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Abstract We study the effects of different pricing strategies available to a continuous re-
view inventory system with capacitated supply, which operates in a fluctuating
environment. The system has a single server with exponential processing time.
The inventory holding cost is nondecreasing and convex in the inventory level,
the production cost is linear with no set-up cost. The potential customer demand
is generated by a Markov-Modulated (environment-dependent) Poisson process,
while the actual demand rate depends on the offerred price. For such systems,
there are three possible pricing strategies: Static pricing, where only one price is
used at all times, environment-dependent pricing, where the price changes with
the environment, and dynamic pricing, where price depends on both the current
environment and the stock level. The objective is to find an optimal replenishment
policy under each of these strategies. This paper presents some structural prop-
erties of optimal replenishment policies, and a numerical study which compares
the performances of these three pricing strategies.
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1. Introduction

During the last few decades, it is realized that the joint optimization of pricing
and replenishment decisions results in significant improvements on the firm’s
profit (see e.g., [3]). The inspiring results obtained on this topic so far encour-
aged us to analyse an inventory pricing and replenishment problem. On the
other hand, the environmental factors affect the density of the demand distri-
bution unpredictably, and the focus in the recent studies of inventory control
has been shifting to model the impact of fluctuating demand on the optimal
replenishment policy. Hence, we consider an inventory system operating in a
fluctuating demand environment, which controls the prices as well as the re-
plenishment. As a result, our work stands at the junction of three main-stream
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research topics, inventory control, price control and the effects of environmental
changes on the control policies.

We study a continuous review, infinite horizon inventory pricing and replen-
ishment problem with capacitated supply. The system has a single server with
exponential processing time. There is no set up cost, and the production cost
is linear. The inventory holding cost, on the other hand, is nondecreasing and
convex in the inventory level. In order to model a fluctuating environment, we
assume that the potential customer demand is generated by a Markov-Modulated
(environment-dependent) Poisson process. Moreover, the actual demand de-
pends on the price offered at the time of the transaction, such that the actual
demand rate decreases as the price increases. For a system operating in this en-
vironment, there are three possible pricing strategies: Static pricing, where only
one price is used at all times, environment-dependent pricing, where the price is
allowed to change with the environment, and dynamic pricing, where price de-
pends on both the current environment and the stock level. In this paper, we use
a Markov Decision Process framework to model this system as a make-to-stock
queue operating under each of these strategies. Using this framework, we show
that optimal replenishment policies are of environment-dependent base-stock
level policies for these pricing strategies. We also compare the performances
of these three strategies by an extensive numerical study.

The objective of inventory management is to reduce the losses caused by
the mismatches that arise between supply and demand processes. With the
advances in computers and communication technology, the role of inventory
management has changed from cost control to value creation. Therefore, the
issues inventory management studies now include both the traditional decisions
such as inventory replenishment and the strategic decisions made by the firm
such as pricing. Infact, there has been an increasing amount of research on pric-
ing with inventory/production considerations, see the excellent review papers
[4], [9], and [1].

The widely known results in inventory control model the randomness of de-
mand by using a random component with a well-known density in the definition
of the demand process. However, the focus in the recent studies of inventory
control has been shifting to model the impact of fluctuating demand on the
optimal replenishment policy (see [7] and [2] among others). In particular,
changes in the demand distribution might be caused by economic factors such
as interest rates, or they might be caused by the changes in business environ-
ment conditions such as progress in the product-life-cycle or the consequences
of rivals’ actions on the market. The model we present below considers the
effect of external factors on the demand distribution.

This paper is organized as follows: In the next section we introduce the mod-
els for the pricing strategies described above. Section 3 will present structural
results for an optimal replenishment policy for each of the pricing strategies.



Production-Pricing Control 241

In section 4, we will present our numerical results, which compare the per-
formances of the three policies and provide insights, and point out possible
directions of future research.

2. Model formulation

In this section we present a make-to-stock production system with three
different pricing strategies: (1) the static pricing problem where a unique price
has to be chosen for the whole time horizon regardless of the environment and the
inventory level, (2) the environment-dependent pricing where the price can be
changed over time depending on the environment, but not on the inventory level
(3) the dynamic pricing where the price can be changed over time depending
on both the inventory level and the environment. The production system should
also decide on the replenishment of the items.

