
On PTAS for Planar Graph Problems

Xiuzhen Huang1 and Jianer Chen2

1 Department of Computer Science,
Arkansas State University,

State University, Arkansas 72467.
Email: xzhuang@csm.astate.edu

2 Department of Computer Science,
Texas A&M University,

College Station, TX 77843.
Email: chen@cs.tamu.edu??

Abstract. Approximation algorithms for a class of planar graph prob-
lems, including planar independent set, planar vertex cover and
planar dominating set, were intensively studied. The current up-
per bound on the running time of the polynomial time approximation
schemes (PTAS) for these planar graph problems is of 2O(1/ε)nO(1).
Here we study the lower bound on the running time of the PTAS for
these planar graph problems. We prove that there is no PTAS of time

2o(
√

1/ε)nO(1) for planar independent set, planar vertex cover

and planar dominating set unless an unlikely collapse occurs in pa-
rameterized complexity theory. For the gap between our lower bound
and the current known upper bound, we specifically show that to further
improve the upper bound on the running time of the PTAS for planar

vertex cover, we can concentrate on planar vertex cover on pla-
nar graphs of degree bounded by three.

1 Introduction

There is intensive research work on a class of planar graph NP-hard optimization
problems, such as planar independent set, planar vertex cover and
planar dominating set. Approximation algorithms for these planar graph
problems and related problems were studied by researchers such as Bar-Yehuda
and Even [5], Lipton and Tarjan [25], Baker [4], Eppstein [16], Grohe [20],
Khanna and Motiwani [24], and Cai et al. [7]. The current upper bound on the
running time of the polynomial time approximation scheme (PTAS) for these
planar graph problems is of 2O(1/ε)nO(1) [4, 25]. In this paper, we study the lower
bound on the running time of the PTAS algorithms for these planar graph
problems. Our work follows some recent research progress in parameterized
complexity theory [10, 11], where strong computational lower bound results on
the running time of the algorithms for W [t]-hard problems are derived, t ≥ 1.

?? This research is supported in part by US NSF under Grants CCR-0311590 and
CCF-0430683.



300 X. Huang and J. Chen

Our research work here is focused on the computational lower bounds on the
running time of the algorithms for the parameterized problems that are fixed-
parameter tractable (in FPT).

We first give a brief review on parameterized complexity theory and the
recent research results in [10, 11]. A parameterized problem Q is a decision
problem consisting of instances of the form (x, k), where the integer k ≥ 0 is
called the parameter. The parameterized problem Q is fixed-parameter tractable
[15] if it can be solved in time f(k)|x|O(1), where f is a recursive function3.
Certain NP-hard parameterized problems, such as vertex cover, are fixed-
parameter tractable, and hence can be solved practically for small parameter
values [12]. On the other hand, the inherent computational difficulty for solving
many other NP-hard parameterized problems with even small parameter val-
ues has suggested that certain parameterized problems are not fixed-parameter
tractable, which has motivated the theory of fixed-parameter intractability [15].
The W -hierarchy

⋃
t≥0 W [t] has been introduced to characterize the inherent

level of intractability for parameterized problems. A large number of param-
eterized problems have been proved to be hard or complete for various levels
in the W -hierarchy [15]. Examples of W [1]-hard problems include many well-
known NP-hard problems such as clique, dominating set, set cover, and
weighted cnf satisfiability. The theory of parameterized intractability has
found important applications in a variety of areas such as database systems and
model checking [20, 27].

The W [1]-hardness of a parameterized problem provides a strong evidence
that the problem is not fixed-parameter tractable, or equivalently, cannot be
solved in time f(k)nO(1) for any function f . Recent investigation has derived
much stronger computational lower bounds on the running time of the algo-
rithms for well-known NP-hard parameterized problems [10, 11]. For example,
it has been shown that unless an unlikely collapse occurs in the parameterized
complexity theory, any algorithm solving the W [1]-hard clique problem takes
time at least nΩ(k). Note that this lower bound is asymptotically tight in the
sense that the trivial algorithm that enumerates all subsets of k vertices in a
given graph to test the existence of a clique of size k runs in time O(nk). Similar
lower bound results could be shown for other W [t]-hard problems, t ≥ 1.

A method for deriving lower bounds on the running time of approximation
algorithms for NP-hard combinatorial optimization problems is designed. It
was proved in [11] that unless an unlikely collapse occurs in parameterized
complexity theory, the W [1]-hardness of the parameterized problem under the
linear fpt-reduction implies the nonexistence of polynomial time approximation
schemes of running time f(1/ε)no(1/ε) for the original optimization problem,
where f is any recursive function.

