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Abstract. In this paper, we propose optimized method of discrete wavelet trans-

form. There is many use of wavelet transform in digital signal processing (com-

pression, wireless sensor networks, etc.). In those fields, it is necessary to have 

digital signal processing as fast as it possible. The new segmented discrete 

wavelet transform (SegWT) has been developed to process in real-time. It is 

possible to process the signal part-by-part with low memory costs by the new 

method. In the paper, the principle and benefits if the segmented wavelet trans-

form is explained.  

1   Introduction 

If we use wavelet transform in real applications we handle signals of finite length. It is 

not usually possible to process whole signal at a time, we must process the signal 

segment-by-segment. To calculation of sufficient amount of no redundant wavelet 

coefficients, it is necessary to know the signal behind the segment borders. Generally 

in this case, we determine signal behaviors behind the borders. Typical examples are 

extension techniques like zero-padding, smooth, symmetric, asymmetric and period 

extension. Zero-padding assumes samples outside the segment boundary are zero [1], 

[2]; periodic extension assumes that the signal is periodic [1], [2]. Symmetric exten-

sion assumes the signal is reflected at the segment boundaries [1]–[3]. These basic 

types of extension cause signal distortion at the boundaries. The sort of distortion 

depends on estimation range of signal specification behind boundaries. The more level 

of wavelet decomposition is chosen the much amount of distortion is caused. Such 

distortion happens to be unacceptable. 

The way how to circumvent problem is adoption the segment techniques based 

upon overlap-save and overlap-add methods. In the case of fast discrete wavelet trans-

form [5], we use overlap-save (OSC) and overlap-add convolution (OAC). Conditions 

are more complicated with increasing level of wavelet decomposition. These problems 

solved new method SegWT, which is optimized to discrete wavelet transform for 

segment processing with various segment lengths. It has a great potential application 
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also in cases when it is necessary to process a long signal off-line and no sufficient 

memory capability is available. It is then possible to use this new method for equiva-

lent segment wise processing of the signal and thus save the storage place. 

2   Discrete-time wavelet transform 

In digital signal processing we use finite discrete (or discrete-time) wavelet transform, 

abbreviated DTWT, which can be represented by an orthogonal matrix W of size nn 

[7]. 

 Let x be a vector of length n. Its wavelet transform is vector y, obtained 

as y Wx . Due to the ortogonality of W, the inverse wavelet transform is x  

1 T W y W y . 

In fact, instead of multiplying vector x by the matrix W, more effective Mallat’s 

pyramid algorithm [5] is used for computing the transform. Each step of this algorithm 

corresponds to: 

1. extending the input vector 

2. filtering this vector by specific low-pass and high-pass filters 

3. cropping the central part of the results 

4. decimation the results 

The coefficients from low-pass branch are called “approximations” and those from the 

high-pass branch are called “details”. We can repeat this single transformation step 

with the approximations standing for the input. The number of such repetitions, d, is 

called transformation depth. Scheme of one step of this algorithm is depicted in Fig. 1. 

This way the input is divided into number of frequency subbands [1]. 
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Fig. 1. One step of the forward wavelet transform – decomposition into details and approxima-

tions. 

 

 

 



3   Segmented wavelet transform 

The task for the segmented wavelet transform based on wavelet over-lap save convo-

lution (WOSC) and wavelet overlap-add convolution (WOAC) techniques [6], 

SegWT, is naturally to allow signal processing by its segment, so that in this manner 

we get the same result (same wavelet coefficients) as in the ordinary DTWT case. In 

this problem, the transform depth d, wavelet filter length m and the segment length s 

play a crucial role. 
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Fig. 2. Segmentation of the input signal. The last segment can be shorter than the others.     

 

Derivation of the SegWT algorithm requires a very detailed knowledge of the 

DTWT and IDTWT [8] algorithms. Thanks to this it is possible to deduce fairly so-

phisticated rules how to handle the signal segments. We found out that, in dependence 

on d, m, s it is necessary to extend every segment from left by exact number of sam-

ples from the preceding segment and from right by another number of samples from 

the subsequent one. Fig. 3 illustrates the principle of segment extending.  
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Fig. 3. Scheme of extending input segments. Each segment has to be extended different length 

form left and right (Lmax, Rmin) and the length can also differ from segment to segment. The sum 

of actual Lmax and previous Rmin is always constant (r(d)). 

