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Abstract. In practice, different methods for enhancing speech hidden in
noise are used but none of the available methods is universal; it is always
designed for only a certain type of interference that is to be suppressed.
Since enhancing speech masked in noise is of fundamental significance
for further speech signal processing (subsequent recognition of speaker
or type of language, compression, processing for transmission or storing,
etc.), it is necessary to find a reliable method that would work even un-
der considerable interference and will be modifiable for different types
of interference and noise. The methods known to date can basically be
divided into two large groups: single-channel methods and multi-channel
methods. The basic problem of these methods lies in a rapid and pre-
cise method for estimating noise, on which the quality of enhancement
method depends. If the noise is of stationary or quasi-stationary nature,
its determination brings further difficulties. A method is proposed in the
article for enhancing the estimation of power spectral density of noise
using the wavelet transform.

Keywords: Speech Enhancement, Power Spectral Density, Wavelet Transform
Thresholding.

1 Introduction

The wavelet analysis is a certain alternative to the Fourier representation for the
analysis of short-term stationary real signals such as speech that is degraded by
noise. If the noise is of non-stationary nature, then the greatest problem con-
sists in estimating its power spectral density with sufficient frequency resolution.
Two types of estimating the power spectral density are known: non-parametric
methods and parametric methods. The best-known non-parametric methods in-
clude the Barlett method of periodogram averaging [1], the Blackman and Tukey
method of periodogram smoothing [2], and the Welch method of averaging the
modified periodograms [3]. Although the three methods have similar proper-
ties, the Welch method is the most widely used. These methods are called non-
parametric because the parameters of the data being processed are not sought
in advance. To yield a good estimate of the power spectral density the methods
require the application of a long recording of data (at least 104 samples).



The periodogram is defined as follows:
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The function X
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is the Fourier transform of discrete signal x[n]. It can
be shown that the periodogram is an asymptotically unbiassed estimate but its
variance does not decrease towards zero for N → ∞. This is to say that the
periodogram itself is not a consistent estimate [4]. To be able to use the FFT,
we must choose the discrete frequency values:
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k = 0, 1, . . . , N − 1.

The periodogram is calculated at N frequency points fk. For the comparison of
the properties of non-parametric methods, the quality factor was proposed:
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k = 0, 1, . . . , N − 1.

A comparison of the non-parametric methods is given in Table 1. All the three
methods yield consistent estimates of power spectral density. In the Bartlett
method a rectangular window is used whose width of the main lobe in the fre-
quency response when the maximum value drops by 3 dB is ∆f = 0.9/M , where
M is the length of partial sequences. In the Welch method a triangular window
is used whose width of the main lobe in the frequency response when the maxi-
mum value drops by 3 dB is ∆f = 0.28/M , whereM is again the length of partial
sequences and their overlap is 50%. In the Blackman-Tukey method, too, the
triangular window is used and ∆f = 0.64/M . As can be seen, in the Blackman-
Tukey and the Welch methods the quality factor is higher than in the case of the
Bartlett method. The differences are small though. What is important is that
Q increases with increasing length of data N . This means that if for a defined
value Q we want to increase the frequency resolution of estimate ∆f , we must
increase N , i.e. we need more data.

The main drawback of non-parametric methods is the fact that they assume
zero values of the autocorrelation estimate r[m] for m ≥ N . This assumption
limits the frequency resolution of the periodogram. It is further assumed that
the signal is periodic with period N , which is not true either. Since we have at
our disposal only a sequence of finite length, there is aliasing in the spectrum.

There are, of course, also other methods that can extrapolate the values of
autocorrelation for m ≥ N . On the basis of the data analysed the parameters of
the model are estimated (that is why they are called parametric methods), and
using the model the properties of power spectral density are determined. Three



Method of PSD
estimation

Q
Number of complex

multiplications

Bartlett [1] 1.11∆fN N
2

log2

0.9
∆f

Blackman-Tukey [2] 2.34∆fN N log
2

1.28
∆f

Welch [3] 1.39∆fN N log
2

1.28
∆f

Table 1. Comparison of the quality of non-parametric methods according to [4].

types of model are known: AR (Auto Regressive), MA (Moving Average), and
ARMA. From the three models, the AR model is the most frequently used. This
is because it is well-suited to represent a spectrum with narrow peaks and then
the Yule-Walker equation can be used to calculate the model coefficients. Wold
[5] derived a theorem that says that any random process of the type of ARMA
or MA can be represented uniquely using an AR model of infinite order.