Consider a supplier who produces a single part at a single facility. The
processing time is exponentially distributed with mean 1 /4 and the completed
items are placed in a finished goods inventory. The unit variable production
cost is ¢ and the stock level is X (¢) at time ¢, where X (t) € N = {0, 1,...}. We
denote by h the induced inventory holding cost per unit time and h is assumed
to be a convex function of the stock level.

The environment state evolves according to a continuous-time Markov Chain
with state space £ = {1,---,n} and transition rates g.; from state e to state
j # e. We assume that this Markov chain is recurrent to avoid technicalities.
For all environment states, the set of allowable prices P is identical. The
customers arrive according to a Markov Modulated Poisson process (MMPP)
with rate A, when the state of the exogenous environment is e. We assume
that the potential demand rates are bounded, i.e., max{A.} < oo; a reasonable
assumption which will be necessary to uniformize the Markov decision process.
The customers decide to buy an item according to the posted price p, so that
the actual demand rate in environment e is A¢(p) when a price of p is offerred.
Obviously, the actual demand rate is bounded by the potential demand rate so
that A (p) < A, for all e and for all p. We note that the domain of the prices,
‘P, may be either discrete or continuous. When P is continuous, it is assumed
to be a compact subset of the set of non-negative real numbers R*.

For a fixed environment state e, we impose several mild assumptions on the
demand function. First, we assume that \.(p) is decreasing in p and we denote
by pe(A) its inverse. One can then alternatively view the rate \ as the decision
variable, which is more convenient to work with from an analytical perspective.
Thus the set of allowable demand rates is £, = A.(P) in environment state e.
Second, the revenue rate 7.(\) = Ape(A) is bounded. Finally we assume that
Pe is a continuous function of A when the set of prices P is continuous.
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At any time, the decision maker has to decide whether to produce or not.
The decision maker may also choose a price p € P, or equivalently a demand
rate A € L. at certain times specified by the pricing strategies described above.
If we are in search of optimal replenishment policies for the pricing strategies
described above, then the optimal policy is known to belong to the class of
stationary Markovian policies, see [8]. Therefore the current state of the system
is exhaustively described by the state variable (x, e) with x the stock level and
e the environment state and (x, e) belongs to the state space IN x E. Then,
for dynamic pricing strategy p(z, e) is the price of the item when the system
operates in environment e with z units of item on inventory, for environment-
dependent pricing policy p(e) is the price chosen a priori for environment e
so that p(e) is charged whenever the system enters environment e regardless
of the current inventory level, and p; is the static price to be always offerred
regardless of the environment and the inventory level.

2.1 Optimal static pricing strategy

In static pricing, the decision maker has to choose a unique price in P for the
whole horizon. The static pricing problem can be viewed in two steps. First,
we determine the optimal production policy, which depends on both the envi-
ronment and inventory level, for a given static price, p. Hence, let v} (z, e;p)
be the expected total discounted reward when the replenishment control policy
 is followed with ps = p over an infinite horizon starting from the state (x, e).
If we denote by « the discount rate, by N (¢) the number of demands accepted
up to time ¢, and by W (¢) the number of items produced up to time ¢ when the
posted price is always p and the replenishment policy 7 is followed, then:

+o00
vg(z,e;p) = Eg, {/0 e~ pdN(t)

—/+°° e‘ath(X(t))dt~/+Ooe‘atch(t) ,
0 0

where X (t) is the inventory level at time ¢, as defined previously. We seek to
find the policy 7* which maximizes v7 (x, e; p) for a given price p. Let v} be
the optimal value function associated to 7*, so that:

vi(z,e;p) = mﬁx{vg(x,e;p)}.

Now we can formulate this problem as a Markov Decision Process (MDP):
Without loss of generality, we can rescale the time by taking © + > Ae +
D¢ 2j#edej + 0 = 1. After a uniformization, vy satisfies the following
optimality equations:

vi(z,e;p) = —h(z)+ pTovi(z,e;p) + Ae(P)Vi (7, €5) + D esvi(z, J; p)
ie
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ZA—/\(p +ZZq@] (z,e;p),

i#e jF#i

where the operator Ty for any function f(z, e) is defined as
Tof(z,e) = max{f(z,e), f(z+1,e)—c}. €))

Hence, the operator 7 corresponds to the production decision. We de-
fine as(z,e) as the optimal replenishment decision in state (z,e) such that
as(xz,e) = 1if it is optimal to produce the item, and as(z,e) = 0 otherwise.
We also define also the operator T such that v} = Tiv}. Therefore, whenever
a price p is given, we can find an optimal replenishment policy by solving an
MDP.

