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Abstract. This paper considers component supply planning for assembly
systems where several types of components are needed to produce one finished
product. The actual component lead times have random deviations. The aim of
this study is to find the optimal MRP offsetting when the Periodic Order
Quantity (POQ) policy is used. The proposed model and algorithms minimize
the sum of the setup and average holding costs for the components, while
satisfying a desired service level for finished product.
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1 Introduction

Material Requirements Planning (MRP) is a commonly accepted approach for
replenishment planning in major companies. The practical aspect of MRP lies in the
fact that this provides a support clear and simple to understand, as well as a powerful
information system to decision making [1], [9], [10].

Nevertheless, MRP is based on the supposition that the demand and lead times are
known. However, most production systems are stochastic. This is because there are
some random factors and unpredictable events such as machine breakdowns, transport
delays, etc. which can cause random deviations from planning [4]. Therefore,
actually, the deterministic assumptions of MRP are often too restrictive. Thankfully,
the MRP approach can be tailored to uncertainties by searching optimal values for its
parameters [3], [11]. Thus, one of essential issues is MRP parameterization for real
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life companies in industrial situations. This is commonly called MRP offsetting under
uncertainties.

Some MRP parameters are: planned lead time, safety stock, lot-sizing rule,
freezing horizon, and planning horizon. There are extensive publications concerning
safety stock calculation [5], [8]. In contrast, certain parameters seem not to be
sufficiently examined as, for example, planned lead times. Nevertheless, this
parameter (differences between due dates and release dates) is especially important
for assembly systems, because for these systems all components must be present to
begin the assembly, so a delay of a component blocks the entire process. The
difficulty of the calculating optimal planned lead times (safety lead times) in
assembly systems lies in the interdependence among different component stocks.
Certainly, many types of components are needed to produce a single finished item.
Therefore, the inventory level of a component depends on the stock levels of other
components. Stockout for a component leads to shortage, and so decreases the service
level. In addition, as the assembly process is stopped, the stocks of other components
increase (because they are not used) and consequently the corresponding holding
costs augment.

This problem is the subject of this paper. It was already examined in our earlier
work. The case of Lot-for-Lot policy was examined in [2]. In the model proposed, the
backlogs are authorized and a unit backlogging cost is supposed to be known. The
objective was to minimize the sum of average backlogging and holding costs. A
special case was considered in [6], when all components have identical properties, i.e.
the same lead time probability distribution and unit holding cost. The optimal planned
lead times were obtained using an extension of the Discrete Newsboy. This result was
extended to the Periodic Order Quantity (POQ) policy in [7]. However, the
assumptions used in the last two publications are relatively restrictive. Moreover, in
real life applications the unit backlogging cost is difficult to ascertain. The purpose of
this paper is to extend these models to a more general case of POQ policy with
service level constraints and different holding and setup costs.

2 Objective of this Study

Each MRP table has several parameters: lot-sizing rule; planned lead time for the time
phasing, safety stock, etc.

In this paper, the POQ lot-sizing rule is considered and only the following
essential parameters are optimized (due to of their importance):

- periodicity (p);

- planned lead times (x;).

It is clear that, for assembly systems, the parameters x; and the periodicity p cannot
be calculated separately for each component type (if we search for optimal solutions).
Indeed, in assembly systems, the difficulty of determining optimal component
planned lead times resides in the interdependence among different component
inventories. Many types of components are needed to produce one product; therefore,
the inventories of the different components become dependent.



In this paper, we consider assembly systems with one-level BOM when the POQ
lot-sizing policy is used. Components are ordered every p periods. The periodicity is
the same for all component types. The goal is to search for the optimal values of the
parameters p and x;, i=1,2,...,n minimizing the sum of the setup and average holding
costs for the components, while satisfying a desired service level for finished product
as well as taking into account the interdependence among the inventories of the
different components.

3 Cost and Service Level Calculation

The POQ lot-sizing rule is used with periodicity p common for all component
types (p is a decision variable). The orders for components are made at the beginning
of the periods kp+1, k=0,1,2,..., and there is no order made in the periods kp+r,
r=23,....p.