3 In this paper, we always assume that complexity functions are “nice” with both
domain and range being non-negative integers and the values of the functions and
their inverses can be easily computed. For two functions f and g, we write f(n) =
o(g(n)) if there is a nondecreasing and unbounded function λ such that f(n) ≤
g(n)/λ(n). A function f is subexponential if f(n) = 2o(n).



On PTAS for Planar Graph Problems 301

2 Terminologies in Approximation

For a reference of the theory of approximation, the readers are referred to
the book [3]. In this section, we provide some basic terminologies for studying
approximability and its relationship with parameterized complexity.

An NP optimization problem Q is a four-tuple (IQ, SQ, fQ, optQ), where
1. IQ is the set of input instances. It is recognizable in polynomial time;
2. For each instance x ∈ IQ, SQ(x) is the set of feasible solutions for x, which

is defined by a polynomial p and a polynomial time computable predicate π (p
and π only depend on Q) as SQ(x) = {y : |y| ≤ p(|x|) and π(x, y)};

3. fQ(x, y) is the objective function mapping a pair x ∈ IQ and y ∈ SQ(x)
to a non-negative integer. The function fQ is computable in polynomial time;

4. optQ ∈ {max, min}. Q is called a maximization problem if optQ = max,
and a minimization problem if optQ = min.

An optimal solution y0 for an instance x ∈ IQ is a feasible solution in SQ(x)
such that fQ(x, y0) = optQ{fQ(x, z) | z ∈ SQ(x)}. We will denote by optQ(x)
the value optQ{fQ(x, z) | z ∈ SQ(x)}.

An algorithm A is an approximation algorithm for an NP optimization prob-
lem Q = (IQ, SQ, fQ, optQ) if, for each input instance x in IQ, A returns a fea-
sible solution yA(x) in SQ(x). The solution yA(x) has an approximation ratio
r(n) if it satisfies the following condition:

optQ(x)/fQ(x, yA(x)) ≤ r(|x|) if Q is a maximization problem

fQ(x, yA(x))/optQ(x) ≤ r(|x|) if Q is a minimization problem

The approximation algorithm A has an approximation ratio r(n) if for any
instance x in IQ, the solution yA(x) constructed by the algorithm A has an
approximation ratio bounded by r(|x|).

Definition 1. An NP optimization problem Q has a polynomial-time approxi-
mation scheme (PTAS) if there is an algorithm AQ that takes a pair (x, ε) as
input, where x is an instance of Q and ε > 0 is a real number, and returns a
feasible solution y for x such that the approximation ratio of the solution y is
bounded by 1 + ε, and for each fixed ε > 0, the running time of the algorithm
AQ is bounded by a polynomial of |x|.4

An NP optimization problem Q has a fully polynomial-time approximation
scheme (FPTAS) if it has a PTAS AQ such that the running time of AQ is
bounded by a polynomial of |x| and 1/ε.

4 There is an alternative definition for PTAS in which each ε > 0 may correspond
to a different approximation algorithm Aε for Q [19]. The definition we adopt here
may be called the uniform PTAS, by which a single approximation algorithm takes
care of all values of ε. Note that most PTAS developed in the literature are uniform
PTAS.



302 X. Huang and J. Chen

Observe that the time complexity of a PTAS algorithm may be of the form
O(21/ε|x|c) for a fixed constant c or of the form O(|x|1/ε). Obviously, the lat-
ter type of computations with small ε values will turn out to be practically
infeasible. This leads to the following definition [9].

Definition 2. An NP optimization problem Q has an efficient polynomial-time
approximation scheme (EPTAS) if it admits a polynomial-time approximation
scheme whose time complexity is bounded by O(f(1/ε)|x|c), where f is a recur-
sive function and c is a constant.

An NP optimization problem Q can be parameterized in a natural way as
follows.

Definition 3. Let Q = (IQ, SQ, fQ, optQ) be an NP optimization problem. The
parameterized version of Q is defined as follows:

(1) If Q is a maximization problem, then the parameterized version of Q is
defined as Q≥ = {(x, k) | x ∈ IQ ∧ optQ(x) ≥ k};

(2) If Q is a minimization problem, then the parameterized version of Q is
defined as Q≤ = {(x, k) | x ∈ IQ ∧ optQ(x) ≤ k}.

The above definition offers the possibility to study the relationship between
the approximability and the parameterized complexity of NP optimization prob-
lems. However, there is an essential difference between the two categories: an
approximation algorithm for an NP optimization problem constructs a solution
for a given instance of the problem, while a parameterized algorithm only pro-
vides a “yes/no” decision on an input. To make the comparison meaningful, we
need to extend the definition of parameterized algorithms in a natural way so
that when a parameterized algorithm returns a “yes” decision, it also provides
an “evidence” to support the conclusion (see [6] for a similar treatment).