The second step is to find the optimal price p} in the set of prices P, where
there might exist potentially several optimal prices. Since we assume that the
exogeneous environment state follows a recurrent Markov chain, we choose the
price p? such that p¥ = argmax{v*(0,1;p) : p} without loss of generality.

2.2 Optimal environment-dependent pricing strategy

The problem of environment-dependent pricing strategy is similar to the
static pricing as it is also solved in two steps.

In the first step, the optimal production policy, 7*, is identified for a given
set of prices Peq = (p(1),...,p(IN)). Let v}, be the optimal value function
associated to 7*. Then:

vog(Z, €;Ped) = max {E;re {/Oﬂ)o e~ p(E(t)) dN(t)

- /O T et x (1) dt - /O e e_“tch(t),] }

where F(t) is the state of the exogeneous environment at time ¢, p(E(t)) is
the posted price when the current environment is £(t), and c, X (¢), N (¢) and
W (t) are defined as above. Optimal replenishment policy 7* can be determined
by using uniformization as in the static pricing problem. Hence:

U:d(l', €; ﬁed) = —'h(l‘) + PLTO’U;d(‘Tv €; ped)
+Ae(P)veq(, €; Pea) + ZerU;d<x7j;Z_)ed)
J#e
+O A= Xe(p) + DD 4i)via(, €5Pea), ()
i ite j#i

where the operator Tj is defined as in (1). Now aqq(z, €) is the optimal replen-
ishment decision in state (z, €), so that a.4(z, e) = 1 if it is optimal to produce
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the item, and aeq4(z,e) = 0 otherwise. We also define the operator T,4 such
that v}, = Toqv},.

In the second step, an optimal price vector 5%, = (p*(1), ..., p*(n)) is chosen
such that p}; = argmax{v};(0,1; Peq) : Peq}, Without loss of generality due
to the recurrent Markov chain governing the environment process.

2.3 Optimal dynamic pricing strategy

The system with dynamic pricing is an extension of Li (1988), who analyzes
the same system operating in a stationary enviornment, to the one operating
in a fluctuating environment. This problem is different from the static and
environment-dependent pricing in the following way: Since both optimal re-
plenishment and optimal pricing policies depend on the current inventory level
as well as the environment, both policies are determined as a result of an MDP.
We let vj(, e) be the maximal expected total discounted reward when an opti-
mal dynamic control policy 77*, which controls both the replenishment decisions
and prices, is followed over an infinite-horizon with initial state (z,e). Then
we have:

+o00
vite.) = max{Ez, | [T e tpx(0), B®) N (0
i ~ LJo
+00 +oo
_ / e~ (X (1)) dt — / e-atch(t)] } ,
0 0
where E(t), o, X(t), N(t) and W (t) are defined as above. We can still use

uniformization, so that v should satisfy the following optimality equations:
vi(z,e) = —h(z)+ pTovi(z,e) + Tevg(z,e)
+ Z(kjv:;(maj> + (Z A+ Z Z Qij)vé(% e)v
Jj#e iFe ife ji
where the operator Ty is defined as in (1), and 7T is given by:

Tevg(z,e) = %%ng’e(/\)’

and the function g ¢ is defined for any A in £, by:

f re(N) + Avg(z —1,e) + (Ae — MNvg(z,e) @ ifz>0
Gae(A) = { Aevd(x,e)d ’ :aifz=0.

Therefore, the operator T, corresponds to the arrival rate decision, or equiva-
lently the price decision in environment e. Optimal replenishment decision in
state (z, e) is denoted by a4(z, e), where ag4(z, e) = 1ifitis optimal to produce
the item, and a4(z, €) = 0 otherwise. Finally, we define the operator T}; such
that v} = Tv).
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24 Discussion on different pricing strategies

Before describing our results, we want to discuss the advantages and disad-
vantages of these three pricing strategies. Obviously, optimal dynamic pricing
policies always generate more profit than optimal environment-dependent poli-
cies, which in turn generate more than optimal static policies. Now we turn
to the “qualitative” effects of these policies: Static pricing represents the tradi-
tional pricing since the price remains fixed over time, regardless of the changes
in the environment and in the stock level. This type of policies is easy to im-
plement. In addition, consumers may prefer the transparency of a known price
that is not subject to any changes. At the other extreme, we have dynamic
pricing that leads to frequent price changes, since even a change in the stock
level may trigger a change in price. Therefore, dynamic pricing may create
negative consumer reactions. Moreover, its implementation requires sophisti-
cated information systems that can accurately track sales and inventory data in
real time, and can be extremely difficult especially if price changes require a
physical operation such as a label change. Environment-depending pricing, on
the other hand, allows the price to change only with the environmental state.
Hence, the associated system changes the prices, but not as frequently as the
one with the dynamic pricing does. As a result, this policy is in between static
and dynamic policies regarding to the practical problems and difficulties they
bring.