 



After using segmented forward wavelet transform which includes extending, crop-

ping and decimation steps we gain wavelet coefficients ready to application process. 

Then we must processed coefficients reconstruct to source form. Segmented inverse 

wavelet transform includes similar step like in wavelet decomposition. The hardest 

part is to add overlapped parts of neighboring segments. The example of WOAC 

technique is show on Fig. 4. 

14

14

6

2

14

14

6

2

18

26

30

14

14

6

2

18

overlapping segments by

r(d) samples

previous segment actual segment

14

14

6

2

following segment

d1

d2

d3

a3

 

Fig. 4. Example of segmented wavelet reconstruction, show as superposition of all details and 

aproximations. 

4   Experiments 

To testing and checking the method we have used MATLAB, because of comfortable 

implementation the algorithm, also for availability build-in functions like fast convolu-

tion algorithm using FFT, downsampling, upsampling, etc. Testing experiment was 

based on comparison wavelet reconstruction process (SegIWT) of new method with 

standard IDTWT algorithm. Indeed, it was necessary to adjust the standard algorithm 

with the view to comparison, otherwise results would be incomparable. 

In order to get valuation the new algorithm we defined a quantity, called percen-

tage velocity gain (t), which indicates how much faster SegIWT process is in com-

parison to IDTWT algorithm. For example, 50%t   means, it is possible to process 

whole signal in two units of time with new method and in three units of time with 

standard algorithm; in other words, new algorithm is three over two times faster. The 

percentage velocity gain is defined 

100 100old

new

t
t

t
       [%], (1) 

where told is time necessary to signal reconstruction with IDTWT and tnew is time ne-

cessary to signal reconstruction with SegIWT. Simulation parameters were chosen: 

 decomposition depth 4d  , 

 Daubechies wavelet type 4, filter length 8m  , 

 vector length in depth level 4dx   

These parameters were chosen with respect to acceptable simulation duration and also 

for showing model behavior of new method.  



4.1   Dependence on signal length  

First experiment was percentage velocity gain dependence on whole signal length 

(number of samples). 

 

Fig. 5. Percentage velocity gain t in dependence on whole signal length ls. It is evident that 

mean value of t is not dependent on ls. The mean value of t is circa 33% for above-

mentioned experiment. Considerable variation of t values is caused by short simulation time 

for short length ls. These durations are not possible to gauge precisely.    

4.2   Dependence on decomposition depth 

This experiment was based on changing decomposition depth in signal with constant 

length ls = 100 000 samples (Fig. 6). When we set simulation parameters in order to 

with increasing decomposition depth the number of segments is constant, we obtain 

the similar dependence (Fig. 7). The descent of t is caused by immense time cost to 

overlap segments (lots of segments are being overlapped). If we choose the decompo-

sition depth greater than 10, the time cost of the new algorithm is approximately the 

same. Indeed, it is important to notice the IDTWT standard algorithm needs to read 

much more data from the computer memory by same time cost which means if the 

access to the memory is slow it could affect simulation results markedly. 

In those experiments in which there are another filters, the results are almost the 

same like in Fig. 6. With increasing filter length the length of overlapped parts also 

increases. However, this not affects the simulation process as well, because wavelet 

filters length is very short in comparison to segment length. 
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Fig. 5. Percentage velocity gain t in dependence on d the constant decomposition depth. The 

value n is the number of segments.   

 

Fig. 6. Percentage velocity gain t in dependence on d the decomposition depth with constant 

number of segments. The value lOLA is the number of overlapped samples. 
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5   Conclusions 

In the paper, a novel SegWT method was described. The method can be used in real-

time applications, in which the signal segment-by-segment processing is required. As 

it was proved in presented experiments the computational time was decreased up to 

about 33% in comparison to standard fast wavelet transform algorithm. Thus, the 

method would be suitable e.g. for implementation on digital processors and the range 

of applications of the new algorithms is very wide – from noise cancelation in speech 

signals by using tresholding of wavelet coefficients to image processing (compression 

JPEG2000, pattern recognition). These areas are two typically subjects of telecommu-

nications research. 
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