Definition 4. Let Q = (IQ, SQ, fQ, optQ) be an NP optimization problem. We
say that a parameterized algorithm AQ solves the parameterized version of Q if

(1) in case Q is a maximization problem, then on an input pair (x, k)
in Q≥, the algorithm AQ returns “yes” with a solution y in SQ(x) such that
fQ(x, y) ≥ k, and on any input not in Q≥, the algorithm AQ simply returns
“no”;

(2) in case Q is a minimization problem, then on an input pair (x, k)
in Q≤, the algorithm AQ returns “yes” with a solution y in SQ(x) such that
fQ(x, y) ≤ k, and on any input not in Q≤, the algorithm AQ simply returns
“no”.

3 Lower Bound on Running Time of PTAS for Planar

Graph Problems

Suppose ε > 0 is the given error bound, and n is the number of vertices of
a planar graph. Lipton and Tarjan [25] designed an EPTAS approximation



On PTAS for Planar Graph Problems 303

algorithm of time O(2O(1/ε)nO(1)) for planar independent set, as an appli-
cation of a separator theorem on planar graphs. Based on the outer-planarity
of planar graphs, Baker [4] designed EPTAS algorithms of time O(2O(1/ε)n) for
several famous NP-hard optimization problems on planar graphs, such as pla-

nar vertex cover, planar independent set, and planar dominating

set.
In [6], Cai and Chen proved that if an optimization problem has a fully

polynomial-time approximation scheme (FPTAS), then the corresponding pa-
rameterized problem is fixed-parameter tractable (in FPT). Later this result
was extended in [9] by Cesati and Trevisan: All optimization problems that
have efficient polynomial time approximation schemes (EPTAS) have their pa-
rameterized problems in FPT. Therefore, the parameterized versions of these
aforementioned optimization problems, planar vertex cover, planar in-

dependent set, and planar dominating set, are in FPT.

Alber et. al [2] designed parameterized algorithms of time 2O(
√

k)nO(1) for
the parameterized versions of the above NP-hard optimization problems. A lot
of research has been done on these problems to try to further improve the time
complexity of the parameterized algorithms. Interested readers are referred to
[1, 23, 17, 18].

Cai et. al [8] proved the following lower bound result for the parameterized
algorithms of these problems:

Lemma 1. (Lemma 5.1 in [8]) planar vertex cover, planar indepen-

dent set, and planar dominating set do not have parameterized algorithms

of time 2o(
√

k)nO(1), unless vertex cover-3 has 2o(k)nO(1)-time parameterized
algorithms.

The class SNP introduced by Papadimitriou and Yannakakis [26] contains
many well-known NP-hard problems including, for any fixed q ≥ 3, cnf q-sat,
q-colorability, q-set cover, and vertex cover, clique, and indepen-

dent set [22]. It is commonly believed that it is unlikely that all problems
in SNP are solvable in subexponential time. Impagliazzo, Paturi and Zane [22]
studied the class SNP and identified a group of SNP-complete problems under
the serf-reduction, such that if any of these SNP-complete problems is solvable
in subexponential time, then all problems in SNP are solvable in subexponential
time. This group of SNP-complete problems under the serf-reduction includes
the problems cnf q-sat, q-colorability, q-set cover, and vertex cover,
clique, and independent set.

We have:

Lemma 2. (Theorem 3.3 in [13]) The vertex cover-3 problem can be solved
in 2o(k)nO(1) time if and only if the vertex cover problem can be solved in
2o(k)nO(1) time.

Therefore Lemma 1 could be restate as:



304 X. Huang and J. Chen

Lemma 3. planar vertex cover, planar independent set, and planar

dominating set do not have parameterized algorithms of time 2o(
√

k)nO(1),
unless all SNP problems are solvable in subexponential time.

We prove the following lower bound results on the running time of the
EPTAS algorithms for those planar graph problems:

Theorem 1. planar vertex cover, planar independent set, and pla-

nar dominating set have no EPTAS of running time 2o(
√

1/ε)nO(1), where
ε > 0 is the given error bound, unless all SNP problems are solvable in subex-
ponential time.

Proof. We provide the proof for planar vertex cover. Let Q be the mini-
mization problem of planar vertex cover.

From the EPTAS algorithm AQ for the planar vertex cover problem
Q, we provide the parameterized algorithm A≤ shown in Fig. 1 for the param-
eterized version Q≤ of the planar vertex cover problem Q.

Algorithm A≤:

Input: An instance (G, k) of Q≤, where G is a planar graph.

Output: If the minimum vertex cover C0 has the size |C0| ≤ k, then Output
“yes”; otherwise Output “no”.

1. On the instance (G, k) of Q≤, call the EPTAS algorithm AQ on G and
ε = 1/(2k + 1). Suppose that the algorithm AQ returns a vertex cover C.

2. If |C| ≤ k, then return “yes”; otherwise return “no”.

Fig. 1. Algorithm A≤.

