5 CONTINGENCIES-BASED
RECONFIGURATION OF HOLONIC
CONTROL DEVICES

Scott Olsen, Jason J. Scarlett, Robert W. Brennan, and Douglas H. Norrie
Department of Mechanical and Manufacturing Engineering
University of Calgary, 2500 University Dr. N.W. Calgary, CANADA T2N IN4

In this paper, we propose a dynamic approach to programmable logic
controller (PLC) reconfiguration that is based on the IEC 61499 standard for
distributed, real-time control systems. With this form of reconfiguration
control, contingencies are made for all possible changes that may occur. We
illustrate this approach with a simple system configuration that uses Rockwell
Automation’s Function Block Development Kit (FBDK) for the software
implementation and Dallas Semiconductor’s Tiny InterNet Interface (TINI) for
the hardware implementation.

1. INTRODUCTION

By definition, “holons” contain both an information processing part and a physical
part (Gruver et al.,, 2001). Moreover, “holonic systems” are essentially adaptive
agent-machine systems. As a result, it is not surprising that the Holonic
Manufacturing Systems Consortium (2004) has a work group devoted to these
software/hardware devices or Holonic Control Devices (HCD). This paper focuses
on the “adaptive” aspect of these agent-machine systems. In particular, we
investigate how emerging software and hardware technologies can be taken
advantage of to create systems at the device level that can dynamically reconfigure
themselves in response to changes in the manufacturing environment (e.g., device
malfunctions or the addition and/or removal of equipment).

Reconfiguration of conventional industrial controllers such as PLCs
(programmable logic controllers) involves a process of first editing the control
software offline while the system is running, then committing the change to the
running control program. When the change is committed, severe disruptions and
instability can occur as a result of high coupling between elements of the control
software and inconsistent real-time synchronization. For example, a change to an
output statement can cause a chain of unanticipated e vents to occur throughout a
ladder logic program as a result of high coupling between various rungs in the
program; a change to a PID (proportional/integral/derivative) function block can
result in instability when process or control values are not properly synchronized.

46 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

In this paper, we propose a dynamic approach to PLC reconfiguration that is
based on the IEC 61499 standard (IEC, 2000) for distributed, real-time control
systems. With this form of reconfiguration control, contingencies are made for all
possible changes that may occur. In other words, alternate configurations are pre-
programmed based on the system designer’s understanding of the current
configuration, possible faults that may occur, and possible means of recovery. This
approach uses pre-defined reconfiguration tables that, in the event of a device
failure, allow the affected portions of an application to be moved to different devices
by selecting an appropriate reconfiguration table.

The paper begins with an overview of our contingencies-based reconfiguration
model. In order to implement this approach, we develop an IEC 61499 based
reconfiguration management service that allows function block applications to be
reconfigured dynamically (i.e., the management services ensure that the HCD is
properly synchronised during reconfiguration). This reconfiguration manager also
serves as an interface to higher-level software to enable intelligent reconfiguration
(e.g., the use of multiagent techniques to allow the system to reconfigure
automatically in response to change) (Brennan and Norrie, 2002).

Next, we illustrate this approach with a simple sy stem c onfiguration that uses
Rockwell Automation’s Function Block Development Kit (FBDK) (Christensen,
2004) for the s oftware i mplementation and D allas S emiconductor’s T iny InterNet
Interface (TINI) (Loomis, 2001) for the hardware implementation. The paper
concludes with a discussion of on how the reconfiguration process can be managed
in a resource-constrained environment (i.e., such as on the TINI board), the
limitations of Java for real-time distributed control, and the possibilities for
intelligent reconfiguration in this type of system.

2. DESIGNING FOR RECONFIGURATION
2.1 A Contingencies Approaches to Reconfiguration

With this form of reconfiguration control, contingencies are made for all possible
changes that may occur. In other words, alternate configurations are pre-
programmed based on the system designer’s understanding of the current
configuration, possible faults that may occur, and possible means of recovery.

This approach uses a library of pre-defined configurations as shown in Figure 1.
For example, in the event of a device failure, the affected portions of an application
could be moved to different devices by selecting an appropriate configuration. As
well, this detailed representation of the function block interconnections would allow
higher-level agents to access the information required to make a smooth transition
from one configuration to another, thus enabling dynamic reconfiguration.

