inclusion and strict set inclusion are denoted by ⊆
and ⊂, respectively.

A d-dimensional iterative array is a d-dimensional array (i.e. Nd) of finite
automata, sometimes called cells, where each of them is connected to its nearest
neighbors in every dimension. For convenience we identify the cells by their
coordinates. Initially they are in the so-called quiescent state. The input is
supplied sequentially to the distinguished communication cell at the origin. For
this reason, we have different local transition functions. The state transition
of all cells but the communication cell depends on the current state of the
cell itself and the current states of its neighbors. The state transition of the
communication cell additionally depends on the current input symbol (or if
the whole input has been consumed on a special end-of-input symbol). In an
iterative array with k-bit restricted inter-cell communication, during every time
step each cell may communicate only k bit of information to its neighbors. These
bits depend on the current state and are determined by so-called bit-functions.
The finite automata work synchronously at discrete time steps.

s0 s0 s0 s0 s0

s0 s0 s0 s0 s0

s0 s0 s0 s0 s0

s0 s0 s0 s0 s0

s0 s0 s0 s0 s0

a1a2a3 · · · an#

Fig. 1. A two-dimensional iterative array.

154 M. Kutrib and A. Malcher

Definition 1. A d-dimensional iterative array with k-bit restricted inter-cell
communication (IAd

k) is a system 〈S, A, F, s0, d, k, b1, . . . , b2d, δ, δ0〉, where

(1) S is the finite, nonempty set of cell states,
(2) A is the finite, nonempty set of input symbols,
(3) F ⊆ S is the set of accepting states,
(4) s0 ∈ S is the quiescent state,
(5) d ∈ N+ is the dimension,
(6) k ∈ N+ is the number of bits which can be communicated to neighbor cells,
(7) bi : S → {0, 1}k, for 1 ≤ i ≤ 2d, are bit functions which determine the bits

to communicate to neighbors, satisfying bi(s0) = (0, . . . , 0),
(8) δ : S × ({0, 1}k)2d → S is the local transition function for non-communi-

cation cells satisfying δ(s0, (0, . . . , 0), . . . , (0, . . . , 0)) = s0,
(9) δ0 : S × (A ∪ {#}) × ({0, 1}k)d → S is the local transition function for the

communication cell.

Let M be an IAd
k. A configuration of M at some time t ≥ 0 is a description

of its global state which is a pair (wt, ct), where wt ∈ A∗ is the remaining
input sequence and ct : Nd

0 → S is a mapping that maps the single cells to
their current states. For the sake of simpler notation in connection with cells
at a face of Nd, we extend the mappings ct to arguments from Zd, and assume
that all cells in Zd \ Nd

0 are permanently in the quiescent state sending zeroes.
The configuration (w0, c0) at time 0 is defined by the input word w0 and the
mapping c0(i1, . . . , id) = s0, (i1, . . . , id) ∈ Nd

0, while subsequent configurations
are chosen according to the global transition function ∆. Let (wt, ct), t ≥ 0, be
a configuration, then its successor configuration (wt+1, ct+1) = ∆

(

(wt, ct)
)

is as
follows:

ct+1(i1, . . . , id) = δ
(

ct(i1, . . . , id),
b1(ct(i1 − 1, i2, . . . , id)), b2(ct(i1 + 1, i2, . . . , id)),
b3(ct(i1, i2 − 1, . . . , id)), b4(ct(i1, i2 + 1, . . . , id)), . . . ,
b2d−1(ct(i1, i2, . . . , id − 1)), b2d(ct(i1, i2, . . . , id + 1))

)

for all (i1, . . . , id) ∈ Nd
0 \ {(0, . . . , 0)}, and

ct+1(0, . . . , 0) = δ0

(

ct(0, . . . , 0), a,
b2(ct(1, 0, . . . , 0)), b4(ct(0, 1, . . . , 0)), . . . ,
b2d(ct(0, 0, . . . , 1))

)

where a = #, wt+1 = λ if wt = λ, and a = a1, wt+1 = a2 · · ·an if wt = a1 · · · an.
Thus, the global transition function ∆ is induced by δ and δ0.

