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Abstract Reliability and durability of civil infrastructure systems such as highway bridges
play a very important role in sustainable economic growth and social devel-
opment of any country. The bridge infrastructure has been undergoing severe
safety and condition deterioration due to gradual aging, aggressive environmen-
tal stressors, and increasing traffic loads. Maintenance needs for deteriorating
highway bridges, however, have far outpaced available scarce funds highway
agencies can provide. Bridge management systems (BMSs) are thus critical to
cost-effectively allocate limited maintenance resources to bridges for achieving
satisfactory lifetime safety and performance. In existing BMSs, however, visual
inspections are the most widely adopted practice to quantify and assess bridge
conditions, which are unable to faithfully reflect structural capacity deterioration.
Failure to detect structural deficiency due to, for example, corrosion and fatigue,
and inability to accurately assess real bridge health states may lead to unreliable
bridge management decisions and even enormous safety and economic conse-
quences. In this paper, recent advances in risk-based life-cycle maintenance
management of deteriorating civil infrastructure systems with emphasis on high-
way bridges are reviewed. Methods of predicting lifetime safety and performance
of highway bridges with and without maintenance are discussed. Treatment of
various uncertainties associated with the complex deterioration processes due
to time-dependent loading, environmental stressors, structural resistances, and
maintenance actions are emphasized. The bridge maintenance management is
formulated as a nonlinear, discrete, combinatorial optimization problem with si-
multaneous consideration of multiple and conflicting objectives, which address
bridge safety and performance as well as long-term economic consequences. The
effectiveness of genetic algorithms as a numerical multiobjective optimizer for
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producing Pareto-optimal tradeoff solutions is demonstrated. The proposed prob-
abilistic multiobjective optimization BMS is applied at project-level for similar
bridges and at network-level for a group of different bridges that form a highway
network.

Keywords:  System reliability, optimization, civil infrastructure, bridges, genetic algorithms.

1. Introduction

Future sustained economic growth and social development of any country
is intimately linked to the reliability and durability of its civil infrastructure
systems such as highway bridges, which are the most critical but vulnerable
elements in highway transportation systems. Highway bridges have been and
are constantly subject to aggressive environments and ever-increasing traffic
volumes and heavier truckloads, which degrade at an alarming rate the long-
term bridge performance. In the United States, nearly 30% of the 600,000
existing bridges nationwide are structurally deficient or functionally obsolete;
the associated costs of maintenance, repair, and replacement are enormous [14].

Deteriorating civil infrastructure leads to increased direct and indirect costs
for business and users. Catastrophic failure of civil infrastructures due to nat-
ural hazards (e.g. earthquakes, hurricanes, and floods) and manmade disasters
(e.g. vehicular collision and explosive blasts due to terrorists’ attacks) [15]
can cause widespread social and economic consequences. Therefore, timely
and adequate maintenance interventions become indispensable to enhance re-
silience of civil infrastructure to adverse circumstances. This can substantially
increase a country’s economic competitiveness. In addition to development
of advanced inspection and maintenance technologies, methodologies for cost-
effective allocation of limited budgets to maintenance management of aging
and deteriorating civil infrastructure over the life-cycle are urgently needed in
order to optimally balance the lifetime performance and life-cycle cost while
ensuring structure safety above acceptable levels.

A variety of practical bridge management systems (BMSs) have been de-
veloped and implemented in the United States for achieving desirable man-
agement solutions to maintain satisfactory bridge infrastructure performance,
including BRIDGIT [20] and Pontis [30]. Most existing BMSs, however, utilize
the least long-term economic cost criterion [28]. Recently, practicing bridge
managers showed that this approach may not necessarily result in satisfactory
long-term bridge performance [29]. Additionally, visual inspection is the most
widely used practice to determine the condition and performance deterioration
of bridges [1]. This highly subjective evaluation technique leads to significant
variability in condition assessment [27]. More importantly, the actual level of
structure safety against sudden failure and progressive degradation risks cannot
be faithfully or accurately described by visual inspection-based bridge condition
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assessment [13]. Accordingly, maintenance decisions made solely on visual in-
spection results are not necessarily cost-effective and may cause tremendous
safety and economic consequences if inadequate or unnecessary maintenance
interventions are performed.