We verify that the algorithm A≤ solves the parameterized problem Q≤. Since
the planar vertex cover problem Q is a minimization problem, if |C| ≤ k
then obviously |C0| ≤ k. Thus, the algorithm A≤ returns a correct decision in
this case. On the other hand, suppose |C| > k. Since |C| is an integer, we have
|C| ≥ k + 1. Since AQ is a EPTAS for the planar vertex cover problem Q
and ε = 1/(2k + 1), we must have

|C|/|C0| ≤ 1 + 1/(2k + 1)

From this we get (note that |C| ≥ k + 1)

|C0| ≥ |C|/(1 + 1/(2k + 1) ≥ (k + 1)/(1 + 1/(2k + 1) = k + 1/2 > k

Thus, in this case the algorithm A≤ also returns a correct decision. This proves
that the algorithm A≤ solves the parameterized version Q≤ of the planar



On PTAS for Planar Graph Problems 305

vertex cover problem Q. The running time of the algorithm A≤ is dominated

by that of the algorithm AQ, which is bounded by 2o(
√

1/ε)nO(1) = 2o(
√

k)nO(1).
Thus, the parameterized version Q≤ of the planar vertex cover problem is

solvable in time 2o(
√

k)nO(1). Therefore, the result in the theorem follows from
Lemma 3.

The proofs for planar independent set and planar dominating set

are similar and hence are omitted.

Corollary 1. planar vertex cover, planar independent set, and pla-

nar dominating set have no PTAS of running time 2o(
√

1/ε)nO(1), where
ε > 0 is the given error bound, unless all SNP problems are solvable in subex-
ponential time.

By a comparison with the upper bound on the running time of the EPTAS
algorithms for these planar graph problems in Baker [4], which is 2O(1/ε)nO(1)

(also in Lipton and Tarjan [25]), we can see that there is a gap between the
upper bound result and our lower bound result in Theorem 1. To come up with
new approaches to improve the upper bound on the running time of the EPTAS
algorithms in [4] will be interesting research. To study this issue, we concentrate
on the planar vertex cover problem in the next section.

4 Upper Bound on Running Time of PTAS for Planar

Vertex Cover

In this section, we study the PTAS algorithms for the vertex cover problem
on planar graphs of degree bounded by 3, abbreviated as p-vc-3. The vertex

cover problem on general planar graphs is abbreviated as p-vc.
From the proof of Theorem 1, we get the following lemma:

Lemma 4. The p-vc-3 problem has no EPTAS of running time 2o(
√

1/ε)nO(1),
where ε > 0 is the given error bound, unless the p-vc-3 problem has a parame-

terized algorithm of time 2o(
√

k)nO(1).

It is well known that a planar embedding of a planar graph can be con-
structed in linear time [21]. We define an operation, called the unfolding oper-
ation, based on a planar embedding of a planar graph.

Definition 5. Suppose that G is a planar graph with a planar embedding π(G),
and that v is a degree-d vertex in G, where d > 3, with neighbors v1, v2, . . .,
vd, such that when one traverses around the vertex v on the embedding π(G),
the edges incident to v are in the cyclic order [v, v1], [v, v2], . . ., [v, vd]. The
unfolding operation on the vertex v will do the following: remove the vertex v
from π(G), and add a path of length 2d − 5:

Pv = {y1, x1, y2, x2, . . . , yd−3, xd−3, yd−2}



306 X. Huang and J. Chen

where each vertex xi is of degree 2 and adjacent to the vertices yi and yi+1,
and each vertex yi is of degree 3 such that y1 is adjacent to {v1, v2, x1}, yd−2 is
adjacent to {vd−1, vd, xd−3}, and yi is adjacent to {vi+1, xi−1, xi}, for 2 ≤ i ≤
(d − 3).

As an example, please refer to the unfolding operation on the vertex v of
degree 6 shown in Fig. 2. Note that the unfolding operation does not change
the planarity of a graph: the path Pv can be drawn on a small disc on which
the vertex v was embedded in π(G), and the edges from the vertices v1, . . ., vd

to the path Pv can be drawn on the plane without edge crossing.
Suppose we are given a planar graph G1 = (V1, E1), V1 = V≤3 ∪ V>3, where

V≤3 is the set of vertices whose degree is less than or equal to 3, V>3 is the set
of vertices whose degree is greater than 3. We apply the unfolding operation on
a vertex v ∈ V>3. We get a new planar graph G2 = (V2, E2), where G2 has one
fewer vertex of degree larger than 3, compared with G1.

We first consider a vertex cover C2 of the graph G2.

– Suppose for some i, 1 ≤ i ≤ d − 3, the three vertices xi, yi, and yi+1 are all
in C2. Then we simply remove xi from C2. It is obvious that C2 − {xi} is
still a vertex cover of G2, with one fewer vertex compared with C2. Call this
operation clean-one.