A word w is accepted by an IAd
k if at some time i during its course of

computation on input w the communication cell becomes accepting.

Definition 2. Let M = 〈S, A, F, s0, d, k, b1, . . . , b2d, δ, δ0〉 be an IAd
k.

(1) A word w ∈ A∗ is accepted by M, if there exists a time step i ∈ N such
that ci(0, . . . , 0) ∈ F .

Fast Cellular Automata with Restricted Inter-Cell Communication 155

(2) L(M) = {w ∈ A∗ | w is accepted by M} is the language accepted by M.
(3) Let t : N → N, t(n) ≥ n + 1, be a mapping. If all w ∈ L(M) are accepted

with at most t(|w|) time steps, then L is said to be of time complexity t.

The family of all languages which can be accepted by an IAd
k with time

complexity t is denoted by Lt(IA
d
k). If t equals the function n + 1, acceptance

is said to be in real time and we write Lrt(IA
d
k). The linear-time languages

Llt(IA
d
k) are defined according to Llt(IA

d
k) =

⋃

i∈Q,i≥1 Li·n(IAd
k).

Definition 3. Let L ⊆ A∗ be a language over an alphabet A and l ∈ N+ be a
constant.

(1) Two words w ∈ A∗ and w′ ∈ A∗ are l-right-equivalent with respect to L if
for all y ∈ A≤l: wy ∈ L ⇐⇒ w′y ∈ L.

(2) Nr(l, L) denotes the number of l-right-equivalence classes with respect to L.
(3) Two words w ∈ A≤l and w′ ∈ A≤l are l-left-equivalent with respect to L if

for all y ∈ A∗: wy ∈ L ⇐⇒ w′y ∈ L.
(4) N`(l, L) denotes the number of l-left-equivalence classes with respect to L.

Lemma 4. Let k, d ∈ N+ be constants.

(1) If L ∈ Lrt(IA
d
k), then there exists a constant p ∈ N such that

Nr(l, L) ≤ p(l+1)d

and
(2) if L ∈ Lt(IA

d
k), then there exists a constant p ∈ N such that

N`(l, L) ≤ p · 2k·d·l

for all l ∈ N+ and all time complexities t : N → N.

Proof. Let M = 〈S, A, F, s0, d, k, b1, . . . , b2d, δ, δ0〉 be a real-time IAd
k that ac-

cepts L. In order to determine an upper bound for the number of l-right-
equivalence classes we consider the possible configurations of M after reading all
but |y| ≤ l input symbols. The remaining computation depends on the last |y|
input symbols, the current state of the communication cell, and the states of
the cells which can send information that is received by the communication cell
during the last |y| + 1 time steps. These are at most (|y| + 1)d cells. So, in

total there are at most |S|1+(|y|+1)d

≤ |S|2(l+1)d

different possibilities. Setting

p = |S|2, we obtain Nr(l, L) ≤ p(l+1)d

.
Now let M be a IAd

k that accepts L with time complexity t. In order to
determine an upper bound to the number of l-left-equivalence classes we con-
sider the possible configurations of M after reading prefixes w whose lengths
are at most l. A computed configuration depends on the information which
is sent to the array by the communication cell, and the current state of the
communication cell. So, there are at most (2k·d)|w|−1 · |S| ≤ |S| · 2k·d·l different
configurations. Setting p = |S|, we obtain N`(l, L) ≤ p · 2k·d·l. In particular, the
number of equivalence classes is independent of the time complexity t. ut

156 M. Kutrib and A. Malcher

3 Dimension and Bit Hierarchies

The hierarchies are proved by specific witness languages which are defined de-
pendent on the given resources.

