
Balancing mass production machining lines with

genetic algorithms

Olga Guschinskaya1, Evgeny Gurevsky1, Anton Eremeev2, and Alexandre
Dolgui1

1 École Nationale Supérieure des Mines de Saint-Étienne
158, cours Fauriel, 42023 Saint-Étienne Cédex 2, France

{guschinskaya, gurevsky, dolgui}@emse.fr
2 Omsk Branch of Sobolev Institute of Mathematics SB RAS

Pevstsov St. 13, 644099 Omsk, Russia
eremeev@ofim.oscsbras.ru

Abstract. A balancing problem for serial machining lines with multi-
spindle heads is studied. The objective is to assign a set of given ma-
chining operations to a number of machines while minimizing the line
cost and respecting a number of given technological and economical con-
straints. To solve this problem, three different genetic algorithms are
suggested and compared via a series of numerical tests. The results of
computational experiments are presented and analyzed.

1 Introduction

Balancing serial machining lines with multi-spindle heads is a very hard com-
binatorial problem. It consists in assigning a set of given machining operations
to a sequence of transfer machines. The number and the configuration of these
machines are not known in advance and they must be defined by optimization
procedure. In fact, each transfer machine can be equipped with a number of
multi-spindle heads activated in sequence. The number and the order of activa-
tion of multi-spindle heads depend on the operations assigned to each spindle
head. A set of operations assigned to the same spindle head is referred to as
block. All operations within a block are executed simultaneously. The parallel
execution of operations is possible due to the fact that multi-spindle heads carry
several tools activated by the same driver. The assignment of an operation to
a spindle head defines which tool must be fixed and in which position. There-
fore, the final operations assignment defines the configuration of each spindle
head and, as a consequence, each transfer machine. This assignment is subject
to numerous technological constraints which must be respected for a feasible ma-
chining process. The design objective is to find a configuration of a line which
satisfies all given technological and economical constraints and minimizes the
line cost that depends directly on the number of used equipments.

Since the presented balancing problem is NP-hard, using optimization tools
becomes indispensable for designers who seek for taking efficient decisions. The

first mathematical model for this problem has been presented in [3] and referred
to as the Transfer Line Balancing Problem (TLBP). Several exact and heuristic
methods have been developed to solve TLBP, a quantitative comparison of the
proposed solution methods has been presented in [8]. The numerical tests showed
that solving exactly industrial instances of this problem is time consuming and
inapplicable for end users who have to deal in practice with designing a number
of lines at the same time. As a consequence, powerful metaheuristic approaches
are clearly needed for effective solving real-size problem instances. In this pa-
per, three different genetic approaches are suggested for getting relatively good
solutions for real case problems.

2 Problem Statement

For a TLBP problem instance, the following input data is assumed to be given:

– N is the set of all operations involved in machining of a part;
– tj is the processing time of operation j, j ∈ N;
– T0 is the maximal admissible line cycle time;
– τS and τ b are the auxiliary times needed for activation of a machine and a

spindle head, respectively;
– C1 and C2 are the costs of one machine and one spindle head;
– m0 is the maximal admissible number of machines;
– n0 is the maximal number of spindle heads per machine.

The following constraints must be taken into account:

– Precedence constraints between the operations. These constraints define non-
strict partial order relation over set of operations N. They are represented
by a digraph G = (N,D). An arc (i, j) ∈ N

2 belongs to set D if and only
if the block with operation j cannot precede the block with operation i. If
(i, j) ∈ D then operations i and j can be performed simultaneously in a
common block.

– Inclusion constraints defining the groups of operations that must be assigned
to the same machine, because of a required machining tolerance. These con-
straints can be represented by a family Im of subsets of N, such that all
operations of the same subset e ∈ Im must be assigned to the same ma-
chine.

– Exclusion constraints defining the groups of operations that cannot be as-
signed to the same machine because of their technological incompatibility.
These constraints are represented by a family Em of subsets of N, such that
all elements of the same subset e ∈ Em cannot be assigned to the same
machine.

– Cycle time constraint: Let Nk be the set of operations of machine k, k ∈
{1, . . . ,m}, m ≤ m0, m is the number of machines in a solution S. Let
Nkl be the set of operations grouped into common block l, l ∈ {1, . . . , nk},
of machine k, nk ≤ n0, where nk is the number of blocks of machine k in

solution S. Using these notations, the cycle line constraint can be introduced
like follows:

nk∑

l=1

tb(Nkl) + τS ≤ T0, k ∈ {1, . . . ,m},

where tb(Nkl) = max{tj : j ∈ Nkl} + τ b is the time of l-th block of k-th
machine.