The following additional notations are used:

h;  unit holding cost for component i

c setup cost, i.e. the cost incurred each time a replenishment order is made

L;  probability distribution for the component i lead time

u;  upper value of lead time distribution for component i

LF lead time of the components 7 ordered at the beginning of the period &

D demand for finished product per period

a;  quantity of component i needed to assemble the finished product

p supply periodicity

O;  supply order quantity for component ¢

x;  planned lead time for component i

1-& objective service level

The demand is constant, therefore, the supply orders Q; of components i are also
constant Q;=a;Dp. The finished products are delivered at the end of each period and
unsatisfied part of demand is backordered and has to be satisfied during the
subsequent periods.

In the considered model, the quantities ordered are the same, so the planned lead
times give also initial inventories. Thus, the aim of this study can be expressed in
other terms: to find the optimal values of the initial inventories a;Dx; and parameter p,
where x;, i=1,2,...,n, are the planned lead times.

This approach takes into account the major factors of the supply planning in
assembly systems with random lead times to obtain an efficient optimization
algorithm for planned lead times and the periodicity calculation.

As aforementioned, a particular case of this model was earlier considered in [7],
where all components have identical properties, i.e., the same lead time probability
distribution and the same unit holding cost. The new techniques proposed in this
paper were developed without these restrictive assumptions.

For the considered model, given that the maximal value of the component i lead
time is equal to u;, only the orders made in the previous u;-1 periods may not have
arrived yet. The orders made before have already arrived. Therefore, the number



NP"™ of orders for the component i which are in waiting at the end of the period

m=kp+r is easy to calculate.
Let

uj —1-r
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be the lead times of the orders made at the beginning of the periods ip+1, (k-
Dp+,..., (k- “f’p” w1

If L?”“*j > j, then the order made in the period m+1-j is delivered after the end

of the period m.
Let 1 be the binary function equal to 1 when the expression £ is true and equal to

0 otherwise. Therefore, if le+1_~/>/' is equal to 1, then the order made at the period
i ;

m+1-j is delivered after the end of the period m. Thus, the random variables N l-p o

can be represented as follows:
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The variables N l-p " are independent for different types of components, and also

independent from the decision variables x;. Thus, they can be used to derive closed
forms for the shortage level and cost [7].

The average cost has the following closed form:

p
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The average number of shortages has the following closed form:
p
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4 Cost Optimization under Service Level Constraint

The optimization problem can then be written as follows:

Minimize C(X, p) 4)
Subject to:
1 L 1 p.r xi7r+p (5)
r=1 i=l
p S p.r (6)
NP =N/

r=1
, , 7
FP7 (x)=Pr(NP" <x) Q)
n ®)

i=1
0<x;<u; -1, i=1...,n 9
I<p<u-1 (10)

The optimization problem (4)—(10) seems difficult to solve because of the
nonlinearity of the objective function and the fact that the decision variables are
integers. Nevertheless, in an earlier work [12] we already solved a similar problem:
minimizing the sum of holding, setup and backlogging (instead of the service level
constraint) costs. The approach was based on the partial incremental functions defined
as follows:

G,-Jr(X,p) = C(xpy e X+ 1,0y X, P) = C (X5 oy Xjy o X5 P) s
G (X,p) = C(xqy ey X; =L oty X, D)= C(XY 5 ey Xy oees Xy P) -
It was proved that G; (X, p) is increasing on x; and decreasing on x; for j

different from i. Inversely, G; (X, p) is decreasing on x; and increasing on x; for j

different from i.

These properties can be easily extended for the objective function considered in
this paper (the sum of holding and setup costs) with service level constraint and used
to prove the following dominance properties:

If G;" (4, p) <0, then each solution (X, p) with x; = a; is dominated,

If G; (B,b) <0 and the vector (ay,....,a;_1,b; —1l,a;,1,...,x,,) satisfies the desired

service level, see constraint (9), then each solution (X, p) with x; = b; is dominated.
In addition, the following lower bound on the objective function in the space
[4, B]x {p} can be proven:



n
LB(p)= C(4, p)+ Y. (b; —a;) min(G; (b s by 1, ;s ay, p).O) 1)
i=1

Let us present the space of all possible values of x; by [4, B], where A= (a;,a;
seews 4y ), B=(by, by, ..., b,),and a;, b; are minimal and maximal possible values

for x, , respectively, i.e. a; <x; <b;.