3. Structural results

The MDP formulations of the replenishment problems given in Section 2
provide not only a tool to numerically solve the corresponding problem but also
an effective methodology to establish certain structural properties of optimal
policies. In particular, we will use these formulations to prove that there exists
an optimal environment-dependent base-stock policy under each of the pricing
strategies. We first present the definition of an environment-dependent base-
stock policy:

DEFINITION 1 A replenishment policy which operates in a fluctuating demand
environment, as described in Section 2, is an environment-dependent base-
stock policy, if it always produces the item in environment e whenever the
current inventory level is below a fixed number S(e), i.e, © < S(e), and
it never produces in environment e whenever x > S(e), where the numbers
{S(1),...,S(N)} are called the base stock levels with S(e) € IN.

Now we argue that each of the pricing strategies yields to an optimal environ-
ment-dependent base-stock policy, if the corresponding value function is con-
cave. Hence assume that v (z, e) is concave with respect to z for each envi-



246 [FIP-TC7 2005
ronment e, 1.e.:
vi(z+1,e) —vr(z,e) <vi(z,e) —vp(z —1,e).
If it is optimal to replenish in a state (z, €), from equation (1) we have:
vi(z,e) <vi(z+1l,e) —¢, <= c<uvi(z+1,e)—vi(z,e).
Then, by concavity, we have:
c<uvi(z+1e)—vi(z,e) <vi(z,e) —vi(z—1,e),

implying that it has to be optimal to replenish in state (x — 1, €) as well. There-
fore, whenever an optimal policy replenishes in a state (x, e), it replenishes in
all states (k, e) with k < z. We can, similarly, show that if an optimal policy
does not replenish in a state (z, e), it continues not to replenish in all states
(k,e) with & > z. These two statements together imply the existence of an
optimal base-stock level in each environment e, S (e):

S*(e) = min{z : ar(z,e) = 0},

where a(z, e) is the optimal replenishment decision in state (z, e) with policy
m. Now we show that the corresponding value functions are concave for all
pricing strategies we describe above:

LEMMA 2 Forafixed environmente, forallm = s,ed, d: Ifvi(z,e) is concave
with respect to x, then T,v? is also concave with respect to x.

Proof. 7 = s is a special case of m = ed if we set p(e) = p for all e, and we
refer to [5] for the proof of m = d. Hence, we show the statement for 7 = ed.
In this proof we denote v},(x, e; pe) by v%,(z,e). Assume that v¥, is concave
in z for each environment e.

Now we consider each term in equation (2) separately. By assumption —h
is concave. To prove that T preserves concavity, we need to show:

0 =Toviy(x+ 1,e) — 2Tpv} (xz,e) + Tovsy(z — 1,e) <0

Now let @’ = aeq(z + 1,e) and @” = aeq(z — 1,€). By our observation
above, there exists an optimal environment-dependent base-stock policy, so that
a’ < a”. Since vl (z+d,e) < Tov}y(z,e) and v} (xz+a”,e) < Tov},(z,e):
d<vli(z+1+d,e)—cd —vij(x+ad,e)+ca —
vig(x+a” e) +ca” +vlij(r —1+a",e) —ca’ <0.

If o’ = a”, then the statement is true by the concavity of v*,. If o’ = 0 and
a” = 1, then the term in the second inequality is exactly 0. All other terms
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| e || max{PGa;} | max{PGeas} | max{PGyeca} |

0.3 5.68% 2.25% 3.36%
0.6 10.19% 7.58% 2.87%
0.8 13.04% 11.25% 3.23%

Table 1. Maximum profit gain for different demand variability.

[ % [ oIl [ o2f [ 031 | 04L [ 051 [ 061 [ 071 |
PG, || 12.50% | 8.67% | 6.80% | 5.72% | 4.75% | 3.80% | 3.12%
PGeays || 1090% | 6.70% | 4.16% | 2.60% | 147% | 0.7% | 0.5%
PGaeq || 145% | 1.85% | 2.53% | 3.04% | 3.23% | 3.07% | 2.66%

Table 2.  Profit gain of pricing policies for different service rates with € = 0.8.

in (2) are concave by concavity of v};. Thus, Tequ}, is concave in z for an
environment e, whenever v;fd is concave.