Therefore, a solution S of TLBP can be represented by a collection S =
{{N11, . . . , N1n1

}, . . . , {Nm1, . . . , Nmnm
}}, determining an assignment of N to

machines and blocks. Solution S is feasible, if it satisfies all constraints described
above. The studied problem consists in minimizing the investment costs which
can be represented as follows:

C(S) = C1m + C2

m∑

k=1

nk → min
S∈S

,

where S is the set of all feasible solutions.

3 Genetic Algorithm: General Approach

A genetic algorithm (GA) is a metaheuristic which uses some mechanisms in-
spired by biological evolution: reproduction, mutation, crossover, and selection
see e.g. [9, 10]. Such an approach has been already successfully applied for solving
different balancing problems, see for instance the review [11].

A genetic algorithm starts with an initial population which contains a num-
ber of individuals. In our implementation, each individual represents a feasible
solution for the studied problem. These individuals are generated by using a
heuristic. Each individual is characterized by the fitness function (the cost of
the solution in our case) determining the chances of its survival.

The encodings of individuals are usually called genotypes. In this paper,
three different techniques of encoding are presented and compared on a series of
benchmark problems.

To model the evolution of a population, two parents (individuals) are cho-
sen from the population and are used to create an offspring (new individual).
In the presented implementation of the GAs, each parent is selected using the
s-tournament method: s individuals are taken at random from the current pop-
ulation and the one with the best fitness is selected as a parent. Therefore, the
population size Nsize pop remains constant during the execution of a GA.

New individuals are built by means of a reproduction operator that usually
consists of crossover and mutation procedures. The crossover procedure produces
an offspring from two parent individuals by combining and exchanging their el-
ements. The mutation procedure adds small random changes to an individual.
Finally, the obtained offspring replaces the worst individual in the current pop-
ulation, if the offspring has better value of the fitness function.

The algorithm is restarted with a new initial population every time the num-
ber of iterations during which the current solution has not been improved is
equal to Inon imp. This continues until the total execution time reaches the limit
Tmax. The best solution found over all runs is returned as the final output.

The aim of this paper is to find the most efficient genetic algorithm for balanc-
ing real-size machining lines with multi-spindle heads. To do it, three different
GAs are presented and compared. The first one is based on MIP formulation
of TLBP and, as a consequence, uses a binary-based encoding of individuals.
This algorithm is described in Section 4. The second and the third genetic al-
gorithms presented in Section 5 and 6, respectively, employ other mutation and
crossover procedures and solution encodings based on using different heuristics.
The performances of these algorithms are compared in Section 7 on a series of
benchmark problems.

4 GA1: Binary-Based Encoding

The MIP model of TLBP proposed in [3] is employed by this algorithm. The
individuals are coded using binary variables Xjq, j ∈ N, q ≤ n0m0: Xjq equals
1 if operation j is assigned to block q, 0 otherwise. These variables are used to
describe the operations assignment to blocks in a feasible solution.

In this genetic algorithm, the initial population of individuals is obtained by
heuristic suggested in [4]. Each individual is represented by a sequence of values
of variables Xjq. A MIP-recombination operator is used to obtain an offspring
from the selected parents. Firstly this operator fixes all Boolean variables equal
to their values in parent p1 and then it releases (with probability Pc) all Boolean
variables having different values in p1 and p2 (analogue of crossover). Finally, it
changes (with probability Pm) the values of randomly selected variables (ana-
logue of mutation). The obtained MIP problem (with some fixed variables) is
solved by a MIP solver.

In our implementation of GA1, ILOG CPLEX 9.0 is used to solve MIP prob-
lems. To avoid time-consuming computations, a limit time Trec is fixed to the
solver at each call. If the solver does not return a feasible solution to the subprob-
lem, then the MIP-recombination outputs a genotype obtained by the standard
mutation procedure.

The second and the third genetic algorithms (GA2 and GA3, respectively)
use a non-binary based encoding of the individuals, like in [2]. This means that
the way to obtain a feasible solution and not the solution itself is encoded. In the
presented algorithms, two different heuristic methods are used for constructing
feasible solutions from individuals. The two algorithms are based on using two
different heuristics.

5 GA2: Encoding Based on GBL Heuristic

GA2 uses GBL (Greedy Blocks Loading) heuristic [6] for solution encoding. An
individual consists of a sequence of parameters that are used by GBL heuristic

for constructing a feasible solution. Here, a brief description of this heuristic is
given, for more details see [6].

The solution construction starts with one machine with an empty block.
Then, operations are assigned to the current machine by adding new blocks.
When no more blocks can be created at the current machine, a new machine is
created. This continues until all operations are assigned. To select an operation
to be assigned to the current machine, list CL (Candidate List) is used. This
list contains all operations that can be assigned in the current moment, i.e. for
which precedence constraints are satisfied and there is no exclusion constraint
with the operations assigned to the current block and machine. When CL is
constructed, a greedy function is applied to each candidate operation and the
operations are ranked according to their greedy function values. Well ranked
candidate operations are placed into a restricted candidate list (RCL). Then,
an element is randomly selected from RCL and added to the solution. Taking
this into account, list CL is updated.

