10 MULTI-AGENT BASED FRAMEWORK
FOR LARGE SCALE VISUAL
PROGRAM REUSE

Mika Karaila

Energy & Process Automation, Research & Technology Department
Metso Automation Inc. FIN-33101 Tampere, FINLAND
+358-40-7612563 mika.karaila@metso.com

Ari Leppéniemi

Ari.leppaniemi@metso.com

Today's application engineers are committed to the reuse of programs for
performance and economic reasons. Moreover, they increasingly have to
complement application programs with less information and in shorter time.
The reuse of already implemented programs is therefore fundamental. We have
implemented a process automation specific framework that supports reuse of
our domain specific visual language. The visual Function Block Language is
used for power plant and paper machine controls.

The reuse framework discussed in this paper relies in identification and usage
of templates, which are used for generating actual application sofiware
instances.

The framework automates data mining with software agents collecting
‘metadata. The metadata is send ahead to the receiver agent that stores the data
into the central d atabase. Another agent analyzes stored d ata and p erforms
template matching. Again another agent is called for more detailed template
match comparison. Although the database is centralized, the agents can be
distributed and run in intranet. The framework i mplementation is p ure j ava
based and runs on JADE-FIPA agent platform

1. INTRODUCTION

Normally computer programs are written using textual programming languages. The
more sophisticated or domain specific environment programming can be done in
visual way. CAD-like programming environment will support different kinds of
symbols and connections describing methods or relationships between the actual
objects or instances.

The process automation specific visual language is used for making customer
specific process control software (mass customization). The application software is
created with visual Function Block Language (Figure 1. An example program).
Later on function block loops are compiled to byte-code that is executed on the
control system.

92 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

Figure 1 — An example program.

A function block is a capsulated subroutine. It will run functions according the
given parameters and connections. Each parameter value reflects to component’s
functionality and connections are binding dynamic values to a function block. Each
function block will allocate only the predefined amount of memory, because in
process industry controls the real-time response and functionality must be
predictable.

One function block diagram may represent actually many programs and
document efficiently one program entity. If the program is larger, the program can
be divided into multiple diagram pages with references.

In process industry each delivered project c ontains c ustomer s pecific d ata and
field devices. The program interface for the field devices is implemented with
varying project specific addressing convention. An average project contains 5000-
6000 loops / function block diagrams and over 20000 input/output-connections for
the field devices.

When dealing with such a large amount of data, an efficient and successful
project requires mass customization. Normally an engineer uses his/her own
knowledge and earlier implemented programs in each project.

The basis of effective application implementation relies on usage of so called
templates. Templates are application entities describing individual parts of process
control software, without project specific definitions. Actual application instances
are created when project specific data is combined to template. Our framework
utilizes a practical way to identify and search these templates and implemented
instances for project reuse.

Multi-agent based framework for large scale visual program reuse 93

2. FRAMEWORK ARCHITECTURE

The reuse framework is based on delivered project archives. These project library
archives contain all implemented application solutions. Application instances and
templates used are stored as DXF-files (Data eXchange Format) on directory
structure corresponding to the projects process hierarchy. These archives are
accessible for project engineers as mounted network disks.

The reuse framework developed binds these detached project libraries under
single content management entity. The centralized content management solution
stores only the essential application metadata from diagrams to content management
server and allows the archived files remain in local project libraries. The stored
metadata includes also links to actual application solution files.

The content management server contains search interface for finding appropriate
application solutions for reuse. The stored metadata is used as search conditions and
the desired solutions can be downloaded from local project libraries through the file
links (Figure 2. Reuse framework, basic architecture).

[Projectiibrary Server

Projectiibrary
[Metadata trom all the
projects.

cal Project File Storage

433 Projecas

Figure 2 — Reuse framework, basic architecture

The metadata consists of the general part of data included to the diagram header:
creator, modifier, creation time, modification time and other basic description fields.
The general data is informative and practical as search conditions later on.

Moreover some data is read or calculated from the diagram objects: object count,
primary function and statistical amounts of the following:

Entities,

Function blocks,

Analog inputs / outputs,
Digital inputs / outputs, and
Connection type.

94 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

In addition, to a search criteria this kind of metadata is used for analyze and
compare diagrams comprehensively in the database. Comparing actual diagrams
files does the final and more detailed comparison. Since the actual file comparison is
rather heavy process the preliminary comparison is essential for better performance.

Another performance related problem was solved by distributing tasks to agents
running on local computers instead of centralized everything on content
management server.

3. JADE-FIPA AGENT PLATFORM

The developed reuse framework is implemented on JADE-FIPA agent platform.
JADE (Java Agent Development Framework) is a software development framework
aimed at developing multi-agent systems and applications conforming FIPA
standards for intelligent agents. It includes two main products: a FIPA compliant
agent platform and a package to develop Java agents (JADE, 2004) (Bellifemine et
al., 2004).