In order to resolve the above problems, all necessary long-term performance
and expense considerations need to be incorporated into the maintenance man-
agement decision-making process. These multiple aspects include bridge per-
formance such as visual inspection-based condition states, computation-based
safety and reliability indices, and life-cycle costs such as agency cost and user
cost. Unlike the traditional cost minimization approach, the above multiple
criteria should be treated simultaneously so that a multiobjective optimization
formulation is generated. As a result, the proposed risk/reliability-based main-
tenance management methodology leads to a group of optimized management
solution options, exhibiting tradeoff between reducing life-cycle cost and im-
proving structure performance. This significantly enables bridge managers to
actively and preferably compromise structure safety/reliability and other con-
flicting objectives under budget and/or performance constraints.

In order to make rational decisions in preservation of deteriorating civil
infrastructure, it is imperative that sources of uncertainty associated with the
deterioration process with and without maintenance be addressed appropriately.
These include imperfect description of mechanical loadings and environmental
stressors as well as inexact prediction of deteriorating structure performance.
There are two general types of uncertainty: aleatory and epistemic. The aleatory
uncertainty is caused by inherent variation of structure deterioration due to
combined eftects of complex traffic loadings and environmental stressors as
well as physical aging. The epistemic uncertainty stems from the random-
ness caused by subjective assumption in evaluating demand and load-carrying
capacity of bridges or insufficient knowledge in understanding, for example,
deterioration mechanisms. This type of uncertainty may be reduced provided
more information is available [12]. Probable maintenance actions over the life
cycle add further uncertainty to accurate prediction of time-varying structure
performance.

In this paper, recent advances in application of multiobjective optimization
techniques to risk-based maintenance management of civil infrastructure, in
particular, highway bridges are reviewed. The multiple and competing objec-
tive functions of interest include condition, safety and life-cycle cost. Uncer-
tainties associated with the deterioration process with and without maintenance
interventions are treated by Monte Carlo simulation and/or structural reliability
theory. The basic theory and effectiveness of evolutionary computation tech-
niques such as genetic algorithms (GAs) in solving multiobjective optimization
problems are discussed. Two application examples of GA-based bridge main-
tenance management are provided. The first example deals with project-level



126 IFIP-TC7 2005

maintenance management of preserving a large population of similar deteriorat-
ing highway reinforced concrete crossheads. The second example is concerned
with network-level bridge maintenance management for a number of different
bridges that form a highway transportation network.

2. Multiobjective Optimization Algorithms

Because bridge management involves scheduling of different maintenance
strategies to different bridges at discrete years, it can be readily formulated as a
combinatorial optimization problem for which multiple and usually conflicting
objectives need to be considered. In this section, the basic concept of multiob-
jective optimization is presented, the techniques of genetic algorithms (GAs)
are discussed, and the application of GAs to the civil infrastructure management
problems is emphasized.

2.1 General Formulation

A generic multiobjective optimization problem can be stated as

Optimize f (x) = [f1(x), fa(x), -+, fm(X)] )
Subject to C (x) = [C}(x), Ca(x), -+, Cr(x)] < 0

where f is a set of objective functions that are usually conflicting in nature;
C is a set of constraints that define the valid solution space; x = a vector of
design variables. Unlike optimization problems with single objectives, there
are no unique solutions that can optimize all objectives simultaneously for a
multiobjective optimization problem. Instead, a group of Pareto-optimal or
nondominated solutions are present, which exhibit the optimized tradeoff in
compromising these objectives. A solution x* is Pareto-optimal if and only if
there does not exist another solution that is no worse in all objectives and is
strictly better in at least one objective. If all objectives are to be minimized,
this can be stated mathematically as

filx) < fi(x*), fori=1,2, ..., m; and @)
fe(x) < fi(x"), for at least kth objective.