2.2 AnIEC 61499 Based Reconfiguration Management Service

An IEC 61499 based “reconfiguration manager” was developed to address the
need for an interface between upper level agents (e.g., scheduling, fault monitoring,
configuration) and lower control applications for dynamic reconfiguration of

Contingencies-based reconfiguration 47

distributed systems. With respect to the manufacturing control system as a whole,
external agents responsible for failure monitoring and system wide reconfiguration
interact with each other as well as with the reconfiguration manager and the system
to be controlled.

The reconfiguration manager must have certain capabilities in order to
effectively link the higher-level agents to the lower level machine control. The
reconfiguration manager running on the controller must be able to receive messages
from agents in order to apply the appropriate control application to the controlled
process, as shown in Figure 1. For example, scheduling agents (SA) in charge of
scheduling parts to be processed and machine agents responsible for monitoring the
status of the processing equipment may send information to a configuration agent
(CA) that makes the decision of which control application should be. implemented
on the controller. Through the /O capabilities of the controller, the control
application may control and/or monitor a process that is accomplishing a s pecific

task.
@\&’ MA
C

Y

" c1 s
Reconfig Mgr EEE’ [
7 XN Pl
configX
g
Process Control p2
U
TINI 35
l PC t _Process to Control

Ethernet
Figure 1 — The reconfiguration manager implementation

The basic function of the reconfiguration manager is to load and unload new
control applications on the controller hardware at the request of outside agents.
During the transition period when a control application is unloaded and a new one is
being loaded, the reconfiguration manager must have the ability to maintain a
transitional state for the controlled process to remain in. It should be noted that the
control applications must have the built-in ability to save the state information of the
controlled process, and also retrieve that state information for the next control
application if necessary. These features allow for continuous smooth and stable
performance of the controlled process.

Loading a new control application requires access to the library where all of the
contingent control applications are stored. Since the control application only defines
how function blocks are connected together and the values of any external variables,

48 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

there must be access to the library where the class files are stored. These libraries
may each be located on different hardware platforms. In order to be effective, the
reconfiguration manager must perform its function under real-time constraints.

The reconfiguration manager is a distributed application running concurrently on
the embedded control platform (i.e., the TINI platform) and the PC as shown in
Figure 1. Communication between the PC and TINI is through an Ethernet
connection. In the next section, we provide further details on the prototyping
environment as well as some basic experiments that were conducted to test this
approach to reconfiguration control.

3. EXPERIMENTS

3.1 The Prototyping Environment

The prototyping environment that is currently being used for our experiments
with IEC 6 1499 consists o f function block application s oftware and a Ja va-based
control platform.

The software component of our prototyping environment, Function Block
Development Kit (FBDK) (Christensen, 2004), was developed by Rockwell
Automation primarily for testing IEC 61499 concepts in a simulated environment.
For our experiments, a MANAGER function block is used to provide the IEC 61499
device management services on our controller platforms. For example, this function
block provides services to allow function block instances to be created, deleted,
started, killed, etc. and also provides information on function block status (e.g.,
READY, INVALID STATE, OVERFLOW, etc.). This allows distributed
applications to be developed using FBDK and run (and managed) on a network of
controllers (rather than just simulated on a single PC).

The hardware c omponent o f our prototyping environment consists ofa D allas
Semiconductors Tiny InterNet Interface (TINI) (Loomis, 2001) board running on a
Taylec TutorIO prototyping board. The TINI board includes a DS80C390
microcontroller (an Intel 8051 derivative) that supports JDK 1.2 (Java Development
Kit) applications and also supports several forms of I/O such as discrete and
analogue I/O, serial, Ethernet, 1-Wire and Controller Area Network (CAN). In order
to experiment with the TINI board, the TutorIO board provides interfaces to the I/O
(e.g., a two-line LCD, LEDs, etc.).

3.2 The Test Scenarios

The experimental set-up is composed of a conveyor belt system for transporting
parts to a manufacturing process. As parts arrive at each process, they are counted
so that when a certain number of them have arrived, the conveyor is stopped and the
process is applied to a batch of parts. When the process has been completed, a
signal is sent to start the conveyor again.