– Suppose for some i, 1 ≤ i ≤ d − 3, exactly two of the three vertices xi, yi,
and yi+1 are in C2. If one of these two vertices is xi, then we can replace the
two vertices by yi and yi+1, resulting in a new vertex cover of the same size.
Call this operation clean-two.

t
v

t

v6

t
v3

t
v5

tv4

tv1

t

v2

tv1

t
v2

t

v3

t v4

t

v5

t

v6
tx1

tx2tx3

ty1

t
y2

ty3

ty4

J
J
JJ

@
@

@

J
J
JJ

@
@

@

�
�

�
@

@
@�

�
�-

Fig. 2. Unfolding operation on the vertex v (with degree 6).

Note that at least one of the three vertices xi, yi, and yi+1 must be in the
vertex cover C2 in order to cover the edges [xi, yi] and [xi, yi+1]. Therefore,
besides the above cases, the only remaining case is that for the three vertices
xi, yi, and yi+1, only one of them is in C2. In this case, this vertex in C2 must
be xi.



On PTAS for Planar Graph Problems 307

In the following discussion, cleaning a vertex cover C2 means that we apply
the processing of clean-one and clean-two on C2. After the cleaning process, we
say that the vertex cover C2 is clean. By the above discussion, in a clean vertex
cover C2 of the graph G2, we have

Claim. Either all d − 3 vertices xi, 1 ≤ i ≤ d − 3, are in C2 and none of the
d− 2 vertices yj , 1 ≤ j ≤ d− 2, is in C2; or all d− 2 vertices yj , 1 ≤ j ≤ d− 2,
are in C2 and none of the d − 3 vertices xi, 1 ≤ i ≤ d − 3, is in C2.

Let C1 be any vertex cover of the graph G1 such that C1 has k1 vertices. If
v ∈ C1 (so v covers the d edges [v, v1], . . ., [v, vd] in G), then by replacing v in
C1 by the d− 2 vertices y1, y2, . . ., yd−2 in G2, we obviously get a clean vertex
cover C2 for the graph G2. The vertex cover C2 has k1 + (d − 3) vertices. On
the other hand, if v is not in C1 (so the edges [v, v1], . . ., [v, vd] must be covered
by the vertices v1, . . ., vd in C1), then by adding the d − 3 vertices x1, x2, . . .,
xd−3 to C1, we get a clean vertex cover C2 for the graph G2 and C2 contains
k1 + (d − 3) vertices. In conclusion, from a vertex cover of k1 vertices for the
graph G1, we can always construct a (clean) vertex cover of k1 +(d−3) vertices
for the graph G2.

Conversely, suppose that we are given a clean vertex cover C2 of the graph
G2, where C2 has k2 vertices. If C2 contains the d− 2 vertices y1, y2, . . ., yd−2,
then replacing the d−2 vertices y1, y2, . . ., yd−2 in C2 by a single vertex v gives
a vertex cover of k2 − (d − 3) vertices for the graph G1. On the other hand,
if C2 contains the d − 3 vertices x1, x2, . . ., xd−3, then removing these d − 3
vertices from C2 gives a vertex cover of k2−(d−3) vertices for the graph G1. In
conclusion, from a vertex cover of k2 vertices for the graph G2, we can always
construct a vertex cover of k2 − (d − 3) vertices for the graph G1.

Now suppose that the set of vertices of degree larger than 3 in the graph
G1 is V>3 = {u1, u2, . . . , ur}. Denote by deg(u) the degree of the vertex u.
Inductively, suppose that the graph Gi+1 is obtained from the graph Gi by
unfolding the vertex ui, for 1 ≤ i ≤ r. Note that the graph Gr has its degree
bounded by 3, and we say that the graph Gr is obtained from the graph G1 by
unfolding all vertices of degree larger than 3. Let C1 be a vertex cover for the
graph G1 with |C1| = k1. By the above discussion, we can construct from C1

a vertex cover C2 of k1 + (deg(u1) − 3) vertices for the graph G2; then from
C2, we can construct a vertex cover C3 of k1 + (deg(u1) − 3) + (deg(u2) − 3)
vertices for the graph G3, . . . . . ., and finally we construct a vertex cover Cr of
k1 +

∑r
i=1(deg(ui) − 3) vertices for the graph Gr.