2.2 Genetic Algorithms

Most traditional optimization algorithms are problem-dependent and single-
objective oriented. Gradients are usually utilized to guide the search process
and continuous design variables are often assumed. These pose significant dif-
ficulties to practical maintenance management problems. In contrast, heuristic
algorithms based on evolutionary strategies such as GAs [19], simulated an-
nealing [25], and tabu search [18] are very suitable for practical maintenance
scheduling problems. In particular, GAs are stochastic search and optimiza-
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tion engines that follow the survival-of-the-fitness theory from the biological
sciences. Since their inception in the 1960’s, GAs have been successfully used
in a wide array of applications due to their ease of implementation and robust
performance for difficult engineering and science problems of vastly different
natures. GAs are general-purpose numerical tools and gradients are no longer
needed and discrete-valued design variables can be handled without difficulty.
More importantly, GAs can handle multiple objectives simultaneously.

GAs usually operate on solutions that are encoded as genotypic representa-
tions (i.e. chromosomes) from their original phenotypic representations (i.e.
actual data values). GAs start with a set of initial solutions (population) that
is randomly generated in the search space. For each solution in the current
population, objective functions defining the optimization problem are evalu-
ated and a fitness value is assigned to reflect its (relative) merit standing in the
population. Based on the fitness values, GAs perform a selection operation that
reproduces a set of solutions with higher fitness values from the previous gen-
eration to fill a mating pool. A crossover operation is then pursued with which
two parent solutions in the mating pool are randomly selected and interchange,
with a prescribed probability, their respective string components at randomly
selected bit locations referred to as cross sites. The resulting new solutions are
called children or offspring. This step is meant to hopefully combine better
attributes from the parent solutions so that child solutions with improved merits
could be created. The next operation in GA is mutation that changes the geno-
type value at one or more randomly selected bit locations in a child solution
with another prescribed probability. This operation serves to possibly recover
useful information that could by no means be accessible through selection or
crossover operation and therefore encourages search into a completely new so-
lution space. After these three basic operations, a new generation is created.
The search process continues until prescribed stopping criteria are met.

A successful multiobjective GA must have the ability to obtain a nondomi-
nated set of solutions close to the global Pareto-optimal front, and to have this
solution set as diverse as possible, that is, to prevent solution clustering from
occurring. Note that the selection operation is based on the relative fitness
measures of solutions. Unlike single-objective problems where the objective
function itself may be used as the fitness measure, after scaling and constraint-
handling treatment, a multiobjective GA needs a single fitness measure that
reflects the overall merit of multiple objectives. Multiobjective GAs have been
fruitfully studied and developed in the last decade [7], many of which adopt
Goldberg’s nondominated sorting technique [19] to rank all solutions in a pop-
ulation, as discussed in the following.

For a given population of solutions, a nondominated subset is first identi-
fied according to the definition of Pareto optimality as defined previously. All
solutions in this nondominated subset are assigned a rank of one and are then
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Figure 1.  Population ranking based on nondominated sorting
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temporarily deleted from the population. The nondominated subset of the re-
maining solutions is identified and assigned a rank of two. This procedure
continues until all solutions in the population have been assigned appropriate
ranks. A solution in the front of a lower-numbered rank is assigned a higher
fitness than that of a solution in the front of a higher-numbered rank. As aresult,
solutions closer to the global Pareto-optimal front have higher fitness values.
As an illustration, consider a generic problem that has two objectives to be min-
imized. Fig. 1 indicates, in the solution space, ten solutions that are classified
into four fronts with varied ranks. To assign fitness values to solutions with the
same rank, niching strategies are used to determine relative fitness values by,
for example, a crowding distance measure [10]. This measure is taken as an
average distance of the two solution points on either side of the current solution
along each of the objectives and thus serves as an estimate of the density of
solutions surrounding a particular solution in the population.