This particular conceptual manufacturing system was chosen so that it would be
flexible enough to allow for various configurations but not overly complex. A less
complex system allows for the focus to be placed on demonstrating the key concepts
associated with the reconfiguration process rather than on the control application

Contingencies-based reconfiguration 49

itself. Also, due to the limitations of the TINI, particularly with its relatively slow
application loading times, a less complicated control application is desirable.

To compare the results of the reconfiguration manager and control applications
running the TINI, a similar system was implemented entirely on the PC. A virtual
device was set up on the PC with FBDK to simulate the TINI in order to run a
modified version of the reconfiguration manager and the control applications. The
inputs and outputs from the Taylec board were simulated with virtual lights and
buttons that appear on the PC screen. The simulated versions of the reconfiguration
manager and the control applications running on the “virtual TINI” have identical
functionality as the TINI-based applications. This allows a reasonable comparison
of the two systems and a meaningful assessment of the prototyping environment.

This part of the experiments was motivated by the limitations of the TINI
platform. For example, one of the limitations is a result of a limit on-the number of
Publisher/Subscriber pairs a TINI can support. T hisis a result ofthe numberof
threads that a TINI can support. Since PCs typically have much higher processing
capabilities in comparison to embedded platforms, the PC comparison provides a
lower bound on these latencies. In terms of real-time performance, the PC may not
possess superior capabilities. However, in this case, the limitations relate more to
processor resource limitations which are rapidly being overcome by new platforms
(discussed in section 4).

The three test scenarios reported in this paper are illustrated in Figure 2. The
initial configuration, illustrated in Figure 2(a), involves a single conveyor (B1) that
transports parts to a holding area where a process (P1) is applied to a batch of parts.
The parts are counted by sensor C1 as they pass along the conveyor belt. When the
process has been completed, sensor S1 sends a signal indicating that the P1 is ready
for a new batch of parts.

S1
C1 D
S1 D
C1 B1
D P1
B1 U
P1
P2
B2 D
o |
S2
(a) Scenario 1 (b) Scenarios 2 and 3

Figure 2 — The test scenarios

50 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

The second scenario, shown in Figure 2(b), depicts the situation where a second
process (P2) is added. This contingency may be required in the event of additional
equipment is introduced to the system or in the event that the controller for the
second process has failed.

Finally, the third scenario, also illustrated in Figure 2(b), involves the case where
a failure at P2, or in the event of rescheduling by a higher-level agent (e.g., to
balance the two lines shown in Figure 4(b)). In this case, the conveyor feeding P2 is
moved to feed P1, or a third conveyor is added to divert parts to P1 (shown by the
dashed conveyor in Figure 2(b).

3.3 Experimental Results

In order to quantify the real-time performance of the reconfiguration manager,
the time to load and run different applications was measured. Loading times were
measured for applications running on the TINI and for the simulated ‘virtual TINT’
system to allow for a reasonable assessment of the performance on the prototyping
platform. Two different TINI boards were used to perform the reconfiguration
experiments, with nearly identical results from each one.

In Figure 3 we show the experimental results for the TINI platform. For these
results, the application launch time represents the time to kill the application running
on the TINI platform, FTP the contingent control application to the TINI platform,
and then launch this new application. In order to compare the three scenarios
described in the previous section, we calculate an application complexity metric that
is based on application size (in KB), number of function block connections, and
number of function blocks. This metric is normalized with respect to the initial
scenario (i.e., this scenario has a complexity of 1). For example, scenario 1 has an
application size s; = 5.02 KB and it uses ¢; = 27 connections to connect b; = 11
function blocks. As a result, scenario 3 (s; = 7.91 KB, ¢; = 44, b; = 20) has a relative
complexity of 1.67: i.e.,

Complexity of scenario 3 =(s3/s; +¢3/¢c; + b3/ b;)/3 =1.67

Figure 4 shows the results for the ‘ virtual TINI” system noted previously. F or
these experiments, all of the same steps noted above were performed, however the
control application was run on a 400 MHz, Pentium II processor.

Comparing the launch times to the relative complexity of the control applications
in Figures 3 and 4, it is apparent that there is a correlation between launch time and
application size. The launch time increases significantly with the increase in
application size. Unfortunately, the launch times on the TINI platform are too slow
for practical applications. This is partially a result of the increased processing
requirements placed on the TINI platform by the reconfiguration manager process
(shown in Figure 1). However, the overall performance of is still quite slow without
this process running. For example, scenario 1 takes 85 seconds to launch and
scenario 3 takes 102 seconds to launch on the TINI without the reconfiguration
manager running.