3.1 Dimensions

Here we fix the time complexity to real time, the number of communication bits
to any constant k ∈ N+, and consider the dimension. For any dimension d ≥ 2
we define a language Ldim(d) as follows. We start with a series of regular sets:

X1 =
�
{a, b}+, Xi+1 =

�
X+

i , for i ≥ 1

Due to the separator symbol
�
, every word u ∈ Xi+1 can uniquely be de-

composed into its subwords from Xi. So, we can define the projection on the jth
subword as usual: Let u =

�
u1 · · ·um, where uj ∈ Xi, for 1 ≤ j ≤ m. Then u[j]

is defined to be uj , if 1 ≤ j ≤ m, otherwise u[j] is undefined. Now define the
language

M(d) = {u � exd
�
· · ·

�
ex1

�
e2x �

v | u ∈ Xd and xi ∈ N+, 1 ≤ i ≤ d,

and x = x1 + · · · + xd and v = u[xd][xd−1] · · · [x1] is defined}

Finally, the language Ldim(d) is given as homomorphic image of M(d). More
precisely, Ldim(d) = h(M(d)), where h : {a, b, e,

�
, � }∗ → {a, b}∗ is defined by:

h(a) = ba, h(b) = bb, h(e) = b, h(
�
) = ab, h(�) = aa.

Theorem 5. Let k, d ∈ N+ be constants. The language Ldim(d + 1) belongs to
the difference Lrt(IA

d+1
1) \ Lrt(IA

d
k).

Proof. For any m ∈ N+ we consider sets

Y1 =
�
{a, b}m, Yi+1 =

�
Y m

i , for i ≥ 1

It follows Yi ⊂ Xi, for all i ∈ N+, and |Yi| = 2mi

. If we choose two differ-
ent words u and u′ from Yd+1, then there is one position at which u has a
symbol a and u′ has a symbol b or vice versa. We can address this position by
u[xd+1][xd] · · · [x1]. Therefore, h(u)h(� exd+1

�
· · ·

�
ex1

�
e2x

�
a) ∈ Ldim(d+1) ⇐⇒

h(u′)h(� exd+1
�
· · ·

�
ex1

�
e2x

�
a) /∈ Ldim(d + 1).

There are 2md+1

different words in Yd+1, and for the length of the suffix we
obtain |h(� exd+1

�
· · ·

�
ex1

�
e2x

�
a)| ≤ 3m(d+1)+2(d+3)+2 since xi ≤ m. This

implies a lower bound on the number of induced equivalence classes as follows:

Nr(3m(d + 1) + 2(d + 3) + 2, Ldim(d + 1)) ≥ 2md+1

In contrast to the assertion, we now assume Ldim(d+1) ∈ Lrt(IA
d
k). Then by

Lemma 4 there exists a constant p ∈ N+ such that Nr(l, Ldim(d + 1)) ≤ p(l+1)d

,
for all l ∈ N+. So, for l = 3m(d + 1) + 2(d + 3) + 2 we have at most

Fast Cellular Automata with Restricted Inter-Cell Communication 157

p(3m(d+1)+2(d+3)+2+1)d

≤ p(6md+2d+9)d

≤ p(17md)d

≤ 2dlog(p)e(17d)dmd

classes. We choose m such that m > dlog(p)e(17d)d, and obtain strictly less
than

2mmd

= 2md+1

classes. From the contradiction we obtain Ldim(d + 1) /∈ Lrt(IA
d
k).

Now we turn to the construction of a real-time IAd+1
1 which accepts

Ldim(d + 1). First we observe that the structure of accepted words is regu-
lar. Therefore, the communication cell can check it and, moreover, can decode
the checked input over {a, b} uniquely to a word from M(d + 1). For conve-
nience, we explain the acceptance also in terms of these words. Basically, the
idea is to store the prefix u in such a way that the symbol u[xd+1] · · · [x1] is
stored in cell (xd+1 − 1, xd − 1, . . . , x1 − 1). While subsequently reading the
suffix � exd+1

�
· · ·

�
ex1

�
e2x

�
v symbol u[xd+1] · · · [x1] is addressed and sent to the

communication cell where it is compared with v. Accordingly, we call the first
phase the storage and the second phase the retrieval phase.