Constraints in the GA-based optimization must be handled appropriately in
GAs [6]. One possible approach is to assign to constraint-violating solutions
dummy fitness values, which are defined in terms of degrees of constraint vio-
lation and are always less than those of valid solutions in the population. Thus
the original constrained optimization problems are equivalently converted into
unconstrained problems. Alternatively, constraint-violation may be considered
by modifying genetic operators instead of assigning fictitious fitness values to
invalid solutions. Deb [10] proposed a constrained binary tournament selection
scheme that determines from two randomly picked solutions in the population
the better solution based on three rules: (i) if both solutions are feasible, the
one with higher fitness wins; (ii) if one solution is feasible and the other is in-
feasible, the feasible one always wins; (iii) if two solutions are both infeasible,
the one with less degree of constraint-violation wins.

In multiobjective GAs, elitists usually refer to the generation-wise nondom-
inated solutions. It is beneficial to retain elitist solutions in the subsequent
generations for evolution operations due to their excellent genetic properties.
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The stochastic nature of GAs, however, may disturb this ideal situation espe-
cially at early generations when the number of elitists is much smaller than
the population size. To solve this problem, the elitist strategy may be adopted
by forcibly inserting nondominated solutions (elitists) from the last generation
back to its offspring population after basic genetic operations (i.e. selection,
cross, and mutation) are performed. An updated set of elitists is then identified
based on the population augmented by the elitists from the last generation. Pre-
vious studies have shown that the elitist scheme plays a crucial role in improving
the optimization results [10].

23 GA-Based Maintenance Management

Research on use of multiobjective optimization techniques in maintenance
management of civil infrastructure has appeared recently in the literature. Mul-
tiple and conflicting performance indicators such as condition, safety, durabil-
ity along with life-cycle cost are simultaneously considered as separate criteria
[21,24,26,17]. Interestingly almost all these research activities are conducted
using GAs as numerical optimizers. This is because the practical maintenance
management problems can be best posed as combinatorial optimization [18].
Due to their inherent features as previously discussed, GAs are very effective
for solving these kinds of problems.

Many GAs work with a fixed population size. As generations evolve, the
nondominated solutions fill most solution slots in a population, which may make
it very difficult for dominated solutions to enter the population for genetic op-
erations. As aresult, the diversity of nondominated solutions in the subsequent
generations may not be fully explored due to lack of information from valid
yet dominated solutions. In this study, the initial GA population consists of
1,000 randomly generated trial solutions and each of the subsequent genera-
tions contains 200 offspring solutions plus the nondominated solutions from the
previous (i.e. parent) generation. In addition, the fitness value is determined
according to Goldberg’s nondominated sorting plus Deb’s crowding distance
measure; Deb’s constrained binary tournament selection scheme is adopted; a
uniform crossover is applied with a probability of 50%; a uniform mutation
is performed with a probability of 5%. Although this is a relatively high rate
of mutation, by using elitism to preserve the nondominated solutions at each
generation, mutation tends not to be very disruptive; sometimes a high level of
mutation is used to avoid premature convergence.

3. Bridge Maintenance Management at Project-Level

Much effort has been devoted by researchers and practitioners to develop
methodologies for long-term maintenance management of deteriorating brid-
ges [8,12, 13, 16, 17] Most previous research can be categorized as project-level
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types because only individual bridges or a group of similar bridges are consid-
ered. In this section, the time-dependent bridge performance deterioration with
and without maintenance interventions is predicted by a continuous compu-
tational model [16]. This model describes the performance profiles without
maintenance by a curve characterized by an initial performance level, time to
damage initiation, and a deterioration curve governed by appropriate functions
and, in the simplest form, a linear function with a constant deterioration rate.
Effects of a generic maintenance action include prompt performance improve-
ment, deterioration suppression for a prescribed period of time, deterioration
severity reduction, and prescribed duration of maintenance effect. Epistemic
uncertainties associated with the deterioration process are considered in terms
of respective probabilistic distributions of the controlling parameters of this
computational model. Monte Carlo simulation is used to account for these un-
certainties by obtaining statistical performance profiles of deteriorating struc-
tures.

