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Abstract We introduce the stochastic linear programming (SLP) model classes, which will
be considered in this paper, on the basis of a small-scale linear programming
problem. The solutions for the various problem formulations are discussed in
a comparative fashion. We point out the need for model and solution analysis.
Subsequently, we outline the basic ideas of selected major algorithms for two
classes of SLP problems: two—stage recourse problems and problems with chance
constraints. Finally, we illustrate the computational behavior of two algorithms
for large—scale SLP problems.
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1. SLP problem formulations

Our starting point is a simple deterministic linear programming (LP) pro-
duction problem which serves for illustrating various model formulations in
stochastic linear programming (SLP). Two kinds of raw materials are used for
producing a single good, and we consider a single planning period. The LP-
formulation for minimizing costs reads as

Costs: z= 2z1 + 3z2 — min
Capacity: Ty + 2 <100 )
Demand: a1x1 + asxe >0

x1, g =20

where z1 and z3 denote the amounts of raw materials to be used for the pro-
duction; these are our decision variables. The overall storage capacity for the
raw materials is 100, and the prices are 2 and 3 in some monetary unit, respec-
tively. b denotes the demand for the product whereas a; and as stand for the
productivity factors of the two raw materials, respectively.

a1, az, and b will be considered as parameters. Choosing a; = 5, ay = 8,
and b = 640, we get the solution z7 = 0, x5 = 80, z* = 240. Note that in
this solution the storage capacity is not fully utilized and only the second raw
material is used for the production.
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In the sequel, we will assume that the parameters aj, ag, and b are stochasti-
cally independent, normally distributed random variables with the probability
distribution not depending on z; and z3: a  ~ N(50.2),
ag ~ N(8,0.6), and b ~ N (640,14). The question arises, how to inter-
pret (1) under such circumstances.

1.1 First idea: the expected value problem

The simplest idea is to replace the random parameters by their expected
values E[a;] = 5, E[az] = 8, E[b] = 625 and solve the resulting deterministic
LP. In our case, this yields the solution discussed in the previous section.

A clear drawback of this approach is that we get the same solution for all
probability distributions having the same expected value. Unfortunately, due
to its simplicity, the expected value problem is widely used in practice as a
substitute of the stochastic problem. As we will see later, the expected value
solution behaves in our case extremely badly, when taking the true stochastic
nature of the problem into the account.

1.2 A robust interpretation: ‘“fat” solutions

The next idea is to take problem (1) as it stands, with each of the realizations
generating a constraint. This idea is due to Madansky who termed the solution
obtained this way as “fat solution”. Having continuous distributions with an
unbounded support, we arrive at a problem with infinitely many constraints, and
have no chance to get a feasible solution. Thus, as a next step, let us replace the
original distribution with an empirical one. Discretizing the distribution with
(a1,a2,b) ~ (9 x 9 x 9) = 729 and with ~ (5 x 5 x 5) = 125 realizations,
the problem turns out to be still infeasible. Finally, taking the rather crude
discretization with (a1, ag, b) ~ (3x 3 x 3) = 27 realizations we get an optimal
solution. This illustrates the main drawback of the approach: typically we have
no feasible solutions for the reformulated problems. Another drawback is that
instead of the probability distribution only the support of the distribution enters
the model; we obtain the same solution for any two probability distributions
having the same support.

1.3 Chance constraints

Regarding the stochastic demand constraint in (1), the next idea is to evaluate
the quality of a decision by computing the probability of the event that the
constraint inequality holds. Prescribing the probability on a high level leads to
chance constrained problems (or probabilistic constrained problems). In our
case, we get a chance constrained problem by replacing the demand constraint
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in (1) by the probability constraint
Plajzy +azxe > b) > « 2

with « being a high probability level. We have solved our example with prob-
ability levels oo = 0.95 and o = 0.99. Note that positive values of the quantity
((z1,22) = b — ajz1 — agxs represent unfulfilled demands. We interpret
these as losses. Thus our chance constrained model provides a solution, for
which the probability of a loss is small (1 — «). Nevertheless, losses my occur,
and for the case when losses occur, chance constrained models have no built—in
facilities for controlling the size of a loss.