We name cells dependent on their coordinates. A cell is said to be of level j,
if its last j coordinates are 0, i.e., (i1, . . . , id+1−j , 0, . . . , 0). Note that a level j
cell is also of level j′ < j, and the communication cell is the sole level d+1 cell.
A cell with maximal level j activates its neighbors (i1, . . . , id+1−j , 0, . . . , 0, 1),
(i1, . . . , id+1−j , 0, . . . , 1, 0), . . . , (i1, . . . , id+1−j , 1, . . . , 0, 0), and (i1, . . . , id+1−j +
1, 0, . . . , 0), i.e., sends a non-zero signal for the first time. Therefore, each cell
is uniquely activated by one of its neighbors and, moreover, can determine its
maximal level by this neighbor. A cell with maximal level j ≤ d may activate
at most j + 1 neighbors.

Activation takes place during the storage phase, in which cells mark a path
to the current storage position by state components. When the communication
cell reads h(a) (resp. h(b)), it sends the two bits 10 (resp. 11) along the path until
the position is reached. Now the corresponding cell (i1, . . . , id+1) stores symbol a
(resp. b), activates its neighbor (i1, . . . , id+1 +1) to be the next storage position
by sending the bits 01, and extends the current path to the newly activated
neighbor.

Whenever the communication cell reads h(
�
), it sends the bits 01 along the

path. In this situation the cells on the path count the number of at most d
consecutive 01 signals, and possibly reroute the path as follows. A cell lets pass
p − 1 signals, where p is the number of already activated neighbors. If there
is another signal, it activates the next neighbor according to the above given
ordering, and reroutes the path to it. Clearly, there cannot be more signals than
the number of activated neighbors minus one, since the next predecessor cell of
higher level does not let pass so many of them.

When the communication cell reads h(�), it sends the bits 00 to the array.
This signal is distributed to all activated cells recursively. It is the beginning
of the retrieval phase. During this phase a path to the addressed symbol is set
up. To this end, the communication cell sends along the path a bit 1 for each
read h(e), and the bits 00 for each of the next d + 1 separators h(

�
).

158 M. Kutrib and A. Malcher

A cell remembers whether it is on the path or not, and whether it is the
end of the path. Initially, only the communication cell is on the path. If a cell
is on the path but not at the end, it simply routes the signals along the path.
The end of the path, say (i1, . . . , ij , 0, . . . , 0) sends the signal 1 to its neighbor
(i1, . . . , ij + 1, 0, . . . , 0) which in turn deletes it and becomes the new end of
path. The end of path cell (i1, . . . , ij , 0, . . . , 0) deletes a 00 signal and sends the
next 1 signals to its neighbor (i1, . . . , ij , 1, 0, . . . , 0). So, on input exd+1

�
· · ·

�
ex1

�

a path to cell (xd+1, xd, . . . , x1) is established. The (d+1)st signal 00 causes cell
(xd+1, xd, . . . , x1) to send the information which it has stored during the storage
phase back to the communication cell. The (d+1)st 00 signal takes xd+1 +xd +
· · · + x1 time steps to reach the end of path. Subsequently, the same number
of time steps is necessary to send the information back to the communication
cell. Altogether, these are 2x time steps. Therefore, the information can be
compared with input symbol v by the communication cell. It remains to be
mentioned that, in fact, symbol v has to be compared with the information
stored in cell (xd+1 − 1, xd − 1, . . . , x1 − 1) instead of of (xd+1, xd, . . . , x1). But
the construction can be modified appropriately in a straightforward manner.

ut

Corollary 6. Let d, k ∈ N+ be constants, then Lrt(IA
d
k) ⊂ Lrt(IA

d+1
k).

Proof. By Theorem 5, language Ldim(d + 1) is not accepted by any real-time
IAd

k, but is accepted by some real-time IAd+1
1 and, thus, by some IAd+1

k . ut

The construction of Theorem 5 can be modified to show that the language
Ldim(d + 1) belongs to Llt(IA

d
1), i.e., one can trade one dimension for a slow-

down from real time to linear time.

Theorem 7. Let k, d ∈ N+ be constants, then Lrt(IA
d
k) ⊂ Llt(IA

d
k).