3.1 Problem Statement

The GA-based management procedure is used to prioritize maintenance
needs for deteriorating reinforced concrete highway crossheads through simul-
taneous optimization of both structure performance and life-cycle maintenance
cost. The maintenance management problem is thus posed as a combinatorial
multiobjective optimization problem in that, for any year over the specified time
horizon, at most one maintenance strategy may be carried out. Time-dependent
performances of these structures are described using appropriate indicators in
terms of condition and safety states.

For reinforced concrete elements under corrosion attack in the United King-
dom, Denton [11] categorized visual inspection-based condition states into four
discrete levels, denoted as 0, 1, 2, and 3, that represent no chloride contami-
nation, onset of corrosion, onset of cracking, and loose concrete/significant
delamination, respectively. A value larger than 3 indicates an unacceptable
condition state. As a subjective measure, however, the condition index may not
faithfully reflect the true load-carrying capacity of structural members. Accord-
ing to bridge specifications in the United Kingdom, the safety index is defined
as the ratio of available to required live load capacity [9]. It is considered
unacceptable structure performance if the value of safety index drops below
0.91.

The goal is to obtain a set of sequences of maintenance actions applied over
the specified time horizon that, in an optimized tradeoff manner, (i) decrease the
largest (i.e. worst) lifetime condition index value, (ii) increase the smallest (i.e.
worst) lifetime safety index value, and (iii) decrease the present value of life-
cycle maintenance cost. The constraints are enforced such that the condition
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index value must be always less than 3.0 and the safety index value must be
always greater than 0.91.

Five maintenance strategies are considered: replacement of expansion joints,
silane, cathodic protection, minor concrete repair, and rebuilding [11,22]. Re-
placement of expansion joints is statistically the least costly. It does notimprove
performance or delay deterioration but alleviates deterioration severity of both
condition and safety performance. The silane treatment reduces chloride pen-
etration but does not correct existing defects or replace deteriorated structural
components. Statistically speaking, silane reduces deterioration of condition
more efficiently than replacement of expansion joints while having the same
effects on safety deterioration. Cathodic protection replaces anodes and thus
suppresses corrosion of reinforcing bars almost completely. It postpones deteri-
oration of both condition and safety for 12.5 years upon application. The minor
concrete repair strategy is applied to replace all cover concrete with visual de-
fects but not corroded reinforcing bars. The rebuilding strategy improves both
condition and safety levels to those values typical of a new structural component.

3.2 Numerical Results

In the numerical implementation, Monte Carlo simulation with a sample size
of 1,000 is used to consider effects of uncertainty on prediction of both structure
performance and life-cycle maintenance cost. All three objective functions are
evaluated in terms of sample mean values. The service life is considered 50
years and the monetary discount rate is 6%. A number of different optimized
maintenance planning solutions are generated. These solutions represent the
optimized tradeoff among the condition, safety, and life-cycle maintenance cost
objectives. Three representative maintenance solutions with different levels of
performance enhancement and maintenance needs are shown in Fig. 2. Detailed
information can be found in [22].

4. Bridge Maintenance Management at Network-Level

Compared to the above project-level maintenance management, a transporta-
tion network-oriented methodology provides more rational solutions because
the ultimate objective of maintenance management is to improve performance
of the entire transportation network instead of merely that of individual struc-
tures in the network. In this section, performance evaluation of deteriorating
bridge networks is discussed and network-level maintenance management is
presented and illustrated with numerical examples.