14 Integrated chance constraints and CVaR constraints

Constraining the size of the expected loss leads to models with integrated
chance constraints. In our case we obtain a model of this type by replacing the
demand constraint in (1) by the constraint

E[(b — a1x1+(12$2)+] < Yice

with 7., being a maximum tolerable loss and u* = max{0,u} for any real
number u. In our computations, we have chosen ;.. = 5 and have discretized
the probability distribution with (a1, az,b) ~ (10 x 10 x 10) = 1000 realiza-
tions.

A related idea gaining increasing importance in financial applications, is
based on conditional value—at-risk (CVaR). In our continuously distributed
case, the idea can be interpreted as constraining the expected loss, given that
it exceeds the a—quantile of the loss, VaR,({(z1,22)). In our example, the
demand constraint in (1) is substituted by the constraint

E[{(z1,22) | ((z1,22) > VaRa(((z1,22))] < Yevar

with ¥¢qr being a maximum tolerable CVaR value. Although in our normally
distributed case the problem can equivalently be formulated as a nonlinear pro-
gramming problem, we have discretized the probability distribution as before
and took 7yeyer = 5 in our computations. We have chosen the probability level
as o = 0.95.

1.5 Two-stage recourse model

We introduce penalty costs both for {(z1,22) = b — a1z — azzy < 0 and
for {(x1,z2) > 0 and consider the random variable
Q(r1,12;0a1,a2,b) =

=min Ty1 + 2y
3)

Yy - y2 =b—a1r) — axry
Y1, Y2 2 0
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where the penalty costs of 7 arise if the demand is not fulfilled and the costs of
2 stand for overproduction. The idea is to evaluate solutions via the expected
overall costs. The two-stage recourse model arises from (1) by augmenting the
objective function by the expected costs, leading to

2(131 + 351;2 + E[Q(xth; ai, (12,b)],

and by dropping the demand constraint. Note that we still have a single time
period, say [0, T, but a two—stage decision. At time ¢ = 0 we have to decide
on z7 and x», taking into account the expected costs of the recourse actions at
t = T (represented by the variables y; and y2). The latter clearly depend on
1, X2, and also on the distribution of the random entries.

1.6 Wait—-and-See solution

This means solving

E[ min 2z + 3z9 +Q($1,$2;al;a2vb)]
1 + oz <100 4)
X1, T2 Z 0

and amounts in computing the optimal objective values separately for the real-
izations and computing subsequently the expected value. In our computations,
we took a discrete approximation with 10 x 10 x 10 = 1000 realizations. In
general, for the different realizations different solution vectors are obtained.
One might get the idea to construct a solution by taking the expected value of
the solutions for the separate realizations. As we will see, our example indicates
that this is usually not a good idea.

1.7 Computational results, outlook on algorithms

Table 1.7 displays the results obtained by solving the SLP-variants of the
production problem. The rows correspond to the expected value problem, to the
fat formulation, to the chance constrained problem (with probability levels 0.95
and 0.99), to integrated chance constraint, to CVaR constraint, to the two—stage
recourse problem, and to the wait—and—see problem, respectively. The second
and third columns display the components of the optimal solution; the fourth
column shows the optimal objective value of the corresponding SLP problem.

The column headed by P shows the probabilities (2) computed for the opti-
mal solutions obtained from the various SLP models. The last column displays
the overall expected costs in the two—stage recourse problem, when fixing the
first—stage variables according to the optimal solutions from the second and
third column.

