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Abstract
In this paper we study the parameter estimation problem for stochastic dis-
tributed parameter systems by using the modified maximum likelihood method.
More specifically, by using the US treasury bond data, the parameter estimation
is performed for the stochastic hyperbolic and parabolic models describing the
behavior of the term-structure of the US bond. From the prediction results, we
can show that the parabolic factor models work better than the hyperbolic ones.
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1. Introduction

Parameter estimation problem for stochastic distributed parameters has a
long history and there still exist many open problems. In this paper, we present
a practical application of the parameter estimation to a financial engineering
problem. Let P(t,T") denote the bond price where ¢ is a present time and 7’
denotes the maturity. The bond price P(¢,T') changes randomly in value and
att =T P(T,T) takes the preassigned value.

From the relation that P(¢,T) = exp{— |7 ' f(t, z)dz}, the forward rate
process f(t,z) may be directly modeled instead of P. In this paper, we check
the feasibility of the model selection of forward rate process by using some real
data.

Here we use the treasury bills data which are easily obtained from the web-
site. In US government securities, we used the constant maturity bond data,i.e.,
1 year (starting date 01/02/1962) 2 year (starting date 06/01/1976) 3 year
(starting date 01/02/1962) 5 year (starting date 06/01/1962) 7 year (starting
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date 07/01/1964) 10 year (starting date 01/02/1962) 20 year (starting date
10/01/1993) .

Noting that 20-year bond only starts at 10/01/1993, we cut past date for
other bonds and set all data which start from this date up to 05/28/2004. In Fed
data, there are missing parts and so we adjust these data by using the method
proposed by Cochrane .(See http://gbs.uchikago.edu/fac
/john.cochrane/)

To derive the forward rate process, the obtained yield data are regarded as
zero-coupon curve. Hence we have the following relation between forward rate
f(t, x) and the yield curve Y (¢, T) such that

1

Tt
m/0 f(t,z)dz =log(1 + Y (¢,T)).

Theoretically speaking, if we differentiate the above equation with respect to
T — t, we can get the forward rate process f(t,z). However, we only obtain
7 different maturity bonds. Firstly, we use the usual curve fitting procedure
as stated in [1] and next we differentiate this process with respect to T' — ¢
and obtain the forward rate process. As was mentioned in [1], the obtained
results strongly depend on the methods used. For example, if we use the cubic
spline and differentiate the interpolated process, the obtained forward process is
largely volatile at the long maturity part. To aviod this we use the interpolation
with cubic-function which is found in MATLAB as ’interpl(..., "cubic’).m’.

In Fig.1, you can see the original T-bond yield curves. By using the cubic
interpolation ( interpl with "cubic” in MATLAB) we obtain the smooth yield
curve and differentiate this process. In Fig.1, the derived forward rate process
is demonstrated. Now from this process, we shall try to identify parameters
contained in the dynamics. Here we use the classical procedure to identify
the several parameter functions. The main aim of this paper is to show that
the parabolic type dynamics is experimentally accepted as the forward rate
dynamics.

2. Hyperbolic system modeling

The most popular dynamics of the forward rate processes is a hyperbolic
type partial differential equation which was first introduced by Heath, Jarrow
and Morton from the absence of arbitrage argument and developed further by
Santa-Clara et. al [2] and Aihara and Bagchi [3].

The general hyperbolic model is given by

%ﬂdt + u(@)dt + dw(t, z) (0

[0,2) = folx), 2)
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Yield curve data of US bonds (original data)

2005

Time to maturity e Your

Figure 1. Original yield curve data (US bonds) and derived forward rate

where

E{w(t’ x)w(t, y)} = Q(Iv y)t'
We need the following regularity property for f(t, z) to perform the parameter
identification.

THEOREM 1 We assume that
fo € L@ H™G)), pe H™G) 3)
and
am o™
" (G
where G =)0,T + t¢[. with G =]0,T[ H™ denotes the m-th order Sobolev
space and Q = [z q(x,y)(-)dy. Then
f e (0, C(Ty; H™(G)), (5)

)< o0, 4

where Ty =0,1¢].
The proof can be found in [3].
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2.1 Identification of the covariance kernel

The most important part of the forward model is to identify the covariance
kernel of the noise process. To estimate this kernel, we use the classical proce-
dure by using some properties of the Ito stochastic integral. Noting that

E{(w(t), w(t))} = Tr{Q}t,

we have
TrQ)e = 1FOF - [FO)F 2 [ (), () ©)

where (-, ) and | - | denote the inner product and norm in L?(G). The discrete-
version of the formula (6) is

S (Fltigr,z) = Fto,2)(F (v, y) — f(ti,y)
~ q(z,y)t. (7)
Applying (6) to T-bond data, the estimated kernel of ¢(z, y) is shown in Fig.2.
Here we used the data f(t,z) for 2000.64 < t(year) < 2002.183 shown in
Fig.1. In the obtained results, the value of the kernel at the long maturity parts

Estimated covariance q(x,y) Estimated p (x)

(XX
2558
":f:::::“

atxy)
Bo(x)
°

“o 2 10
Time to maturity Time to maturity Time to maturity

Figure 2. Estimated kernel ¢(z, y) and fom q(z,y)dy

seems to be rather big. This phenomena may be caused by the interpolation
method "cubic-function”.