In GA2, instead of one determined greedy function, different criteria are
imployed for ranking operations in list CL. The following greedy functions can
be used:

– Lower bound on the number of blocks required to assign all successors of
operation i with condition that i will be assigned to the current block;

– Lower bound on the number of blocks required to assign immediate suc-
cessors of operation i with condition that i will be assigned to the current
block;

– Total number of all successors of operation i ;
– Total number of immediate successors of operation i ;
– Processing time of operation i.

Two possible techniques for constructing list RCL are also considered:

RCL = {j ∈ CL : g(j) ≥ gmax − α(gmax − gmin)},

in order to select the operations with greater greedy values, and

RCL = {j ∈ CL : g(j) ≤ gmin − α(gmin − gmax)},

to select the operations with smaller greedy values. Here gmax and gmin are
respectively the minimum and the maximum of greedy function g(j) over list CL.
Parameter α ∈ [0, 1] controls the trade-off between randomness and greediness
in the construction process.

Therefore, each time list RCL is built, one of ten (2*5) criteria can be used.
Taking into account the fact that each operation is to be chosen one time, an in-
dividual is represented by the number of genes equal to the number of operations.
The value of each gene is the code of the criterion to be used for constructing
list RCL. The first time, RCL is build using the criterion corresponding to the
value of the first gene and so on. The initial population is created by attributing
random values to genes.

The fitness value of an individual is measured by the cost of the corresponding
solution obtained by GBL heuristic.

The crossover procedure is implemented as follows: each child’s gene inherits
the value of the corresponding gene either from parent p1 (with probability Pc)
or from parent p2 (with probability 1 − Pc). The mutation procedure selects at
random two child’s genes and increases (with probability Pm) or decreases (with
probability 1 − Pm) by one the integer value for any gene between these two
positions.

A local search procedure presented in [6] is applied to the best individual
in the current population. The used method is based on the decomposition and
aggregate solving of sub-problems by a graph approach.

6 GA3: Encoding Based on FSIC Heuristic

This genetic algorithm (GA3) uses FSIC (First Satisfy Inclusion Constraints)
heuristic for constructing feasible solutions from individuals. The last version
of this heuristic and its parameters have been presented in [7]. Therefore, the
encoding of individuals is based on the use of the parameters that the heuristic
employs during the construction of a feasible solution for a TLBP problem.

In heuristic FSIC, as in heuristic GBL, the operations are assigned one by one
and new blocks and machines are created when necessary. List CL is also used,
but list RCL is not employed. As it was presented in [7], the selection of the
operation to be assigned depends on 4 control parameters: check time ∈ {0, 1},
check blocks ∈ {0, 1, 2}, divide L2 ∈ {0, 1}, trials L2 ∈ {0, 1}. Their values can
be changed each time list CL is constructed. The results of test experiments
presented in [7] have been used for selecting the ten most effective combinations
of these parameters. A code was assigned to each of these ten combinations.
These codes are used for individuals encoding in GA3. Taking into account the
fact that each operation is to be chosen once, an individual is represented by the
number of genes equal to the number of operations. The value of each gene is the
code of a combination of the control parameters. The solution construction starts
with the parameters corresponding to the value of the first gene. Then, each time
list CL is rebuilt, the values of the control parameters are changed accordingly
to the value of next gene. The fitness value of an individual is measured by the
cost of the corresponding solution obtained by FSIC heuristic.

The initial population is generated randomly. The crossover and mutation
procedures are the same as in GA2. As for GA2, a local search procedure pre-
sented in [6] is applied to the best individual in the current population.

7 Experimental Results

The purpose of this section is to compare the performances of three proposed
genetic algorithms GA1, GA2, GA3 and the best heuristic method FSIC (the
last version of this heuristic can be found in [7]). To do this, 2 series of randomly

generated (S1-S2) and 2 series (SI1-SI2) of industrial instances have been used.
All experiments were carried out on Pentium-IV (3 GHz, 1.5 RAM).

For series S1-S2, the following problem parameters are used: C1 = 10, C2 = 2,
T0 = 100, τ b = τS = 0, n0 = 4. Each series of S1-S2 contains 50 test problems.

The number of operations and the order strength (OS = 2|D|
|N|(|N|−1)) are as

follows: |N| = 25 and OS = 0.5 for Series S1, |N| = 50 and OS = 0.9 for Series
S2. The available time per test was limited by 90 sec for S1 and by 300 sec for
S2.

The following notations are used for the presentation of the obtained re-
sults: NO is the number of instances where the optimal solutions were obtained;
∆max, ∆av are respectively the percentage of maximal and average deviation of
a obtained solution from the optimal one for the same problem instance.