3.2 Bits

Here we fix the time complexity to real time, the dimension to any constant
d ∈ N+, and consider the number of communication bits. For any number of
communication bits k ∈ N+ we define an alphabet Ad,k = {a0, . . . , a2d·k−2} and
a language Lbit(d, k).

Lbit(d, k) = {u1 · · ·um

�
e2m+4 �

ex �
e2x �

v | m, x ∈ N+ and x ≤ m

and ui ∈ Ad,k, 1 ≤ i ≤ m, and v = ux}

Theorem 8. Let k, d ∈ N+ be constants. The language Lbit(d, k + 1) belongs to
the difference Lrt(IA

d
k+1) \ Lrt(IA

d
k).

Proof. Contrarily, assume Lbit(d, k + 1) ∈ Lrt(IA
d
k). Then by Lemma 4 there

exists a constant p ∈ N+ such that N`(l, Lbit(d, k+1)) ≤ p ·2k·d·l, for all l ∈ N+.

Fast Cellular Automata with Restricted Inter-Cell Communication 159

On the other hand, consider two different prefixes w = u1 · · ·ul

�
and w′ =

u′
1 · · ·u

′
l

�
. Since they are different, there is an x such that ux 6= u′

x. Therefore,
we2l+4 �

ex
�
e2x

�
ux ∈ Lbit(d, k + 1) ⇐⇒ w′e2l+4 �

ex
�
e2x

�
ux /∈ Lbit(d, k + 1).

For all d, k ∈ N+, there are

(2d·(k+1) − 1)l = (2d2d·k − 1)l ≥ (2 · 2d·k − 1)l ≥

(2d·k + 1)l > (2d·k +
1

2
)l = ((1 +

1

2d·k+1
)2d·k)l

different words of this form. Since 1
2d·k+1 > 0, we may choose l in such a way

that (1 + 1
2d·k+1)l > p. This implies the following lower bound on the number

of induced equivalence classes:

N`(l, Lbit(d, k + 1)) > p · 2d·k·l

From the contradiction we obtain Lbit(d, k + 1) /∈ Lrt(IA
d
k).

It remains to be shown that Lbit(d, k + 1) ∈ Lrt(IA
d
k+1). As in the proof of

Theorem 5, a corresponding iterative array stores the symbols ui in a storage
phase, and in a retrieval phase symbol ux is addressed and sent back to the
communication cell that compares it with v. The input symbols are binary
encoded by (k + 1) · d bits, respectively, such that the code of ai is i + 1.

First, we present the construction for d = 1, which is generalized subse-
quently. During the storage phase, a symbol ui is read and its code is sent to
the array. It is stored in cell i at time step 2i. At time 2i + 1 cell i + 1 is
activated by cell i. So, cell i+1 can store symbol ui+1 at time 2(i+1). The fol-
lowing behavior stops the storage phase. It is constructed with an eye towards
generalizations to higher dimensions. When the communication cell reads the
symbol

�
it sends a 0 to the array. When this 0 is to be stored in cell m + 1 at

time 2(m + 1), the cell recognizes the end of the storage phase, waits for three
time steps, and sends a signal from right to left that informs all cells passed
through about the end of the phase. The signal arrives at the communication
cell at time step 2(m + 1) + 3 + (m + 1) = 3m + 6, i.e., when the input prefix
u1 · · ·um

�
e2m+4 �

has been read.
Now the retrieval phase starts. To this end, the communication cell sends

signals 1 to the array as long as it reads the next input part ex. When it reads
the following

�
it sends a 2. Each cell which receives a 1 for the first time deletes

the 1 from the stream. The unique cell that receives the 2 immediately after
receiving a 1 for the first time, identifies itself to be the addressed cell x. It sends
its stored symbol ux to the left. The symbol arrives at the communication cell
at time 3x after the beginning of the retrieval phase, i.e., before the v appears
in the input.