The noise of blender was chosen for the comparison of different methods for
estimating power spectral density. Blender noise is no typical random process
since in addition to the random signal due to the friction between the blender
content and blender parts it also contains periodic components due to rotor ro-
tation. This noise was chosen because this type of noise is often encountered
in speech enhancement. The majority of household appliances (vacuum cleaner,
hair drier, etc.) and workshop machines (drilling, grinding, sawing and other
machines) produce a similar type of noise. Fig. 1 gives a comparison of the esti-
mates of power spectral density of blender noise obtained using a periodogram
(full line) and a 15th order AR model (dashed line). As stated above, the peri-
odogram is an asymptotically unbiased estimate but its variance may cause an
error of as much as 100 % [6]. Moreover, it is inconsistent since it does not de-
crease with increasing signal length. This is shown in Fig. 1 by the large variance
of values given by the full line. By contrast, the AR model provides a smoothed
estimate of power spectral density. In the calculation, however, we encounter
difficulties when estimating the order of the model. If a very low order of the
model is used, we only obtain an estimate of the trend of power spectral density
and lose the details, which in this case represent the maxima of the harmonics
of periodic interference. If, on the contrary, the order of AR model is high, we
obtain statistically unstable estimates with a large amount of false details in
the spectrum. The variance of such an estimate will be similar to the estimate
obtained using the periodogram. The choice of the order of the model is an im-
portant part of the estimation and depends on the statistical properties of the
signal being processed. These properties are, however, in most cases also only
estimated. For a short stationary signal the value of the order of the model can
be chosen in the range:

0.05N ≥M ≥ 0.2N, (4)



where N is the signal length, and M is the order of the model [6]. For segments
whose length N = 200 samples the minimum order is M = 10. But for signals
formed by a mixture of harmonic signals and noise this estimate mostly fails.

An estimate obtained using the periodogram can be made more precise via
averaging the modified periodograms, which we obtain by dividing the signal
into segments and weighting the latter by a weighting sequence. This approach
is used in the Welch method for estimating the power spectral density [3]. In
Fig. 2 we can see a comparison of the estimates of power spectral density ob-
tained using the Welch method (with 13 segments weighted) and the AR model
of 15th order. It is evident from the Figure that in comparison with the es-
timate obtained using the periodogram the Welch method yields a smoothed
estimate, whose variance, moreover, decreases with increasing number of aver-
aged segments (consistent estimate). Dividing the signal into segments naturally
results in a reduced frequency resolution of the estimate, which shows up in
less pronounced maxima that represent the components of periodic interference.
In addition, in the case of non-stationary noise, periodograms may be averaged
for segments that include interference of different statistical properties and thus
also of different power spectral densities. This further reduces the accuracy of
estimating the power spectral density.

2 Enhancing the estimate of power spectral density,

using the wavelet transform

To enhance the estimate of power spectral density the wavelet transform can also
be used. In [7] the non-parametric estimate of the logarithm of power spectral
density is made more precise using the wavelet transform. With this method,
statistically significant components of the estimate are obtained from threshold-
ing different levels of wavelet decomposition and thus its non-negative values are
ensured. The input signal is interfered with by additive non-Gaussian noise, and
the wavelet coefficients of additive noise are assumed to be independent of the
wavelet coefficients of power spectral density of useful signal. For the process-
ing, type Daubechies wavelets of the 1st, 4th, 6th and 8th orders and type coiflet
wavelets of the 2nd and 3rd orders were used. The method does not assume any
preliminary knowledge of the type of noise. In [8] the authors endeavour to find a
better estimate of power spectral density than the periodogram logarithm itself.
To do this, they use the Welch method of modified periodograms, when they first
average K periodograms that have first been multiplied by the spectral window.
In [9] the method of wavelet transform thresholding is used to estimate noise,
and this estimate is used to enhance speech by the spectral subtraction method.