Table 1. Results for S1-S2

S1 S2
GA1 GA2 GA3 FSIC GA1 GA2 GA3 FSIC

NO 50 50 50 23 49 50 49 18
∆max, % 0 0 0 10.53 1.72 0 2.13 6.00
∆av, % 0 0 0 3.15 0.03 0 0.04 2.14

The results presented in Table 1 show that for Series S1-S2 the proposed
genetic algorithms demonstrated rather similar performances. Algorithm GA2
found 100% of optimal solutions, GA1 and GA3 reached 99% of optimums while
heuristic FSIC found only 41% of optimal solutions.

The both Series SI1-SI2 contain 20 industrial problems. The following param-
eters are the same for all these problem instances: C1 = 1, C2 = 0.5, T0 = 5.15,
τ b = 0.2, τS = 0.4, n0 = 4. The maximal, average and minimal numbers of oper-
ations are respectively 92, 72, 46 for the instances from Series SI1 and 127, 108,
87 for the instances from Series SI2. The maximal, average and minimal values of
the order strength are respectively 0.53, 0.45, 0.39 for the instances from Series
SI1 and 0.5, 0.43, 0.33 for the instances from Series SI2. The available solution
time was limited by 720 sec for SI1 and 2400 sec for SI2.

Taking into account the fact that for these test series the optimal solutions
are not known yet, the solutions obtained by GAs and FSIC are compared with
the best known solutions. The following notations are used for the presentation
of the obtained results: NB is the number of instances where the best known
solution was obtained; ∆max, ∆av, ∆min are the percentage of maximal, average
and minimal deviation of a obtained solution from the best known one.

With respect to the results given in Table 2 GA2 provided in average a
better solution than GA1, GA3 and FSIC. Algorithm GA2 found 38 best known
solutions for 40 test problems while GA1, GA3 and FSIC obtained only 7, 3 and
1 ones, respectively. The average deviation of GA2 for series SI1-SI2 is equal to
0.51% while it is 2.79%, 4.32% and 18.92% for GA1, GA3 and FSIC, respectively.

Table 2. Results for SI1-SI2

SI1 SI2
GA1 GA2 GA3 FSIC GA1 GA2 GA3 FSIC

NB 3 20 3 1 4 18 0 0
∆max, % 7.14 0 10 32 7.04 0.09 10.84 45.07
∆av, % 3.34 0 3.71 13.33 2.23 1.01 4.93 24.50
∆min, % 0 0 0 0 0 0 0.78 13.85

Therefore, it can be concluded that all suggested methods outperformed heuristic
FSIC and algorithm GA2 performs in average better than other methods.

References

1. Baybars, I.: A survey of exact algorithms for the simple assembly line balancing.
Management Science. 32, 909–932 (1986)

2. Baykasoğlu, A., Özbakir, L.: Stochastic U -line balancing using genetic algorithms.
The International Journal of Advanced Manufacturing Technology. 32, 139–147
(2007)

3. Dolgui, A., Finel, B., Guschinsky, N.N., Levin, G.M., Vernadat, F.B.: MIP approach
to balancing transfer lines with blocks of parallel operations. IIE Transactions. 38,
869–882 (2006)

4. Dolgui, A., Guschinskaya, O., Eremeev, A.: MIP-based GRASP and genetic algo-
rithm for balancing transfer lines. Matheuristics, Annals of Information Systems,
V. Maniezzo, T. Stützle, S. Voß (Eds.), Springer US. 10, 189–208 (2010)

5. Ghosh, S., Gagnon, R.: A comprehensive literature review and analysis of the design,
balancing and scheduling of assembly systems. International Journal of Production
Research. 27, 637–670 (1989)

6. Guschinskaya, O., Dolgui, A.: Équilibrage des lignes d’usinage à bôıtiers multi-
broches avec la méthode GRASP. Actes de la 7ème Conférence Internationale de
Modélisation et Simulation (MOSIM’08). 2, 1121–1130 (2008)

7. Guschinskaya, O., Dolgui, A.: A transfer line balancing problem by heuristic meth-
ods: industrial case studies. Decision Making in Manufacturing and Services. 2,
33–46 (2008)

8. Guschinskaya, O., Dolgui, A.: Comparison of exact and heuristic methods for a
transfer line balancing problem. International Journal of Production Economics.
120, 276–286 (2009)

9. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan
Press (1975)

10. Reeves, C.R.: Feature article – genetic algorithms for the operations researcher.
INFORMS Journal on Computing. 9, 231–250 (1997)

11. Scholl, A., Becker, C.: State-of-the-art exact and heuristic solution procedures for
the simple assembly line balancing. European Journal of Operational Research. 168,
666–693 (2006)