We turn to higher dimensions. Roughly, the idea is to split the encodings of
the input symbols ui into d blocks of length k bits, respectively. These blocks
are distributed to the d neighbors of the communication cell. This would lead
to a straightforward generalization. But the problem arises that we cannot stop
the storage phase since signal 0 (and any other signal) may appear as a block

160 M. Kutrib and A. Malcher

in encodings. So, we have to provide more sophisticated mechanisms. The com-
munication cell still sends the d blocks to its neighbors. But the blocks, e.g., of
symbol ui are stored in the cells (i, 0, . . . , 0), (i, 1, 0, . . . , 0), (i, 0, 1, 0, . . . , 0),. . . ,
(i, 0, . . . , 0, 1). For example, the block sent to neighbor (0, . . . , 0, 1, 0, . . . , 0) of
the communication cell is rerouted to the cells (i, 0, . . . , 0, 1, 0, . . . , 0) by this
neighbor. The communication cell itself sends blocks to cells (i, 0, . . . , 0) with
one time step delay. Therefore, all blocks of symbol ui reach their destinations at
time 2i + 1. In order to stop the storage phase, the symbol ui is reconstructed
in cell (i, 0, . . . , 0) at time 2i + 2. To this end, all cells storing blocks of ui

send their blocks to their common neighbor (i, 0, . . . , 0). If cell (m + 1, 0, . . . , 0)
reconstructs the signal 0, it sends stop signals back to its neighbors at time
2(m + 1) + 3. In turn, these neighbors send stop signals back to the communi-
cation cell. So, the storage phase ends at time 2(m+1)+3+(m+1) = 3m+6,
i.e., when the input prefix u1 · · ·um

�
e2m+4 �

has been read. The retrieval phase
is a straightforward generalization of the one-dimensional case. ut

Corollary 9. Let k, d ∈ N+ be constants, then Lrt(IA
d
k) ⊂ Lrt(IA

d
k+1).

·
·
·

·
·
·

·
·
·

⊂ ⊂ ⊂

Lrt(IA
k
1
) ⊂ Lrt(IA

k
2
) ⊂ · · · ⊂ Lrt(IA

k

k
) ⊂ · · ·

⊂ ⊂ ⊂

·
·
·

·
·
·

·
·
·

⊂ ⊂ ⊂

Lrt(IA
2

1
) ⊂ Lrt(IA

2

2
) ⊂ · · · ⊂ Lrt(IA

2

k
) ⊂ · · ·

⊂ ⊂ ⊂

Lrt(IA
1

1
) ⊂ Lrt(IA

1

2
) ⊂ · · · ⊂ Lrt(IA

1

k
) ⊂ · · ·

Fig. 2. Double hierarchy of fast IAs with restricted inter-cell communication.

4 Relations with Restricted Cellular Automata

In this section we consider one-dimensional devices in order to compare their
computational capacity with communication restricted cellular automata. A
two-way cellular automaton with k-bit restricted inter-cell communication (CAk)
is similar to an iterative array. The main difference is that the cell at the origin
does not fetch the input but the input is supplied in parallel to the cells. I.e., an
input a1 · · ·an is fed to the cells 1, . . . , n such that initially cell i is in state ai.
Cells 0 and n + 1 are initially in a permanent so-called boundary state #. So,

Fast Cellular Automata with Restricted Inter-Cell Communication 161

cell 1 is the communication cell that indicates acceptance or rejection, and the
array is bounded to the n cells which are initially active. Real time is defined to
be n time steps. A one-way cellular automaton (OCAk) is a cellular automaton
in which each cell receives information from its immediate neighbor to the right
only. So, the flow of information is restricted from right to left. The relations
between these devices and iterative arrays in general are depicted in the left
part of Figure 3. Now we turn to explore the relations for restricted devices.

Theorem 10. For all k ∈ N+, there is a regular language which is not accepted
by any real-time k-bit CA.

Proof. Let Lk = {xvx | v ∈ {a}∗ and x ∈ {a0, . . . , a22k}} be the regular witness
language. Assume contrarily, Lk is accepted by some real-time CAk with state
set S, bit functions b1, b2 : S → {0, 1}k giving the bits communicated to the left
and to the right, and local transition function δ : {0, 1}k × S × {0, 1}k → S.