Contingencies-based reconfiguration 51

300
~
(7]
©
S 280
g Scenario 3
0
L
@ 260 - - s m o m e T el
E
=
- R
S 240 oo
c
3
-
T 220 A SCRNAN0 D
2
e
S 200 |- ¥SCOMANIO L
3
o
<

180

0.8 1 12 1.4 16 1.8 2
Application Complexity
Figure 3 — Application launch time for the TINI platform

3.2
-~
(]
k-]
R R A e e
8 Scenario 3
@
& gl
o
E
209 o
=
[*]
c
B 2B [
-
§ 27 o
® Scenario 2
[¢]
E 26 f--cmmeeeeee - S' """" ' “*‘1 --
2 cenario

2.5 .

0.8 1 1.2 1.4 1.6 1.8 2

Application Complexity

Figure 4 — Application launch time for the PC platform

4. CONCLUSIONS

It appears from the results reported in the previous section that the main
limitation of this reconfiguration approach lies in the application launching process
as illustrated in Figure 3. In particular, when reconfiguration is required, the existing
control application is killed, a new application is loaded, and finally the new
application is launched. Once the control application is launched, the TINI

52 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

platform’s real-time performance is quite acceptable (please refer to Rumpl et al.,
(2001) for more information on the TINI’s run-time performance).

Reconfiguration should not necessarily require a complete replacement of the
existing application however. For example, the changes required to move from a
control application for scenario 1 to one for scenario 2 or 3 should only require the
addition of a small number of function blocks and/or the “re-wiring” of variable and
event connections. Unfortunately, the TINI Java Virtual Machine (JVM) supports a
limited implementation of JDK 1.2, and as a result, does not support this form of
reconfiguration. In particular, the TINI JVM does not support dynamic class loading
and serialization.

In order to address this implementation issue, the authors are currently
investigating alternative embedded Java-based platforms such as the Systronix aJile
Euroboard (or Sale) (Sale, 2004) and the ImSys Simple Network Application
Platform (or SNAP) (ImSys, 2004). Our work in this area is focusing on both
dynamic and intelligent reconfiguration issues. For example, given the increased
memory and processing speed of these platforms, we will be able to more closely
investigate the timing issues associated with reconfiguration.

As well, the “re-wiring” approach noted above will be further investigated. The
IEC 61499 standard’s support of XML descriptions is particularly promising in this
area (IEC, 2000). This format allows unambiguous specifications to be written for
function block applications that can be used for initial system configuration as well
as subsequent reconfiguration. In other words, changes in an application’s
configuration can be specified using a well-formed XML document; the
reconfiguration manager’s job is then to parse the XML description and to make the
necessary changes to the application (e.g., changing connections, adding/removing
function blocks, etc.). The anticipated advantages of this approach are that it should
overcome the application loading issues described in this paper and also open the
door for more intelligent approaches to reconfiguration (e.g., using higher level
configuration agents to reason about new configurations rather than relying on pre-
defined contingencies).

5. REFERENCES

1. Brennan, R.W. and Norrie, D.H. “Managing fault monitoring and recovery in distributed real-time
control systems,” 5th IEEE/IFIP International Conference on Information Technology for Balanced
Automation Systems in Manufacturing and Services, Cancun, Mexico, pp. 247-254, 2002.

2. Christensen, J.H. Function Block Development Kit, holobloc.com, 2004.

3. Gruver, W., Kotak, D., van Leeuwen, E., Norrie, D. (2001) “Holonic manufacturing systems — phase
2”, the International IMS Project Forum 2001, Ascona, Switzerland.

4. HMS, Holonic Manufacturing Systems Consortium Web Site, http://hms.ifw.uni-hannover.de/, 2004.

5. IEC TC65/WG6 (2000) Voting Draft — Publicly Available Specification - Function Blocks for
Industrial Process-measurement and Control Systems, Part 1-Architecture, International
Electrotechnical Commission.

6. ImSys, Web Site, http://www.imsys.se, 2004.

7. Loomis, D. The TINI Specification and Developer’s Guide, Pearson, 2001.

8. Systronix, Web Site, http://www.systronix.com, 2004.