On the other hand, let Cr be a vertex cover of kr vertices for the graph Gr.
First we clean Cr to get a clean vertex cover C ′

r for Gr. Since cleaning does
not increase the size of the vertex cover, we have |C ′

r| ≤ |Cr| = kr. Now by the
above discussion, we can get a vertex cover Cr−1 of |C ′

r| − (deg(ur)− 3) ≤ kr −
(deg(ur)− 3) vertices for the graph Gr−1. Cleaning the vertex cover Cr−1 gives
us a clean vertex cover C ′

r−1 for the graph Gr−1, and by the above processing
we can get a vertex cover Cr−2 of |C ′

r−1|−(deg(ur−1)−3) ≤ kr−(deg(ur)−3)−



308 X. Huang and J. Chen

(deg(ur−1) − 3) vertices for the graph Gr−2, . . . . . ., finally, we will construct a
vertex cover of at most kr −

∑r
i=1(deg(ui) − 3) vertices for the graph G1.

In particular, the above discussion enables us to derive a relation between
the minimum vertex covers for the graphs G1 and Gr. Let k1 and kr be the sizes
of minimum vertex covers of the graph G1 and Gr, respectively. By the above
discussion, from a minimum vertex cover for the graph G1, we can construct
a vertex cover of k1 +

∑r
i=1(deg(ui) − 3) vertices for the graph Gr. Therefore,

k1 +
∑r

i=1(deg(ui) − 3) ≥ kr. On the other hand, from a minimum vertex
cover of the graph Gr, we can construct a vertex cover of no more than kr −∑r

i=1(deg(ui)−3) vertices for the graph G1, thus kr −
∑r

i=1(deg(ui)−3) ≥ k1.
Combining these two relations, we get k1 +

∑r
i=1(deg(ui) − 3) = kr.

Summarizing the above discussion, we get the following:

Claim. Let G1 be a graph in which the set of vertices of degree larger than 3
is V>3. Let Gr be a graph obtained by unfolding all vertices of degree larger
than 3 in G1. Then from a vertex cover C1 for the graph G1, we can construct
in polynomial time a vertex cover of |C1| +

∑
u∈V>3

(deg(u) − 3) vertices for
the graph Gr; and from a vertex cover Cr for the graph Gr, we can construct
in polynomial time a vertex cover of at most |Cr| −

∑
u∈V>3

(deg(u) − 3) ver-
tices for the graph G1. Moreover, the size of a minimum vertex cover of the
graph Gr is equal to the size of a minimum vertex cover of the graph G1 plus∑

u∈V>3
(deg(u) − 3).

Using the unfolding operations, we can prove

Lemma 5. The p-vc-3 problem has no parameterized algorithm of time 2o(
√

k)nO(1),

unless the p-vc problem has a parameterized algorithm of time 2o(
√

k)nO(1).

Proof. Suppose the p-vc-3 problem has a parameterized algorithm A of time

2o(
√

k)nO(1). We have the following algorithm A′ shown in Fig 3 for the p-vc

problem.
We prove the algorithm A′ is correct. By Claim 4, OPT1 is a vertex cover

for the graph G1 with |OPT2|−
∑

u∈V>3
(deg(u)−3) vertices and OPT1 is com-

putable in time nO(1). Since OPT2 is a minimum vertex cover for the graph
G2, by Claim 4 again, a minimum vertex cover for the graph G1 contains
|OPT2| −

∑
u∈V>3

(deg(u) − 3) vertices. In conclusion, OPT1 is a minimum
vertex cover for the graph G1.

We analysis the running time of A′ in the following.
For the graph G1 = (V1, E1), V1 = V≤3 ∪V>3, where |V1| = n and |E1| = m,

we can always assume |OPT1| ≥ n/2 by applying the NT-theorem [12]. That
is, the parameter k ≥ n/2. After applying the unfolding operation on each
v ∈ V>3, we get the new planar graph G2 = (V2, E2) with degree bounded by
3. The construction of G2 can be done in polynomial time.

For a planar graph with n vertices and m edges, we have [14]:

m ≤ 3n − 6. (1)



On PTAS for Planar Graph Problems 309

Algorithm A′

Input: A planar graph G1 = (V1, E1), V1 = V≤3 ∪V>3, and an integer k > 0.

Output: Output “Yes”, if the size of the minimum vertex cover OPT1 of G1

satisfies |OPT1| ≤ k. Otherwise, output “No”.

1. Let V>3 be the set of all vertices of degree larger than 3 in the graph G1.
Construct a planar graph G2 by unfolding all vertices of degree larger than
3 in G1.

2. Run the algorithm A on the graph G2 with the parameter k2 = 1, 2, ..., |V2|.
We get a minimum vertex cover OPT2 for the graph G2.

3. Construct a vertex cover OPT1 for the graph G1 from OPT2 such that
|OPT1| = |OPT2| −

P

u∈V>3
(deg(u) − 3).

5. If |OPT1| ≤ k, Return “Yes”; Otherwise, Return “No”.

Fig. 3. Parameterized algorithm for planar vertex cover.