Comparing the solutions obtained from the various approaches, we observe



Numerical SLP 197

[ IR z* | P ] Rcost |
Exp 0.00 | 80.00 | 240.00 || 0.49 378.71
Fat 0.00 | 94.05 | 282.14 || 0.98 285.82

CC95 || 28.24 | 71.76 | 271.76 || 0.95 | 277.63
CC99 9.63 | 90.37 | 290.38 || 0.99 | 291.37
ICC 44.26 | 55774 | 25574 || 0.77 | 290.73
CVar || 21.66 | 78.34 | 278.33 || 0.97 | 281.49
RS 32.59 | 67.41 | 277.08 || 093 | 277.08
WSS 7.50 | 75.23 | 241.10 || 0.69 | 375.19

Table 1. Computational results for the example

a great diversity. The expected value solution and the fat solution, for instance,
suggest a production plan, solely based on the second raw material. In addition,
for these solutions the storage capacity is not fully utilized. Contrary to this, the
ICC solution proposes a balanced usage of the two raw materials. The question
arises: Which of these is the “true” solution of our stochastic problem? Clearly
none of them can be identified as ultimately best; the proper choice depends on
the modeling attitude and also on available solvers (implementations of solution
algorithms).

According to Richard W. Hamming, “the purpose of computing is insight,
not numbers.” In our case, we have built and solved several SLP problems
corresponding to different modeling paradigms and based on the same initial
deterministic LP model and the same probability distribution. The last two
columns in Table 1.7 display an evaluation of the solutions obtained, based on
two quality measures: the probability that the demand will be fulfilled and the
overall expected costs. According to this, the expected value solution is by far
the worst, having the lowest probability and highest costs. Almost as worse is
the solution obtained form the naive application of the wait-and-see approach,
with averaged solutions. The proper choice clearly depends on the risk—cost
attitude of the modeler. Assuming a modeler who places approximately equal
weights on risk and costs, a good solution appears to be the C95 solution.

When working with a single modeling paradigm, analysis of the model in-
stance and the solution should be part of the modeling process. As an example
for model instance analysis, let us consider the two—stage recourse formulation
of our example. We may compute the expected value of perfect information
(EVPI) and the value of stochastic solution (VSS) according to

EVPI =27 2" =3596 and VSS:=:"-2F=101.24

where 2" and 2%t are the optimal objective values of the wait-and-see prob-
lem and the two-stage recourse problem, respectively. z" is the objective
value of the two—stage problem with z fixed as a solution of the expected value
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problem. These quantities are interpreted as valuing the effort of building a
stochastic model, instead of taking the expected value problem, for instance.
Loosely speaking, EV PI and V5SS indicate a “degree of stochasticity” of the
model instances. For details see [2] or [11]. According to these measures, our
example counts as highly stochastic.

For SLP problems, the main numerical difficulties have their roots in the ex-
pected values and probabilities involved in the model formulations. In general,
computing them amounts in computing multivariate integrals. Regarding ex-
pectations, the main solution approaches are based on approximating the prob-
ability distribution by finite discrete distributions. Thus, the integrals reduce to
sums, leading to (typically large-scale) LP problems. For chance constraints
the integrals are evaluated by Monte—Carlo methods, which is time—consuming
and provides results with a relatively low accuracy.

In the next sections we will outline the basic ideas of the algorithms used in
our computations. We will not discuss algorithms for integrated chance con-
straints and for CVaR constraints. For these methods see [15], [16], as well as
[11]. Introductory textbooks for SLP algorithms are [2] and [14]. For algo-
rithms discussed in a detailed fashion see the books [5], [7], [11], [18], [19],
and [22]. For comparative computational results involving several algorithms
see [13] and the references therein.

2. Algorithms: chance constraints

The general problem formulation is

X
P(T(&x = h(E)) = } ©)
€

with « being a high probability level and B = {z | Az = b,z > 0}. The two
basic classes of chance constraints are:

Separate chance constraints: The probability applies to a single inequal-
ity (T'(€) has a single row). For some distributions, including the normal, and
sufficiently high probability levels, reformulations into convex NLP problems
in algebraic terms exist, see [11] or [22].

Joint chance constraints: The probability applies to a vector inequality
(T'(£) may involve several rows). If only the right-hand-side (RHS) is stochas-
tic, the above problem is a convex programming problem for some distributions,
including the normal, see [11] or [22].