5. Problem Statement

The network reliability measures the level of satisfactory network perfor-
mance. Most studies on assessment of reliability for transportation highway
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Figure 2. Tradeoff of three project-level maintenance-scheduling solutions
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infrastructures have focused on maintenance management of deteriorating road
networks for which a travel path consists of multiple links (i.e. roadways be-
tween any two nodes) with binary states (either operational or failed). There
are three network reliability measures with ascending levels of sophistication:
connectivity reliability, travel time reliability, and capacity reliability [4,5]. The
connectivity reliability is associated with the probability that nodes in a high-
way network are connected; in particular, the terminal connectivity refers to the
existence of at least one operational path that connects the origin and destination
(OD) nodes of interest. The travel time reliability indicates the probability that a
successful trip between a specified OD pair can be made within given time inter-
val and level-of-service. Based on this reliability measure, the appropriate level
of service that should be maintained in the presence of network deterioration
can be determined. The third measure is the capacity reliability, which reflects
the possibility of the network to accommodate given traffic demands at a speci-
fied service level. In this formulation, link capacities may be treated as random
variables to consider the time-dependent probabilistic capacity deterioration.
Inherent in the last two reliability measures are the determination of risk-taking
route choice models for simulating travelers’ behavior in the presence of both
perception error and network uncertainty [5].
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For maintenance management of deteriorating highway networks, it is also
very important to use economic terms as a measure of the overall network
performance. There are two basic types of costs: agent cost and user cost. The
agent cost is composed of direct material and labor expenses needed to perform
routine and preventive maintenance, rehabilitation, and replacement of existing
transportation facilities. The indirect user costs are caused by loss of adequate
service due to, for example, congestion and detour. In some situations the user
cost may be a dominating factor in evaluating the overall life-cycle costs for a
transportation network. The uncertainty associated with capacity degradation
and demand variation should be integrated in the analysis in order to obtain a
reliable cost measure.

In this study, the goal of network-level maintenance management is to prior-
itize maintenance needs to bridges that are of most importance to the network
performance and over the specified time horizon. The overall goal is to satisfy
the following two requirements in a simultaneous and balanced manner: (i) the
overall bridge network performance, which is measured by the lowest level of
the lifetime reliability of connectivity between the origin and destination loca-
tions, is improved, and (ii) the present value of total life-cycle maintenance cost
is reduced.

Four different maintenance strategies are considered herein for enhancing
bridge network performance in terms of reliability levels of deteriorating re-
inforced concrete bridge deck slabs: resin injection, slab thickness increasing,
steel plate attaching, and complete replacement [17]. Resin injection is the
least costly maintenance type among the four options. It injects epoxy resin
into voids and seals cracks in concrete, which repairs the aging deck slabs by
reducing the corrosion of reinforcement due to exposure to the open air. The
reduction rate in reliability deterioration is assumed 0.03/year for 15 years. The
other three maintenance strategies instantly improve the bridge reliability level
by various amounts upon application. Increasing slab thickness and attaching
steel plate increase the system reliability indices by a maximum of 0.7 and 2.0,
respectively, with unit costs being US$300/m? and US$600/m?, respectively.
The complete replacement option restores the structural system to the initial
reliability level with a unit cost of US$900/m?.

5.1 Numerical Results

The network-level maintenance management is illustrated using a real bridge
network in Colorado [3]. This network consists of thirteen bridges of different
types. The network performance is evaluated in terms of the terminal reliability
for connectivity between two designated locations. Flexure failure of bridge
slabs is considered as the only failure mode [2]. Deterioration of reinforcement
is caused by deicing chemicals related corrosion. The life cycle is consid-
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Figure 3. Tradeoff of three network-level maintenance-scheduling solutions

I

107
- .
i~ ) % E\
<2k
= — Z N
3 ~ S
T i a \&
8 2 ~
B - g e
% Cl/ Elo"’.
2| 5 o
El 5
0 0.5 1 15 g
PV TOTAL MAINT. COST [$M] 104

o

0.5 1 1.5
PV TOTAL MAINT. COST [$M]

ered 30 years and the discount rate is 6%. The optimized solutions by GA
represent a wide spread tradeoff between the conflicting network connectivity
(equivalently network disconnectivity probability) and the total maintenance
cost objectives. Tradeoff of three representative solutions is plotted in Fig. 3.
Detailed information can be found in [23].