By Equation 1, for the graph G1, the total degree of all its vertices satisfies:

∑

v∈V1

deg(v) = 2m ≤ 2(3n − 6) < 6n, (2)

We have

|V2| = |V≤3| +
∑

v∈V>3

((deg(v) − 3) + (deg(v) − 2))

< |V≤3| + 2
∑

v∈V>3

deg(v)

≤ |V1| + 2
∑

v∈V1

deg(v)

≤ n + 12n = 13n = O(n).

Therefore, the calls to the algorithm A on the graph G2 takes time 2o(
√

|V2|)|V2|O(1) =

2o(
√

n)nO(1) = 2o(
√

k)nO(1). All the other steps of the algorithm A′ takes poly-

nomial time nO(1). Therefore the algorithm A′ has running time 2o(
√

k)nO(1).

Therefore, from Lemma 4, Lemma 5 and Theorem 1, we have

Theorem 2. The p-vc-3 problem has no EPTAS of running time 2o(
√

1/ε)nO(1),
where ε > 0 is the given error bound, unless all SNP problems are solvable in
subexponential time.



310 X. Huang and J. Chen

Theorem 2 implies the difficulty of improving the EPTAS algorithm for the
p-vc-3 problem.

Baker [4] provided an EPTAS algorithm of time 2O(1/ε)p(n) for the p-vc

problem. By applying that algorithm, we get an EPTAS algorithm of time
2O(1/ε)p(n) for the p-vc-3 problem. Since the p-vc-3 problem seems simpler,
one might suspect that we could have a better EPTAS algorithm for it than
that for the p-vc problem.

In the following we show that if we can improve the EPTAS algorithm for
the p-vc-3 problem, then we can improve the EPTAS algorithm for the p-vc

problem.

Theorem 3. If the p-vc-3 problem has an EPTAS of running time f(1/ε)nO(1),
then the p-vc problem has an EPTAS of running time f(13/ε)nO(1), where f
is a recursive function and ε > 0 is the given error bound.

Proof. Given an EPTAS algorithm A of running time f(1/ε)nO(1) for the p-vc-

3 problem, we provide an EPTAS algorithm B of running time f(13/ε)nO(1)

for the p-vc problem. The description of algorithm B is given in Fig. 4.

Algorithm B

Input: A planar graph G1 = (V1, E1), and a constant ε > 0.

Output: A vertex cover C1 for G1, such that |C1| ≤ (1 + ε) ∗ |OPT1|.

1. Let V>3 be the set of all vertices of degree larger than 3 in the graph G1.
Unfold all vertices of degree larger than 3 in G1, let the resulting graph be
G2 = (V2, E2), whose degree is bounded by 3.

2. Run the algorithm A with ε′ = ε/13 on the graph G2. We get a vertex
cover C2 for the graph G2.

3. From C2 construct a vertex cover C1 of at most |C2|−
P

u∈V>3
(deg(u)−3)

vertices for the graph G1.

4. Return C1.

Fig. 4. EPTAS algorithm for planar vertex cover.

We claim that the vertex set C1 is the required vertex cover for the graph
G1.

By Equation 1 and Claim 4, we have

|OPT2| = |OPT1| +
∑

u∈V>3

(deg(u) − 3)

≤ |OPT1| +
∑

u∈V1

deg(u)



On PTAS for Planar Graph Problems 311

≤ |OPT1| + 6n

≤ |OPT1| + 12|OPT1|
≤ 13|OPT1|.

Therefore,
|OPT2| ≤ 13|OPT1|. (3)

By Claim 4, we have

|OPT1| = |OPT2| −
∑

u∈V>3

(deg(u) − 3)

and
|C1| ≤ |C2| −

∑

u∈V>3

(deg(u) − 3)

Therefore, we have
|C2| − |C1| ≥ |OPT2| − |OPT1|

or equivalently
|C2| − |OPT2| ≥ |C1| − |OPT1|

From this, we derive immediately

|C1|/|OPT1| − 1

= (|C1| − |OPT1|)/|OPT1|
≤ (|C2| − |OPT2|)/|OPT1|
≤ 13(|C2| − |OPT2|)/|OPT2|
= 13(|C2|/|OPT2| − 1)

≤ 13 ∗ (ε/13)

= ε.

Here we have used the assumption that C2|/|OPT2| ≤ 1 + ε′ = 1 + ε/13, and
the fact |OPT2| ≥ 13|OPT1|.

The call of the algorithm A on the graph G2 takes time f(1/ε′)nO(1). All
the other steps of the algorithm B take polynomial time nO(1). Therefore, the
running time of the algorithm B is f(13/ε)nO(1), and the approximation ratio
for the algorithm B is 1 + ε.