The agent platform can be split to several hosts, as has been done in developed
reuse framework implementation. Only one Java application, and therefore only one
Java Virtual Machine (JVM), is executed on each host. Each JVM is a basic
container of agents that provides a complete run-time environment for agent
execution and allows several agents to concurrently execute on the same host.

The JADE Agent class represents a common base class for user-defined agents.
Therefore, from a programmer’s point of view, a JADE agent is simply an instance
of a user defined Java class that extends the base Agent class (Figure 3). This
implies the inheritance of features to accomplish basic interactions with the agent
platform (registration, configuration, remote management...) and a basic set of
methods that can be called to implement the custom behavior of the agent (e.g.
send/receive messages, use standard interaction protocols, register with several
domains...).

AL B A i34 ?: F XL
|
{

Figure 3 — Implemented application agents.

4. AGENTS & TASKS

The implementation of the developed multi-agent based reuse framework uses only
simple JADE agent behavior classes. The agent communication is implemented as

Multi-agent based framework for large scale visual program reuse 95

common JADE agent communication language (ACL) that is based on java remote
method invocation (RMI) -communication.

The developed framework includes four types of agents. XMLsender-agents are
executed on project library hosts. They agents detect new directories in the local
project library disks. Agent will automatically process zip-compressed files
searching essential application metadata. The XML-coded metadata is enveloped
into an agent message and passed ahead to XMLreceiver-agent on content
management server (Figure 4). The XMLreceiver-agent will receive metadata
messages and store the data into the database.

Periodically executed Analyzer-agent performs analyzes in content management
database. Analyses include project template summary counts, template identification
and template matching to generated instances. When the Analyzer-agent identifies a
matching template it will inform Compare-agent that will then compare the template
with generated instance files locally on project library hosts. After the comparison
Compare-agent replies to Analyzer-agent that updates comparing results into the
database.

— Add
o> metadata
to database 1

Project fibrary host Content management server
— Detectand i i
"> process | H H
new directories : : :
Send!XML metadata | H
I i
i i
i

— Analyze
1" and match

([Request Incal template - ;nscance comgarisonf templates
1

[r— Compare 1 1
fpe templateand | H
| instance focally | !
1] E

R 1R L S——

1 § Update
——

H | > Database

e

Figure 4 — Agent interaction.
4.1 XMLsender Agent

The XMLreport-agent detects new directories in the given environment according to
last modification date of the file. Special JADE WakerBehavior is used to execute
new directory search at regular intervals just after a given timeout is elapsed. New
archived files are identified and processed. The searched metadata is enveloped into
an agent message and passed ahead to XMLreceiver-agent over intranet. The
essential data is also stored locally to XML-files for possible later use.

4.2 XMLreceiver Agent
XMLreceiver-agent receives XMLsender-agent’s XML-coded metadata messages.

Special JADE CyclicBehaviour class is used to control the message receiving
process. The XML-messages are parsed to common attribute-value pairs and stored

96 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

to content management database. XMLreceiver-agent is also able to update already
existing metadata entries into the database.

4.3 Database Analyzer Agent

Periodically executed Analyzer-agent is used to process the database-stored
metadata. A gent’s main task is to identify and match templates used to generated
instances. The identification process uses the similarities between primary function
blocks, function block amounts, and certain function block attributes to match
templates to instances. When Analyzer-agent identifies matching template-instance
pairs it will request Compare-agent for more accurate template match comparison.
Analyzer-agent will get comparison results from the Compare-agent and update the
result value to the database. :

Analyzer-agent is also used to perform certain project specific analyses. For
example, the project summary analyses include etc. different loop type and IO
connection counts and complexity numbers that can be used to support decision-
making.

4.4 DXF Compare Agent

Compare-agent receives DBanalyzers matching requests. The agent compares the
actual template and instance files and calculates match values. When no structural
changes between the template and instance exist the match value equals 100. That is,
only different parameter values may exist. Each structural chance diminishes match
value with a certain amount. For example by deleting and adding one symbol the
match value is decreased by two to 98.

Function blocks are compared first at element level: new and removed elements
are identified. For the common existing elements, parameter values are compared.
Most critical changes are structural changes that are actually viewable as added or
removed elements. The comparison can also be visualized with different colors
indicating added and removed elements and changed parameter values.

S. SEARCH CAPABILITIES

The versatile search tool is essential for engineers to find and download good
application s olutions for reuse. The d eveloped framework c ontains T omcat s erver
based search tool enabling versatile search options. The search tool implementation
takes advantage of java-bean, JSP-page and applet technologies and thus the users
can access the search tool without any external program installations by using only a
web browser.