In the special case, when only the RHS is stochastic, by taking T'(¢) = T
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and h(§) = &, (5) can be written as

min Tz
F(Tz) > « 6)
r € B

where we utilized P(Tz > &) = F(T'z), with F being the probability distri-
bution function of £. In the sequel, we assume that £ has a multivariate normal
distribution. In this case F' turns out to be a logconcave function (see [22]) and
(6) becomes a convex programming problem. Nevertheless, the problem turns
out to be difficult to solve numerically.

On the one hand, the computation of F' and its gradient V F is a numerically
difficult problem, which can only be carried out via Monte—Carlo integration
methods in higher dimensions. Therefore, as far as possible, algorithms are
utilizing cheaply computable Boole—Bonferroni-type bounds. ~ On the other
hand, the graph of F', except for a relatively small non—convex region, consists
of extremely flat regions with practically vanishing gradients. Therefore, algo-
rithms utilize Slater—points (feasible points x with F'(T'xz ) > «) as navigation
aids in the iteration process.

A detailed discussion of the numerical issues can be found in [20]. For the
Monte—Carlo techniques applied for the multivariate normal distribution func-
tion and for the techniques for computing Boole-Bonferroni bounds see [11],
[22], and the references therein.

The algorithms for jointly chance—constrained problems are constructed in
the following way: a general nonlinear programming algorithm is taken and
subsequently specialized to the problem structure. As an example let us con-
sider the central cutting plane method of Elzinga and Moore [3], endowed with
a moving Slater—point by Mayer [19]. Figure 2 displays two iterations of the
method.

On the left-hand-side of the figure, the feasible domain of (6) is indicated by

>c\ fea5|b|I|ty cut objective (central) cut

Figure 1. The central cutting plane method
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the shaded region. P is a convex polyhedron, containing the feasible domain
and z* is the current Slater—point. First the center z* of the largest hypersphere,
inscribed into Py is computed, which can be carried out by solving an LP prob-
lem. The center 2" lies in this case outside of the feasible region. Subsequently
the intersection of the boundary of the feasible domain and of the straight line
segment joining z* and the Slater—point z* is computed. For this computation
Boole-Bonferroni bounds are utilized. Applying a feasibility cut via a sup-
porting hyperplane leads to the convex polyhedron Pj.1, still containing the
feasible domain, as it can be seen in the central part of the figure.

In Py, 1, the center of the largest inscribed hypersphere belongs to the feasi-
ble domain. In this case, the center becomes the new Slater—point z¥*1 and an
objective cut is carried out, where the cutting plane passes through 2" and is
parallel to the contour-hyperplanes of the objective function. The objective cut
cuts off a portion of the feasible domain, nevertheless, the optimal solution still
belongs to the reduced convex polyhedron P2, shown in the right-hand—side
of the figure.

For details concerning this method, including a theoretical discussion, see

[19].

k+1

3. Algorithms: two—stage recourse problems,
empirical distribution

The general formulation of two—stage fixed recourse problems is

min c'z + E[Q(z,¢)] } 7
r € B
where B = {z | Az = b,z > 0} and the recourse subproblem is
Q(z,6) = min ¢'y
Wy > h(&)—-T(¢)z ®)
y =2 0.

where W is called the recourse matrix. Due to the fact that W is not stochastic,
(7) belongs to the class of fixed recourse problems. Problem (7) is called
a complete recourse problem, if the recourse subproblem (8) has feasible
solutions for any x and £. The problem counts as having simple recourse if
W = I and T(¢) = T° hold. The random entries in the model arrays can
frequently be modeled as

T(E) =T+ > TF, h(&) = h°+ > e,
k=1 k=1

for instance, via principal component analysis, where T%, h* are deterministic
arrays. &1, . ..,& are in many cases stochastically independent.
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Now we assume that £ has an empirical distribution with L realizations (sce-
narios) ékAand corresponding probabilities py, k =1, ..., L. Let, furthermore,
Tk =T(EF), hF =h(F), k=1,...,L.

In this case the problem can equivalently be formulated as a deterministic
LP problem, having the structure as displayed in Figure 3.

