ESC/Java2 as a Tool to Ensure Security in the Source
Code of Java Applications™

Aleksy Schubert!:? and Jacek Chrzaszcz!

nstitute of Informatics
Warsaw University, Poland
2S0S Group NIII
Faculty of Science
University of Nijmegen, Netherlands

Abstract. The paper shows how extended static checking tools like ESC/Java2
can be used to ensure source code security properties of Java applications. It is
demonstrated in a case study on a simple personal password manager. In case of
such an application the ensuring of security is one of the most important goals.
We present the possible threats connected with the current state of the code and
its possible future extensions. This investigation is further accompanied by a
presentation on how these threats can be controlled by JML specifications and
ESC/Java2.

1 Introduction

Security sensitive applications require a thorough analysis of their security properties.
In order to assure the high degree of security of an application, the software industry
uses the techniques such as careful design and testing.

Another way to ensure the high quality of the source code is to use some tool
supported way of ensuring additional properties of the code. It is usually based on
the static examination of the code structure and interdependencies. These techniques
require different amounts of additional human labour. The least costly ones are those
based on finding error prone coding patterns (PREfix [1], FindBugs [2]) and can be
used to enforce certain coding guidelines. The more laborious techniques like static
typing (Splint [3], JFlow [4] etc.), extended static checking (ESC/Java [5] and its suc-
cessor ESC/Java2) and model checking (Bandera [6]) require more human effort. They
rely on the source code annotation that instructs tools how to conduct the verification.
The conformance of the source code to the annotations is subsequently automatically
proved. The additional work allows to discover less obvious bugs and provide ad-
ditional documentation which allows to better express and enforce the design decisions
done by the designers of the systems. The most laborious techniques are the ones which
involve the full formal verification of systems (Jack [7], Loop [8] etc.). They require
both additional annotations with detailed specifications and construction of a proof that
the code matches the specifications. The latter task is the most time consuming one.

* This work was partly supported by KBN grant 3 TI1C 002 27 and Sixth Framework
Programme MEIF-CT-2005-024306 SOJOURN.

330 Aleksy Schubert, Jacek Chrzgszcz

In this paper, we focus on the application of the extended static checking. This
method is one of the static verification methods that presents certain trade-off between
no annotation effort techniques like FindBugs and full functional verification systems
like Jack or Loop. The extended static checking relies on additional annotations in the
source code and offers automatically generated proofs that the source code conforms to
them. This allows to express more complicated properties of the code, however the
strength of this method is limited by the abilities of the provers employed.

The annotations used in this work are expressed in the Java Modelling Language
(JML [9]). JML is a specification language which is supported by several, actively
developed tools [10]. It is grounded on solid foundation of numerous scientific papers
that discuss its design [11] and specific constructs e.g. [12, 13]. It is based on the
standard notions such as pre-, post-conditions, invariants etc. in the style of Design by
Contract [14] (see Section 4 for more details).

The JML annotations allow to smoothly scale the development process of the Java
source code from lightweight specification annotations, that for instance specify simple
properties like non-nullness of references, up to full-fledged functional specification.
In the case study, JML served to describe additional requirements for the source
code which should diminish the chances that uncontrolled exceptions are thrown (it
is impossible to prevent JVM errors using these techniques) and that the sensitive
data, like passwords or relations between passwords and computers, will leak in an
uncontrolled way.

In order to enforce the properties expressed in JML, an extended static checking
tool ESC/Java2 was used [15]. ESC/Java2 is the successor of ESC/Java developed in
Compagq [5]. This tool takes JML annotated Java source code and reports inconsistencies
between the specifications and the code. This is done by constructing verification
conditions which are subsequently checked against a mathematical model of the
Java source code. The verification process is done by a first-order logic prover
Simplify [16]. The model is an approximation of the real program so certain kinds
of errors are not captured (for instance the checker does not take into account
integer overflows). Still, it allows to discover many inconsistencies in the program
design.

It is worth mentioning that the C# platform has an specification language Spec#
[17] analogous to JML and a verification tool Boogie [18]. In this light, the general
conclusions from the paper may be also applied also to these tools.

The specification and verification techniques based on JML were applied in
the context of JavaCard applications [19]. The aim of this research is to show the
applicability of these tools and methods to ensure the high quality of the resulting
source code in applications beyond the context of JavaCard. We present here a
small security sensitive Java application Passwords (Section 2) and the analysis
of possible threats for the application (Section 3). After that we demonstrate the
annotation techniques used to prevent the threats (Section 4), and then the discovered
inconsistencies in the source code (Section 5). We sum up the paper with a description
of encountered difficulties in using of the tools (Section 6) and general conclusions
(Section 7).