The search interface (Figure 5) allows users to search application solutions
according to collected metadata and a gent p erformed analysis. The search canbe
focused to certain process areas and projects. The more detailed search criteria can
include e.g. the main function of the program (function block like pid-controller or
motor controller), the IO connection type used and the application creation time.

Multi-agent based framework for large scale visual program reuse 97

The search results include all the matching application solutions or templates.
Each search match can be taken to more detailed inspection. The more detailed view
represents all the relevant metadata of the current loop.

Fila Tyon Temlata Bl]
2 N—— s —
3 #

I

Idontifior Brojact Nams
* 2236101002 209037 DILVIONSCREEN REJECT FLOW COMTROL EMI Rebuld#Shor CXulatcrds 166
Z25FSA1015 203037 DIWUTION SCREEN SEALING WATER FLOW £MJ Rebuldushon Crailations it 160
* 225FSAI0I2 200037 OUUTIONPUMP SESLING WATER RGW PM1 Rebuld#shen Coxulationat 100
" RASH00) 203032 1 B iguke 160
" RASHIDIG. 209857 OULTION SCREEN SUPPLY VAVG BN RRmEdSL Cinvldtiona k. 91

225H41014 209037 DILTIONSCREEN FILLING VALLE
t ZZEPI00Y 203037 DILUTIONSCREEN OUTLETPRESSURE
225FUI0IY 209637 OILUTION SCREEN INUET FRESSURE
" 225PADAY 209032 DIAHON REGSIRE -

Figure 5 — Search interface.

The templates and instances used can also be graphically examined by using the
DXF-viewer applet. DXF-viewer functionalities include also panning and zooming.

The search interface contains also possibilities to inspect complete project and
process area analyses. Analyses include information about different kind of
implemented IO connection and application loop amounts. These analyses serve also
as the project summaries when complete projects are archived.

Analyses also contain essential key figures estimating project complexities and
implementation methods. For example, the project summary analyses include
complexity values that can be used to support decision-making concerning schedules
and workloads for similar projects in future. Also marketing may use c omplexity
figures as a support when pricing future projects.

6. CONCLUSIONS

The agent based reuse framework developed has enabled an efficient way for users
to archive and share implemented solutions and knowledge. The automated agent-
based application solution filing process together with search tool has proven to be
an efficient and practical solution.

The current content management database size exceeds now 800 Mega bytes.
Database contains over 200 projects and links together over 30 Giga bytes of
compressed files. Metadata has been archived from approximately 600000 function
block diagrams. The usage of search tool has become a part of application engineers
working manners. Approximately 2000 searches are performed monthly.

98 EMERGING SOLUTIONS FOR FUTURE MANUFACTURING SYSTEMS

Our experiences with JADE-FIPA agent platform have illustrated the flexibility
and s uitability o f the multi-agent technologies to function in local and distributed
environment. Moreover, the agent platform has been very stable. Although the
current agent messaging has been tested only in local office network, the JADE
supports also HTTP communication that also enables communication over Internet.

The analyses and template-matching processes implemented have allowed us to
study more the real problem of finding a higher abstraction level for mass
customization.

7. RELATED WORK

A similar agent framework is used also for traditional software reuse (Erdur et al,
2000). The framework is more advanced and contains more agents than this
implementation. Another good study is related more to our visual language and the
metadata handling. Younis and Frey have made a survey how existing PLC
programs can be formalized (Younis et al., 2003). Even our template matching is on
general level it binds instances and templates together for reuse and in future also for
reverse engineering capabilities.

8. FUTURE DEVELOPMENT

The future development work of the reuse framework includes uploading new
feature templates and instances to project library hosts. With this feature we are
striving to get applications reused more quickly and efficiently.

The analyses methods will be further developed to use enhanced algorithms to
match a template. Also, the differences between instance and templates can be
already visualized in the CAD based engineering tools and it should be added also to
search interface’s applet window. This can be very good way to make first analysis
from the variation similarities.

9. ACKNOWLEDGMENTS

We would like to thank professor Tarja Systd (Tampere University of Technology)
for the support, Timo Kuusenoksa for the coding and many other people who
provided helpful comments on previous versions of this document.

10. REFERENCES

1. Bellifemine F abio, C aire Giovanni, Trucco Tiziana, Rimassa Giovanni, J ade A dministrator’s G uide
http://sharon.cselt.it/projects/jade/ Accessed 23.1.2004.

2. Erdur Riza Cenk, Dikenelli Oguz, Agent Oriented Software Reuse (June 2000)

3. JADE-FIPA, http://sharon.cselt.it/projects/jade/ Accessed 23.1.2004.

4. Younis M. Bani, Frey G., Formalization of existing PLC Programs: A Survey (July 2003)