Consider a stationary random process x[n], which has a defined logarithm of
power spectral density lnGxx

(
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)

, |f | ≤ 0.5. As the function lnGxx
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is periodic by frequency f , it can be expanded into a discrete Fourier series [4]:
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Fig. 1. Estimation of power spectral density of blender noise, using the periodogram
and the 15th order AR model

Fig. 2. Estimation of power spectral density of blender noise, using the Welch method
of averaging modified periodograms for 13 segments, and the 15th order AR model.
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m = 0,±1,±2, . . . .

Discrete Fourier series coefficients v[m] are cepstral coefficients and the sequence
v[m] is the cepstrum of autocorrelation sequence γxx[m], where the Wiener-
Khinchine relation holds:
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where it holds γxxm] = E (x∗[n]x[n+m]), where the symbol ∗ denotes a complex
conjugate.

The estimate of autocorrelation sequence equals:
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and it holds:
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The inverse equation to equation (5) has the form:
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where σ2
w = ev[0] is the variance of white noise sequence w[n]. The transfer

function H(z), z = ej2πf , is the causal part of discrete Fourier series (10) and
H(z−1) its non-causal part. In case the AR model is used, it holds for the transfer
function:
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The power spectral density will be obtained as follows:
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where σ2
w is the variance of white noise sequence w[n], for which it holds:
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The periodogram Pxx
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Using the periodogram we can determine the power spectral density as:
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If we assume noise to be a Gaussian random process, then the logarithm of
periodogram can be modelled as:
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where ǫ
(
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)

is a random process with probability distribution χ2
2 with two

degrees of freedom, and γ ≈ 0.57721 is the Euler-Mascheroni constant [7, 11]. The
random process ǫ

(
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)

, which is responsible for the periodogram variance, can
be removed via thresholding the wavelet transform coefficients. The coefficients
of the discrete wavelet transform with discrete time Cj,m[k] will be calculated
according to the relation:

Cj,m[k] =

N−1
∑

k=0

(lnPxx[k] − γ)ψj,m[k], (17)

where Pxx[k] are samples of the periodogram of the implementation of a random
process of length 2N = 2M+1 obtained by the discrete Fourier transform, and
the base functions ψj,m[k] are derived by a time shift j = 0, 1, . . . , 2m−1 and
dilatation with the scale m = 0, 1, . . . , log2N of a single mother function ψ[k]
according to the relation:
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The transform is linear and therefore the coefficients will represent the sum of
the coefficients representing the sought power spectral density gj,m[k] and the
coefficients representing the noise ej,m[k]:

Cj,m[k] = gj,m[k] + ej,m[k]. (19)

As the random processes ǫ[k] are independent and the transform is orthogonal,
the coefficients ej,m[k] will be non-correlated. At the same time, however, they
are not independent since their probability distribution is independent of the
shift j but is dependent on the scale m. But according to the central limiting
theorem their probability distribution converges with increasing m→ ∞ to the
Gaussian normal distribution. The coefficients are modified via soft thresholding
according to the relation:

C
(s)
j,m[k] = sgn (Cj,m[k])max (0, |Cj,m[k]| − λ) , (20)



where λ is the threshold value chosen. After that the smoothed estimate of power
spectral density of noise Ĝxx[k] is obtained (via the inverse discrete wavelet
transform) in the form:

ln Ĝxx[k] =
1

N

M
∑

m=0

2m
−1

∑
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C
(s)
j,m[k]ψj,m[k], (21)

k = 0, 1, . . . , N − 1.

With regard to the asymptotically normal distribution of coefficients ej,m[k]
the threshold value λ can be determined using the universal thresholding pro-
posed by Johnstone, et al., [10] in the form:

λ = σ
√

2 logN, (22)

where σ is the standard deviation of noise, and N is the length of data. In [11] an
optimum determination of the threshold in dependence on the scale is proposed.
If the scale is large, then the threshold equals:

λm = αm lnN, (23)

where the constants αm are given in Table 2 and N is the length of data. If the
scale is small, m << M − 1, the threshold will be determined according to the
relation:

λm =
π√
3

√
lnN. (24)