5 Summary

In this paper, we have proved lower bound results on the running time of the
PTAS algorithms for a class of planar graph problems including planar in-

dependent set, planar vertex cover and planar dominating set. We
pointed out that there is a gap between our lower bound result and the current



312 X. Huang and J. Chen

known upper bound result on the running time of the PTAS algorithms for
these planar graph problems. We then studied the PTAS algorithms for pla-

nar vertex cover problem. Based on our study of the relationship between
planar vertex cover and planar vertex cover on planar graphs of de-
gree bounded by three, we showed that to further improve the upper bound
on the running time of the PTAS algorithms for planar vertex cover, we
could concentrate on the planar vertex cover on planar graphs of degree
bounded by three. Closing the gap and further improving the upper bound on
the running time of the PTAS algorithms for these planar graph problems are
nice open problems inviting further research.

References

1. Alber J, Bodlaender HL, Fernau H, Kloks T, and Niedermeier R (2002) Fixed
parameter algorithms for dominating set and related problems on planar graphs.
Algorithmica 33:461-493

2. Alber J, Fernau H, Niedermeier R (2004) Parameterized complexity: exponential
speed-up for planar graph problems. J. Algorithms 52:26-56

3. Ausiello G, Crescenzi P, Gambosi G, Kann V, Marchetti-Spaccamela A, and
Protasi M (1999) Complexity and Approximation, Combinatorial Optimization
Problems and Their Approximability Properties. New York, Springer-Verlag

4. Baker BS (1994) Approximation algorithms for NP-complete problems on planar
graphs. Journal of the ACM 41:153-180

5. Bar-Yehuda R and Even S (1982) On approximating a vertex cover for planar
graphs. Proceedings of the fourteenth annual ACM symposium on Theory of
computing. pp.303-309

6. Cai L and Chen J (1997) On fixed-parameter tractability and approximability of
NP optimization problems. Journal Of Computer and System Sciences 54:465-474

7. Cai L, Fellows M, Juedes D, Rosamond F (2006) The complexity of polynomial-
time approximation. Theory of Computing Systems, to appear.

8. Cai L and Juedes DW (2003) On the existence of sub-exponential time parame-
terized algorithms. Journal of Computer and System Sciences 67:789-807

9. Cesati M and Trevisan L (1997) On the efficiency of polynomial time approxi-
mation schemes. Information Processing Letters 64:165-171

10. Chen J, Chor B, Fellows M, Huang X, Juedes DW, Kanj I and Xia G (2004) Tight
lower bounds for parameterized NP-hard problems. Proc. of the 19th Annual
IEEE Conference on Computational Complexity, pp. 150-160

11. Chen J, Huang X, Kanj I and Xia G (2004) Linear FPT reductions and computa-
tional lower bounds. Proc. of the 36th ACM Symposium on Theory of Computing,
pp. 212-221

12. Chen J, Kanj I, and Jia W (2001) Vertex cover: further observations and further
improvements. Journal of Algorithms 41:280-301

13. Chen J, Kanj I, Xia G (2003) A note on parameterized exponential time com-
plexity. Tech. Report, DePaul University

14. Diestel R (2000) Graph theory. New York: Springer
15. Downey RG and Fellows MR (1999) Parameterized complexity. Springer, New

York



On PTAS for Planar Graph Problems 313

16. Eppstein D (2000) Diameter and treewidth in minor-closed graph families, Algo-
rithmica 27:275-291

17. Fomin FV and Thilikos DM (2003) Dominating sets in planar graphs: branch-
width and exponential speed-up. Proc. of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 168-177

18. Fomin FV and Thilikos DM (2004) A simple and fast approach for solving prob-
lems on planar graphs. Lecture Notes in Computer Science 2996:56-67

19. Garey M and Johnson D (1979) Computers and intractability: a guide to the
theory of NP-Completeness. W. H. Freeman, New York

20. Grohe M (2003) Local tree-width, excluded minors, and approximation algo-
rithms, Combinatorica 23:613-632

21. Hopcroft JE and Tarjan RE (1974) Efficient planarity testing. Journal of the
ACM 21:549-568

22. Impagliazzo R, Paturi R, Zane F (2001) Which problems have strongly exponen-
tial complexity? Journal of Computer and System Sciences 63: 512-530

23. Kanj I, Perkovic L (2002) Improved parameterized algorithms for planar domi-
nating set, Lecture Notes in Computer Science 2420:399-410

24. Khanna S, Motwani R (1996) Towards a Syntactic Characterization of PTAS,
STOC 1996: 329-337

25. Lipton RJ, Tarjan RE (1980) Applications of a planar separator theorem. SIAM
J. Comput. 9:615-627

26. Papadimitriou CH, Yannakakis M (1991) Optimization, approximation, and com-
plexity classes. Journal of Computer and System Sciences 43: 425-440

27. Papadimitriou CH and Yannakakis M (1999) On the complexity of database
queries. Journal of Computer and System Sciences 58:407-427