Naive view: the discretely distributed case is easy to handle numerically;

Figure 2. Dual block—angular structure of the equivalent LP

just solve this LP by readily available general-purpose LP solvers. To see the
difficulty, just take 10 independent random variables, each with 10 realizations.
The number of diagonal blocks will be L = 100, Thus, also in the discretely
distributed case, ideas are needed.

In fact, a first idea is to utilize the special structure of the LP. There are two
main classes of algorithm in this category.

The first class consists of decomposition methods, the most widely used al-
gorithms will be discussed in the next section.

Interior point methods belong to the second class, where the algorithm of
Meészaros [21] turned out to be one of the best in our numerical experiments.

3.1 Decomposition methods

These methods are based on the following basic observation: the expected
value of the recourse function

flz) = E[Q(z,8)] = p1 Qz,€Y) + ..., pr Q(z,&F)

is a piecewise linear convex function.

The basic decomposition method is due to Benders [1]. Its specialized ver-
sion to SLP-problems, called L-shaped method, has been developed by Van
Slyke and Wets [25]. The main idea is to apply the cutting plane method to the
epigraph of f. Having z" as the current iterate, proceed as follows:

— Compute f(z") by solving L recourse problems (8) via the simplex method.
Fortunately, utilizing the dual solutions, this also provides a supporting cutting
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hyperplane.

— Check the optimality criterion f(z") < 0¥ + €.

— If the algorithm does not stop, apply a cut. Technically, the cuts are collected
as constraints in the relaxed master problem

0¥ = min 'z +z
Dyx —z <d, k:l,...,l/}
r € B
I/+]'

— Solve the current relaxed master problem to obtain x

This approach has, however, some drawbacks. On the one hand, the method
produces large steps in the beginning phase, even with a nearly optimal starting
solution. On the other hand, there is no reliable strategy for dropping redundant
cuts.

Both of these shortcomings are eliminated in the regularized decomposition
method of Ruszczynski [23]. The main idea is to add a regularizing term to the
objective of the relaxed master problem:

0" := minctz + Nz — 3|]* + 2

where Z, is the current candidate solution and A > 0 holds. The candidate
solution is changed, only if the solution f(x") is sufficiently smaller than f(Z").
Additionally, it turns out that it is sufficient to keep at most n + L cuts.

4. Algorithms: two—stage recourse problems,
general distributions

Decomposition methods certainly help to solve problems with a large number
of realizations. Itisstill open, however, what to do if in the discretely distributed
case we have, for instance, I = 1010 joint realizations. A further problem is,
what to do if £ has a continuous distribution?

We will consider the main ideas of three basic approaches in the subsequent
sections. An additional general approach is based on stochastic quasi—gradients;
for these methods see Marti [18].

4.1 Successive discrete approximation (SDA)

This algorithm is due to Kall [8], Kall and Stoyan [9], Frauendorfer and Kall
[4], Frauendorfer [5]. See also [11] and [14]. The basic idea is to approximate
the original distribution by discrete distributions in a successive manner, via
partitions of =, which is an interval covering the support of .

Having the partition = = =1 U. . .UZ[, the approximate discrete distribution
will be R

pe=P(E|E€5y), & =E(¢|¢ €5y
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!
!

Figure 3. Successive subdivision of =

for k =1,..., L. The key part of the method is the subdivision strategy.
The subdivision strategy is based on lower and upper bounds, for each of the
cells in the partition

Li(z",€) < E[Q(z",€) | £ € Bx] < Up(2",8),

based on the Jensen and on the Edmundson-Madansky inequalities, respec-
tively. For computing the upper bound, the recourse subproblem (8) has to be
solved for each of the vertices of =, with £ taken as the vertex.
— the cell to be subdivided next will have the maximal relative difference re-
garding the bounds.
— the coordinate for the subdivision is selected by employing various heuristic
measures of nonlinearity along the corresponding direction.

Great merit of the method: computable error bounds.