(i) Modeling in the risk neutral world
Hereafter we set the kernel g(z,y) as the estimated one. In the risk neutral
world, the function p(z) is set as

plz) = /Ogc q(z,y)dy. ®)
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Hence the p(z)-process becomes as shown in Fig.2.

In order to check the feasibility of this model, we simulated the hyperbolic
equation, setting the value of the initial condition as f(2002.183,:). Without
adding the noise w(t, z) , we obtain E{ f (¢, z)|f, = f(2002.183,:)}. In Fig.3,
the predicted value is shown.

Predicted forward rate(Hyperbolic-case)

maturity

Figure 3. Predicted forward rate(Hyperbolic case)

From this result, we clearly see that our observed data is not in the risk neutral
world. So we need to identify the market price of risk in the next subsection.
(i1) Identification of market price of risk:
Here we consider the following restriction: The market price of risk has a form;

M/q(z, x)
i.e, we reset u(z) as
u(z) = M/a(z,z) + /OI q(z, y)dy.

This A has primarily been invented to price consistently interest rate deriv-
atives rather than to fit the historical evolution of the forward rate process.
However, this parameter A is still needed to reproduce the forward rate process.

It is interesting that the parameter A of market price of risk may be identified
to maximize the modified log likelihood functional. The used data are the same
as those used in the previous identification.

The exact likelihood function for an infinite-dimensional system is diffi-
cult to derive without any strict conditions. However, from Thorem 1, we
can define the modified likelihood functional by setting m = 1 and get f €
L2(§;C(Ty; HY)). Hence

MLF = tz(@cg—) + M\ q(z, z)

t1
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+/ q(z,y)dy, df (s,x))

tzc‘)
__Q/t f(3$+/\/q$x)+/qmy)dy|d8 9)

where to = 2002.185, ¢; = 2000.646 and

(61, ) = Owgzn( Voo()dz, |62 = (6, ).

To derive the exact likelihood functional we need to support the invertibility of
the covariance kernel

QL) = /019Q(:c7y)(~)dy-

In the infinite dimensional case, the operator () is not invertible. Ultimately
we replace the weight ) appearing in the likelihood functional by the identity
operator. We call this the modified likelihood functional. To avoid this ambi-
guity, using the principal component analysis, we can pick up finite principal
components. In such a case, we can derive the inverse of ) and the exact
likelihood can be derived. However, the proposed modified likelihood is easily
constructed without using principal component analysis and still contains the
infinite number of random sources. The maximum MLE A is given by

- [/%/ (z,2), df (¢, ))
/tz \/— 8ft %) | (2))ds]/TrQ(ts — 1), (10)

The derived ) and the predicted forward rate process are respectively shown
in Fig.4.

In Fig.5, we present the real forward rate and predicted processes, respec-
tively.

3. Parabolic modeling

In this section, we introduce the parabolic type partial differential equation
for the forward rate process instead of the hyperbolic type. This model was
already proposed by Bouchaud et.al [4] and [5] to support the smoothness of
the forward process with respect to time-to-maturity and that the information
diffuses from one maturity to the next.

In the empirical studies, we find that the adjusting term is needed to fit
the historical data. In addition to the A\\/q(z,z) term, we add the diffusion
term in the model, because from Fig.5 it seems that the shape of the real for-
ward rate process is a diffused shape rather than the predicted shape from the



Parabolic type factor model 213

", |

2t ,\“ }\
AN My
i k} M K-'\«r\.”w AP

N
i

/
\"\“ ,W‘\M’ V\‘MN,

0.6 2000.8 2001  2001.2 2001.4 2001.6 2001.8 2002  2002.2

Figure 4.  Estimated market price of risk and predicted forward rate
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Figure 5.  Predicted forward rates and real rate

hyperbolic model. Hence we set the simple parabolic type equation for the
forward rate model and identify the systems parameters from the data used
from 1999.5 < ¢ < 2001.79. From this experiment, we can conclude that the
parabolic modeling is more efficient than the hyperbolic modeling.

We consider the following model: for z € G =]0, 19|,

At z) = /<:82J(;§;’ ) gt + 8féic"”) b p(@)dt + dw(t,z) (D)
f(0,z) = fo(z) (12)
?%%0—) + a1 f(t,0) = b1, —@c(—;’x—lg—)%—aﬁ(t?w) = [ (13)

We work in the following Hilbert spaces:

V =HYG)c H=L*G)C V' =dual of V.
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Define
0¢1 0 0
<> |GG - Gl (9

+kaop1(19)$2(19) — kai¢1(0)p2(0), V1, 2 € V

The variational form of the system becomes V¢ € V,

t t
(F(t), ) + /0 < Af(s),6 > ds = (for§) + /0 (1, $)ds + (w(t), ¢). (15)

THEOREM 2 We assume
(C-1) k>0
(C-2) fo€ L*(GH),p€ LAQ x Ty V')
(C-3) Tr{Q} < 0. (15) has a unique solution in
L*(Q;C(Ty; H) N LA(Ty; V).