Now the above argument immediately implies the existence of optimal
environment-dependent base-stock policies:

THEOREM 3 For all pricing strategies m1 = s, ed, d: The optimal replenish-
ment policy is an environment-dependent base stock policy.

Optimality of environment-dependent base stock policies shows that infor-
mation about the environment in which a firm operates is crucial.

4. Numerical results

In our model formulation, the system is controlled directly by the demand
rate, defined as a function of the offered price. In this section we explicitly refer
to the prices. We consider a linear demand rate function, which is frequently
used in the pricing literature. Let p be the price offered. Then we define the
linear demand function, and its associated revenue rate by:

Ae(p) = Ae(1 —ap), p € [0,1/a),

where a is a positive real number.

For a given problem, let g be the optimal average profit using policy ,
where discount rate is set to 0, i.e., & = 0. We define the relative Profit Gain
for using policy 7 instead of policy 7/, PG ,, by

* %
PGw,ﬂ’ = In *gﬂ,'

gﬂ'l
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(e [ S5(0) [ 55(H) [ Sia(L) [ Sea(H) [ Sa(L) | Sa(H) |
03] 6 11 7 9 12 20
06 || 4 14 5 10 7 22
08| 2 13 3 10 3 23

Table 3. The optimal base stock levels for different € with p = 0.11.

e [ ps T rea@ [ pealH) | pa(L)} | p(L) [ PaH) | p(H) |

03 || 0.78 0.74 0.82 0.82 0.42 0.87 0.51
0.6 |f 0.75 0.65 0.84 0.75 0.33 0.88 0.51
0.8 || 0.78 0.57 0.84 0.65 0.19 0.88 0.51

Table 4. The optimal prices for different € with . = 0.11, where pj(e) = max{p;(z,e)},
and p’, (e) = min{pgy(z, e)}.

As we know that g, < geq < g4, we will consider PG eq, PG 45 and PGeg 5.

We consider a system which operates in two environments, with low demand
rate (L) and with high demand rate (H). The demand rates in these environments
are A;, = 1 —eand Ay = 1+ e. The factors that affect optimal policies are the
ratios A/ and h/p, so we vary the service rate x4 and the holding cost h, where
we set a = 1, ¢ = 0, and the average demand rate as 1. Moreover, here we
only report h = 0.01 and g5 = qur = q = 0.01, although we experimented
with different A and ¢ as well as asymmetric transitions rates. In the whole
numerical study, we restrict our attention to the recurrent states of the Markov
chain generated by an optimal policy.

As € increases, the demand variability increases. We observe that optimal
gain for each pricing policy decreases with e. The profit gain of 7.4 and 74 with
respect to 7 also increases with € (see Table 1), which shows the ability of these
policies to adjust the highly uncertain environments. For small €, on the other
hand, PG4 s < 6%, suggesting that optimal static policy performs good enough
with mild uncertainty. From Table 2, we observe that policy 7 performs the
worst with capacitated supply (11 < 0.4) and volatile demand with respect to w4
and 4. Optimal static prices are closer to the optimal environment-dependent
prices in environment H, rather than those in environment L (see Table 4).
Hence, the demand fluctuation hurts not only the firm by decreasing its average
gain, but also the customers due to high prices, when static pricing strategy is
followed.

We see that policy 7.4 performs very closely to policy mq with max{PG g4}
< 3.5% (see Table 1). In fact, it brings most of the benefit of 74, compare PG s
with PG, s in Table 2. Moreover, policy .4 has the advantage of lower inven-
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tory levels (see Table 3) and of smaller price differences (see Table 4). Hence,
we can conclude that it is better to use 7.4, since it brings most of the benefit
of 74, while causing less reaction on the customer side with less variability in
prices, and requiring a reasonable storage space with less variability in the stock
levels.

Optimal pricing and replenishment policies may have further monotonicities
under certain conditions: If we order the environment states with respect to the
potential demand rates, i.e., A, < Aqq fore = 1,..,n — 1, then we expect
to have monotone base stock levels, i.e., Si(e) < S*(e + 1) for all pricing
strategies m = s, ed,d. The optimal environment-dependent prices as well as
the effective demand rates should also be ordered with the potential demand
rates. Our future work will focus on these monotonicities.
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