4.2 Stochastic decomposition (SD)

This algorithm is due to Higle and Sen [6], [7]. It can be considered as a
stochastic, sampling-based version of Benders—decomposition. Let us denote
by &%,...,&Y, ... asample according to the distribution of &.

The basic idea is the following: instead of E[Q(z, )], build Benders—type
cuts to the Monte—Carlo approximation

BIQ ) ~ - Y Q&)
k=1

This is a moving target, therefore, besides adding new cuts, the existing cuts
must also be updated. Sampling and adding cuts runs in a successive manner.
The most efficient variants employ “incumbent solutions” and regularized mas-
ter problems. New cuts are computed by taking into account all previous dual
solutions, and the stopping rule is based on bootstrapping.

4.3 Sample average approximation (SAA)

The basic idea of this algorithm has been widely used by practitioners. It be-
came increasing attention due to recent results concerning speed of convergence
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and judging the quality of the solution, see Shapiro and Homem-de-Mello [24]
and Mak, Morton and Wood [17], and the references therein.

The idea is to draw a sample of sample—size L, consider this as a discrete
distribution and solve the corresponding two—stage problem. Thus we have

f() = BR8] = 1 [Q@E) + ... + Q")

Subsequently the quality of the solution is to be judged, and if needed, the
procedure repeated with a larger sample—size.

Crucial issue: judging solution quality. The best estimators are based on the
optimality gap between statistical lower and upper bounds.

5. Illustrative computational results

We have randomly generated test problem batteries for two—stage recourse
problems, with dimensions A (10 x 20), W (5 x 10). T and h are both sto-
chastic and the random vector £ is 5—dimensional. Each battery consists of 10
test problems.

The batteries were generated as follows: first we have generated a basis—
battery with ¢ having a normal distribution with stochastically independent
components. This has been used to generate 5 further batteries by discretizing
the distribution, resulting in test problem batteries with the following amounts
of joint ralizations L: 219 = 1/024, 215 = 32/768, ;220 = 1'048'576, 2%° =
33'554/432, and 230 ~ 1'056'964/608.

The testing environment was SLP-IOR, our model management system for
SLP, developed jointly with P. Kall, see [10], [12].

Computer: 2.6 GHz Pentium-III PC with 1 GB RAM, under the operating
system Windows 2000.

Figure 4 displays the minimum, maximum, and average computing times

200 2
180 {.
160
140

~e=minimum 120 ¢

3
~+-mean value| | $ 100

| [==maximum 80
60
40
20 4

=e=minimum
|-*=mean value
=—maximum

ey AT

0 10 20 30 40 0 1 2 3 4 5

log2(L)

-log10(e)

Figure 4.

DAPPROX: computing time in seconds

by DAPPROX, our implementation of the successive discrete approximation
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Figure 5. DAPPROX and SAA: objective values at termination

method (jointly developed with P. Kall). On the left-hand-side the dependence
of the computing time on L is displayed, whereas the right-hand-side chart
shows the dependence on the relative accuracy of the solution. For the latter
we took accuracies € = 5-1072, 1072, 5- 1073, 1073, 5 - 1074, and 10~
The computing times were quite acceptable, even for SLP problems with ~ one
billion realizations.

In Figure S5 the objective values at termination are displayed, for
DAPPROX and SAA, the latter being our implementation of the SAA algo-
rithm. For the computations we took test problem #1. The two horizontal lines
correspond to the lower and upper bounds, obtained by DAPPROX for the basis
problem with the normal distribution. The approximately parallel increasing
curves labeled as “discr. lower bnd” and “discr. upper bnd” correspond to the
results obtained by DAPPROX (5% relative accuracy).

For SAA (lowest curve in the left-hand-side chart) we took L = 500 and
generated 5 samples. After solving the corresponding 5 problems, the objective
values of the solutions have been estimated using a sample—size M, which has
been chosen for the two charts as M = 1000 and M = 5000, respectively. The
solution with the best estimated objective value was returned by the solver as
solution. Observe that the quality of the SAA solution improves dramatically
by a relatively moderate change of the run—time parameter M.
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