Proof. The parabolic type stochastic evolution equations have been studied by
many authors,e.g., [6],[7].

In order to define the modified likelihood functional we need the following
theorem:

THEOREM 3 In addition to all conditions of Theorem 3.1, we set
(C-4) fo€ L2(GV), pe L2 x Ty; H)

(C-5) Tr{Z(%2)*} < oo

Hence we have

f e L*(Q;C(Ty; V)N LA (Ty; V N H)).

By using the similar method used in [3] we can prove this theorem.
We can use the same technique for identifying ¢(z, y) in section 2. Further-

more we also set
u(@) = M/q(z,z) + fi(x)
i) = [ ate,)dy.

We need to identify unknown parameters k, oy, oo, 51, 02 and A.

(i) Identification of boundary parameters:
Noting that from Theorem 3, of g;g) and 2L étx’o) belong to L?(2 x Ty; RY), re-
spectively, we can apply the usual least square method and obtain the following
algorithm:

fa (8L(50) _ 370y £(5,0) — f(t1,0))ds

Ao o— 2l Oz 6

al tt12(f(370) - f(t],O))2d3 ( )
ta 9f(s,0) ty A

By = Jil “ds + [ a(s)f(,s,())ds7 -

to — ty
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and for the boundary z = 19 we can set the similar algorithm.
The estimated results are shown in Fig.6 for 1999.5 < t, < 2002.

Estimated boundary parameter o, on xel Zatimated boundary parasster G, on %-20
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Figure 6. Sample runs of estimated boundary parameters

(ii) Identification of k£ and A:
In order to identify the diffusion coefficient k£ and A, we also introduced the
modified likelihood functional:

o Bf(tz)  9f(ta)
MLF = h(k 2t~

2 O*f(t,x)  Of(t,x) | - /
~3 , |k 52 + o + ji(z) + M\ /q(z, z)>ds, (18)

+ i(z) + N/ q(z, ), df (t,z))

where we already find that f € L*(Q x Ty; H*(G)) from 2. The maximum
MLF k and \ are given by

e le ‘a2f(s ,z) (2 f (02f(s ,z) \/—(——))ds
ftl(a Jisx) \/q(ﬂE z))ds ftl(\/q(:ﬁ z),/q(z,x))ds
[ f (a f(s,z) Jdf (s, z) f af(t z) +u(ac),a ();;s ’”))ds }

(v/q(z,z),df (s, x) fh(af(t ) + f(z), \/q(z,z))ds

>0 T

}:M*M (19)

where

The sample runs of the estimated A and & are shown in Fig.7. The predicted
value of forward rate is given in Fig.8 with its true value.
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Figure 7.  Estimated A and k&
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Figure 8. Predicted forward rate (Parabolic case) and true value

4. Concluding remarks

As shown in Fig.8, we could construct the parabolic type partial differential
equation for the forward rate dynamics whose solution fits the future value of
the forward rate better than the hyperbolic model. From the existence for the
diffusion term, the shape of the predicted forward rate becomes flat and so the
predicted forward rate for the parabolic case fits the real rate quite well. The
calibration of the proposed model is very important to applying the mathemati-
cal algorithm to the practical situation and this should be done in the empirical
probability rather than risk-neutral probability. For the identification problem
in the parabolic case, we identified the term ka f(t 2) + A/q(z, z) for the un-
known k and A\. From the obtained results, in the emplrlcal probability world we

need an extra term k 62£S’Tx) or k2 gitz’i) +Av/q(z, x) . The form of these terms
are not theoretically derived and we only set the function form artificially. It
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should be noted that in the parabolic case, A = 0 does not mean the risk neutral
world because we still have an extra term ka—zgz(v—tg—x).

Although Cont [5] proposed that the boundary value processes be stripped out
of the original partial differential equation, we set the mixed boundary condition
for the forward rate process . In our case, we can consider the more general
type than Cont’s model, e.g., the presence of boundary noises. If the covariance
kernel is finite dimensional, we can transform the original measure to the risk
neutral measure . If we do not consider the pricing of the future derivatives, it
seems that this finite dimensionality condition is not required. However for the
optimal portfolio problem with power utility we need this finite-dimensionality
condition to support the optimal portfolio.

The most important part of this paper is how to fit the proposed model to the
historical data. In the risk-neutral probability world, we only need to identify the
kernel of the noise. However we can not reproduce the real future forward rate
process from risk neutral case. The obtained empirical results strongly depend
on the interpolation method which was used to convert the yield curve to forward
rate process. In order to avoid this differential instability problem, we should
reformulate the parameter identification problem as the filtering problem with
discrete-time observation data. In such a reformulation, we need not to use
the interpolation method and differentiation with respect to time-to-maturity
variable.
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