6. Monitoring-Integrated Maintenance Manage-
ment

Itis interesting and challenging to integrate the recent developments of struc-
tural health monitoring (SHM) technologies into intelligent maintenance man-
agement of civil infrastructure systems. Utilizing advanced sensing/information
technology and structural modeling/identification schemes, SHM detects, lo-
cates, and quantifies structural damages caused by catastrophic natural or man-
made events as well as by long-term deterioration. These data assist bridge
managers in assessing the health of existing bridges and thus in determining
immediate or future maintenance needs for safety consideration and lifespan
extension. Most existing research and practice in BMS and SHM, however,
are carried out in a disconnected manner. Therefore, a unified framework is
necessary to bridge this gap between these two research areas.

Research in these areas represents a crucial step toward improving the tradi-
tional approach to BMSs by providing bridge managers with an efficient tool to
make timely and intelligent decisions on monitoring, evaluation, and mainte-
nance of deteriorating highway bridges. This can be achieved by exploring the
interaction between SHM and BMS strategies in terms of whole-life costing and
structural safety/health/reliability. Prediction of time-dependent bridge perfor-
mance with monitoring is essential in this endeavor. With monitored data, the
time-dependent performance will be more reliably estimated and the mainte-
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Figure 4. Bridge performance profiles with and without monitoring-integrated maintenance
interventions
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nance interventions will be more accurately applied than in the case without
monitoring. Fig. 4 schematically illustrates the influence of monitoring ac-
tions on the prediction of bridge performance and on the ensuing maintenance
interventions. In Fig. 4(a), with sensed data, earlier reaching the prescribed
performance threshold is predicted, which incurs a timely maintenance inter-
vention. Otherwise, if based on the non-monitoring performance prediction,
the maintenance would not have been applied, which would cause tremendous
risk concerns and consequences due to failure occurrence. Fig. 4(b) indicates
another situation where the monitoring-enriched performance prediction makes
unnecessary the maintenance actions predicted by the non-monitoring profile;
in this case savings of maintenance costs can be enormous. Therefore, inter-
actions among maintenance, monitoring, and management must be accurately
analyzed in order to maintain bridges in timely and economical manners.

7. Conclusions

This paper reviews recent developments of risk-based maintenance manage-
ment of civil infrastructure systems especially of highway bridges, emphasizing
simultaneous consideration of multiple criteria related to long-term structure
performance and life-cycle cost. Sources of uncertainty associated with the
deterioration process are considered in probabilistic performance prediction
of structures with and without maintenance interventions. The usefulness of
genetic algorithms in solving the posed combinatorial multiobjective optimiza-
tion problems is discussed. Two illustrative numerical examples are provided.
The first example deals with project-level maintenance scheduling for a group
of deteriorating reinforced concrete crossheads over a specified time horizon.
Structure performance measures, in terms of visually inspected condition and
computed load-carrying safety indices, and the present value of long-term main-
tenance cost are treated as competing objectives. The second example is asso-
ciated with network-level bridge maintenance management, in which a group
of spatially distributed bridges that form a highway network is studied. The
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overall network performance is assessed in terms of the terminal connectivity
reliability. A maintenance solution contains a sequence of maintenance inter-
ventions that are scheduled at discrete years to be applied to different bridges.
The conflicting objectives of the network connectivity reliability and the total
maintenance cost are subject to balanced optimization. A set of alternative so-
lutions is produced that exhibits the best possible tradeoff among all competing
objectives. Bridge managers’ preference on the balance between the lifetime
performance and life-cycle cost can be integrated into the decision-making
process. Finally, research needs of integrating bridge management systems and
structural health monitoring are discussed and illustrated.
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