First we partition the input states {a0, . . . , a22k} according to b1, i.e., two
states s1 and s2 are in the same class if and only if b1(s1) = b1(s2). Since there
are 22k + 1 input states and the range of b1 has 2k elements, there is at least
one class S1 with at least 2k + 1 states. Next, S1 is partitioned according to
b1(δ(b2(a), s, b1(#))). Therefore, there is at least one subclass of S1 that has at
least two states, say ai and aj .

For an accepting computation on input aia
nai, for some n ∈ N+, we consider

the relevant states of the cells n−1, n, n+1 at time steps 0, 1, 2. In particular,
c0(n−1) = a, c0(n) = ai, c0(n+1) = #, c1(n−1) = a′, c1(n) = a′

i, c2(n−1) = a′′.
Due to the real-time restriction, states c1(n + 1), c2(n), and c2(n + 1) cannot
affect the overall computation result. Since ai and aj are in the same class S1, for
input aia

naj we obtain c0(n− 1) = a, c0(n) = aj , c0(n+1) = #, c1(n− 1) = a′,
c1(n) = a′

j . Since ai and aj are in the same subclass we obtain c2(n − 1) = a′′.
Therefore, input aia

naj not belonging to Lk would be accepted. ut

It is not hard to see that language Lk is accepted by a real-time CAk+1 as
well as by a CAk in time n + 1. So, we obtain a strict bit hierarchy for two-way
real-time cellular automata.

Theorem 11. Let k ∈ N+ be a constant, then Lrt(CAk) ⊂ Lrt(CAk+1).

Moreover, by modification of the witness language, i.e., by increasing the
underlying alphabet, we obtain a very dense strict time hierarchy. That is, if
we allow just one more time step, we obtain a strictly more powerful device.

Theorem 12. Let k ∈ N+, r ∈ N be constants, then

Lrt+r(CAk) ⊂ Lrt+r+1(CAk).

Since, trivially, any regular language is accepted by some real-time IA1, the
next theorem completes the incomparability results.

Theorem 13. Let k ∈ N+ be a constant. There is a language belonging to the
difference Lrt(OCA1) \ Llt(IAk).

162 M. Kutrib and A. Malcher

Proof. First we give the sketch of a construction of a one-bit real-time OCA
that accepts the witness language Lk = {u1 · · ·umexv | m ∈ N+ and ui ∈
{a0, . . . , a2k−1}, 1 ≤ i ≤ m, and v ∈ {e, a0, . . . , a2k−1}

∗ and x is greater than
or equal to the number represented by the 2k-ary interpretation of u1 · · ·um}.

Initially, all non-boundary states send bit 1 to the left. This identifies the
rightmost cell uniquely. Next all cells with input e send a 1 and all cells in a
state ui send a 0. This identifies cells in state ui with an e-neighbor to the right,
and vice versa. Now all cells e with right neighbor ui or in boundary state send
a 0-signal to the left. All other cells e send bits 1 to the left until they receive a
0-signal from the right. The cells in states ui form a 2k-ary counter. The cells
in state um with e-neighbor start to decrease the counter by one in every time
step until they receive a 0-signal. A counter cell accepts when it generates the
first carryover to the left.

In order to show that Lk+1 is not accepted by any IAk we adapt the proof
of Theorem 8, and obtain N`(m, Lk+1) > p · 2k·m induced equivalence classes,
and N`(m, Lk+1) ≤ p · 2k·m distinguished equivalence classes. ut

Llt(CA) = Llt(IA)

Lrt(CA)

Lrt(OCA) Lrt(IA)

REG

Llt(CAk)

Lrt(CAk) Llt(IAk)

Lrt(OCAk) Lrt(IAk)

REG

Fig. 3. Relations between unrestricted and restricted language families, respectively.
Solid lines are strict inclusions, dotted lines are inclusions. Families which are not
connected by any path are incomparable.

Finally, we show the proper inclusions between language families that are
related by inclusions for structural reasons.

Theorem 14. Let k ∈ N+ be a constant, then Lrt(OCAk) ⊂ Lrt(CAk).