A Branch and Bound (B&B) approach can be used. Each node of the Branch and
Bound tree represents a solution space [4,B]xp. Two cut procedures are developed
based on the aforementioned dominance properties. They are applied to each current
solution space [4,B]Xp (to each current node). The forward cut procedure replaces 4
by a larger vector, while the backward cut procedure replaces B by a smaller vector. A
procedure is also developed to calculate lower bounds for any solution space [4,B]%p,
i.e., any branch tree node, using LB(p) see (11). To calculate an Upper Bound for a
given node [4,B]xp, a heuristic method consisting in a variant of depth first search
can be used. It partitions the solution space (current node) into two subspaces (nodes)
and chooses as current node the node that has the best feasible solution at one of its
two extremities, and so on. A root upper bound is also calculated by exploring all the
promising values of the parameter p.

Algorithm B&B:

For each periodicity p do:

- Activate the solution space corresponding to the periodicity p. This initial space

is represented by one node corresponding to all possible lead time values.

- Reduce the size of this node using dominance properties.

While the solution space is not empty do:

- Activate the node corresponding to the subset having the largest number of
solutions.

- Divide this node into two new nodes (subsets).

- Reduce the size of the new nodes using dominance properties.

- If the reduced subsets contain feasible and not dominated solutions, then:
add them to the solution space.

- If the processing of the new nodes gives a better solution than the current
best one, then: update the current best solution and delete the nodes having
their lower bound larger than the current best solution.

End while

End for

The algorithm is applied for each value of p whose initial solution space [4,B]xp
is not dominated. This B&B algorithm is a variant of width first search that consists in
choosing for extension the node that contains the maximum number of solutions.

We studied an example with #n=10 different types of components. The maximum
value of the lead time was equal to 10 (#=10). The unit holding costs 4; were chosen
as follows: 9, 2, 4, 6, 4, 3, 10, 5, 6, and 2. Setup (ordering) cost ¢ was equal to 100.
The required service level was 0.99.



For this example, the optimal solution was obtained after 301 iterations of the B&B
algorithm, where, the cost is equal to 266.652, periodicity p is 2, and values of
planned lead times for the considered ten types on components are 8, 9, 9, 8, 8, 8, 8,
7,77, 8, respectively.

5 Conclusions

This paper further develops the models of our previous publications while considering
the case of POQ policy. The objective is to determine the values of the following two
types of MRP parameters for all components: order periodicity and planned lead
times, minimizing the sum of average holding cost for the components and setup
costs. There are no restrictive assumptions on the probability distributions and unit
holding costs. In addition the backlogging cost is replaced with a service level
constraint, which is a more realistic parameter.

The model presented in this paper uses less restrictive assumptions than previous
models known in literature. This is a multi-period model with no restriction on the
number of components and where lead time density function for each component may
differ from the density functions of other components. All possible distributions can
be used for component lead times. The decision variables are integer; they represent
the periodicity and planned lead times for components. Branch and Bound approach is
developed. The experimental study shows that the proposed B&B algorithm is very
fast. It will always find the optimal solution within a very short computing time.

The proposed model and algorithms can be used in many industrial situations. For
example, often security coefficients are introduced to calculate the planned lead time
for unreliable suppliers in an MRP environment. In this case, planned lead times are
equal to contractual (or forecasted) lead times multiplied by the security coefficients.
These coefficients are empiric but anticipate the delays by creating safety lead times.
The more unreliable a supplier is, the larger its coefficient. The model and algorithms
suggested in this paper can be used to better estimate these coefficients basing on
statistics on the procurement lead times for each supplier and taking into account the
holding and setup costs, as well as a service level constraint.

Nevertheless, the model proposed keeps some restrictive assumptions as: fixed and
constant demand for the finished product (for a given period), one-level bill of
material, same order cost and periodicity for all components, etc. Therefore, for some
actual industrial cases, the solution obtained can be approximate and not optimal.
Future research will be focused on the study of how to relax some of these
assumptions, for example, examining multi-level bills of material (BOM).

Concerning the assumption of constant demand, note that this model should be
used with different possible values of the demand to examine the sensitivity of the
obtained parameters to said values. If the parameter values are significantly different
for the given demand levels, the approach by scenarios can be applied to choose the
parameter values. In addition, the demand variations can be decoupled from planned
lead time calculation by using safety stocks. This is another perspective for future
research.
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