The blender noise, which was used in testing the estimations using the AR
model, the Welch method and the periodogram, was also used in the estimation
via thresholding the coefficients of the wavelet transform of the periodogram. A
comparison of this estimation with that using the AR model is shown in Fig. 3.
It is evident that the estimate using the AR model is more smoothed but has
a smaller frequency resolution than the estimate obtained via thresholding the

scale m αm scale m αm

M − 1 1.29 M − 6 0.54

M − 2 1.09 M − 7 0.46

M − 3 0.92 M − 8 0.39

M − 4 0.77 M − 9 0.32

M − 5 0.66 M − 10 0.27

Table 2. Values of constant αm for determining the threshold when thresholding the
wavelet transform coefficients.



wavelet transform coefficients. On the contrary, the estimate obtained via thresh-
olding the wavelet transform coefficients is less smoothed but the pronounced
peaks in the power spectrum, which represent the harmonic components of the
blender motor interference, are localized in the frequency more easily than in
the case of AR models. This is also evident from a comparison of the method
of thresholding the wavelet transform coefficients with the Welch method of
thresholding modified periodograms in Fig. 4.

3 Experimental results

The proposed method of power spectral density estimation was tested on speech
enhancement by spectral subtraction [12] of actual recordings of speech signal
interfered with by different types of noise. The speech signal was interfered with
by the noise of blender and vacuum cleaner, which have the character of wide-
band noise almost approximating white noise. In the testing, the speech signal
was also exposed to interference by noise from a drilling machine and a Ford
Transit, which on the contrary have the character of narrow-band noise. In view
of the fact that the recordings were made in a real environment and it was im-
possible to obtain pure speech signal without interference, the estimation of the
quality was performed using the signal-to-noise ratio determined segmentwise
according to the relation:

SNRseg = 10 log10

Rs

Rν

. (25)

The power of signal Rs is determined from a segment containing the speech
signal while the power of interference Rν is estimated from a segment that does
not contain the speech signal.

A noisy speech signal was enhanced using the proposed modified method
of spectral subtraction. For comparison, the speech was also enhanced by the
method of spectral subtraction with the power spectral density of interference
being estimated using the Welch method. For enhancement, the RASTA method
was also applied. The values of SNR of the original signal and of the signal
reconstructed by the individual methods are given in Table 3.

Compared to the original spectral subtraction method and the RASTA me-
thod there was a marked improvement in the SNR in the case of interference of
wideband character - vacuum cleaner or blender. Less good results are obtained
in the case of noise of narrow-band character, where additionally much depends
on the position of narrow-band noise. If noise is in the same frequency band as
speech, e.g. drilling machine, the modified method of spectral subtraction ex-
hibits an improvement of SNR which is only a little lower than the improvement
in the original method of spectral subtraction or the RASTA method. If the po-
sition of narrow-band noise is outside the speech frequency band (low-frequency
noise of the Ford Transit engine), then the modified method is comparable with
the other methods.



Fig. 3. Estimation of power spectral density of blender noise, via thresholding the
wavelet transform coefficients of periodogram and via the AR model of 15th order.

Fig. 4. Estimation of power spectral density of blender noise, via thresholding the
wavelet transform coefficients of periodogram and via the Welch method of averaging
modified periodograms for 13 segments.



Estimation of signal-to-noise ratio SNRseg [dB]

Method Original Modified Spectral RASTA

Type of noise signal method subtraction method

Vacuum cleaner 12 22 16 16

Blender 5 17 12 13

Drill 0 13 17 14

Ford Transit 3 20 18 17

Table 3. Estimation of signal-to-noise ratio for four different types of noise and three
different methods of speech signal enhancement.

4 Conclusions

A new method for enhancing the estimation of power spectral density of noise
via thresholding the wavelet transform coefficients was proposed. It led to a re-
duced variance in the estimate of power spectral density of noise. The smoothed
estimate was then used to enhance the speech signal hidden in noise, using the
spectral subtraction method. Thanks to the lower variance in the estimate of
power spectral density of noise there was also a lower variance in the estimate of
the power spectrum of speech signal and a reduction in the signal reconstruction
error. Judging by the experiments made, the method is in the first place suitable
for noise that is of wideband nature - e.g. shower, vacuum cleaner, and the like.
Listening tests showed that thanks to the lower noise variance the musical noise
was suppressed which was the by-product of the existing method of spectral sub-
traction. The estimation of power spectral density of noise via thresholding the
wavelet transform coefficients can also be used in other single-channel methods
of speech enhancement.
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