Proof. It is well known that all unary languages belonging to Lrt(OCA) are reg-
ular [11] languages. Therefore, it suffices to show that the non-regular language
L = {a2x+2x | x ∈ N+} belongs to Lrt(CA1).

A corresponding CA1 works as follows. It sets up a binary counter whose
least significant bit is stored in the leftmost cell. We observe that the counter
is extended by one digit (cell) to the right at time steps 2x + x, for x ∈ N. In
particular, at time steps 2x − 1 all counter cells store bit 1. Subsequently, it

Fast Cellular Automata with Restricted Inter-Cell Communication 163

takes x + 1 time steps until the carryovers reach the new cell that extends the
counter.

In addition, at time step 1 the rightmost cell sends a signal 1 to the left.
The input is to be accepted if and only if this signal appears in a cell exactly
at a time step at which this cell becomes the new most significant bit of the
counter, i.e., at time steps 2x +x. In this case the signal 1 is passed through the
counter in order to cause the leftmost cell to accept. Since the previous counter
length was x, the total input length is 2x + x + x. ut

For the sake of completeness, the following theorem is presented without
proof.

Theorem 15. Let k ∈ N+ be a constant, then Llt(IAk) ⊂ Llt(CAk).

References

1. Buchholz T, Klein A, Kutrib M (1999) Iterative arrays with a wee bit alternation.
In: Fundamentals of Computation Theory 1999, LNCS 1684, pp 173–184

2. Buchholz T, Klein A, Kutrib M (2000) Iterative arrays with small time bounds.
In: Mathematical Foundations of Computer Science 1998, LNCS 1893, pp 243–252

3. Buchholz T, Klein A, Kutrib M (1999) Iterative arrays with limited nondetermin-
istic communication cell. In: Words, Languages and Combinatorics III, pp 73–87

4. Chang JH, Ibarra OH, Palis MA (1987) Parallel parsing on a one-way array of
finite-state machines. IEEE Trans Comput C-36:64–75

5. Cole SN (1969) Real-time computation by n-dimensional iterative arrays of finite-
state machines. IEEE Trans Comput C-18:349–365

6. Fischer PC (1965) Generation of primes by a one-dimensional real-time iterative
array. J ACM 12:388–394

7. Ibarra OH, Palis MA (1985) Some results concerning linear iterative (systolic)
arrays. J Parallel Distributed Comput 2:182–218

8. Ibarra OH, Palis MA (1988) Two-dimensional iterative arrays: Characterizations
and applications. Theoret Comput Sci 57:47–86

9. Iwamoto C, Hatsuyama T, Morita K, Imai K (1999) On time-constructible func-
tions in one-dimensional cellular automata. In: Fundamentals of Computation
Theory 1999, LNCS 1684, pp 317–326

10. Malcher A (2004) On the descriptional complexity of iterative arrays. IEICE
Transactions on Information and Systems E87-D:721–725

11. Seidel SR (1979) Language recognition and the synchronization of cellular au-
tomata. Technical Report 79-02, Department of Computer Science, University of
Iowa, Iowa City

12. Smith III AR (1972) Real-time language recognition by one-dimensional cellular
automata. J Comput System Sci 6:233–253

13. Terrier V (1995) On real time one-way cellular array. Theoret Comput Sci
141:331–335

14. Umeo H (2001) Linear-time recognition of connectivity of binary images on 1-bit
inter-cell communication cellular automaton. Parallel Comput 27:587–599

164 M. Kutrib and A. Malcher

15. Umeo H, Kamikawa N (2002) A design of real-time non-regular sequence gen-
eration algorithms and their implementations on cellular automata with 1-bit
inter-cell communications. Fund Inform 52:257–275

16. Umeo H, Kamikawa N (2003) Real-time generation of primes by a 1-bit-
communication cellular automaton. Fund Inform 58:421–435

17. Worsch T (2000) Linear time language recognition on cellular automata with
restricted communication. In: Latin 2000: Theoretical Informatics, LNCS 1776,
pp 417–426