ESC/Java2 as a Tool to Ensure Security in the Source Code of Java Applications 331

2 The Passwords application

Functionality The application is a simple password manager similar to the ones used
in web browsers. Its GUI has two tabs. The first one allows to add new password
entities to the application, the second allows to associate passwords with computers. It
is impossible to delete the entries. The access to the whole application is protected
by a single master password. The user is allowed to see directly the connections
between computers and the numerical identifiers of passwords (see Fig. 1) He can also
temporarily see the actual password by clicking the right mouse button on its numerical
identifier. As soon as the button is released, the password disappears.

File Help File Help
Passwords r’ Computers | Passwords r Computers

MNewest password: 2

Last used password: 2 The newest pass number: 2 | Add computer

Used passwords: 1 2 Camputer Last password

Add password) 1

ear 2

Fig. 1. The two tabs of the Passwords application. The first one presents the interface for adding
passwords, the second one presented the interface for adding computers and relations between
computers and passwords.

The internal structure The application is a typical three-layer application (see Fig. 2).
The first layer is a user interface which allows to add information on computers and
passwords. The second layer is a communication layer with the permanent storage that
keeps the information. The third layer is the storage. The current implementation uses a
standard file as the storage. This can be changed by reimplementation of one class.

Storage o User
< i)
)
- - — - — | ——
|- — — ‘: —
Q
<
O

Fig. 2. The basic structure of the Passwords application. It consists of three layers: the GUI that
interacts with the user, the logic that provides the interface between the GUI and the data storage
and the data storage.

The most important classes and interfaces of the application are:

— MainWindow which implements the GUI layer of the application,

332 Aleksy Schubert, Jacek Chrzgszcz

— PasswordsLogicIntf which is the interface that abstracts the connection between the
GUI and the layer of the logic,

— PasswordsFileLogic which is an implementation of PasswordsLogicIntf that works
on files,

— Password and Computer are the classes that package the sensitive information
concerning passwords, computers and relations between them; in particular the
Computer class contains the collection of passwords associated with it.

Other informations on the programme The whole application was developed in Java
1.4 with detailed JavaDoc documentation. It consists of 23 classes. The overall code
size of the application is 4433 lines of source code, including all the comments and
JML specifications. The JML specifications constitute 482 lines of the comments.
The number of physical source code lines, as generated using David A. Wheeler’s
’SLOCCount’ is 1650.

Additionally, this software development was supplemented with extension of the
specifications for the Java standard library classes. The specifications are necessary
when the verification with ESC/Java2 is conducted. This exertion resulted in additional
36 specification files and modification of 10 existing specification files. We added 133
lines of JML specifications to the existing specification files. The 36 specification files
that were added amounted to 9838 lines, 97% of which was automatically generated by
the JML Eclipse plug-in. The code of the application together with the specifications is
available from http://www.mimuw.edu.pl/"alx/Passwords.tgz

3 Threat analysis

Extent of the analysis In this work, we focus on the source code security. Therefore
we omit all the considerations connected with the security of the particular data
representation that is used in the file and all possible threats connected with the social
security attacks. We are aware that the solution used presents certain trade-off between
security and both the usability and the applicability. The application gives a controlled
access to a single asset, namely password.

Ways to acquire or destroy the asset The basic threats in the application is
that somebody who is not allowed will compromise the confidentiality, integrity or
availability of the password data.

1. Confidentiality
a) the assets can be sent to an uncontrolled channel:
i. the password may be frozen in GUI on the screen (due to a hardware
failure, due to a dead-lock in the operating system kernel etc.)
ii. the assets can be printed out clear-text on a console device,
A. the asset can be printed out as a part of an exception message or a
stack trace,
B. the asset can be printed out as a result of a debugging message,
C. the asset can be printed out as a result of wrong aliasing in the
application,
D. the asset can be printed out as a result of public access to some fields.

ESC/Java2 as a Tool to Ensure Security in the Source Code of Java Applications 333

iii. the assets can be sent out clear-text using an Internet connection, (the ways
to gain the asset in this case and in the subsequent ones are similar to the
ones in the point 1.(a))ii),
iv. the assets can be sent out clear-text to another application using the
operating system communication facilities such as shared memory,
v. the assets can be stored clear-text in a file out of control,
vi. the assets can be sent to another application using memory allocation or
swapping;
b) the information on assets can be leaked to an uncontrolled channel:
i. the assets can be revealed as a result of differences in behaviour (e.g.
longer waiting time for longer passwords),
ii. a result of a computation (e.g. all letters of the password XOR-ed with
“a”) can be sent to an uncontrolled channel;
¢) the information on assets can be revealed by a side channel (e.g. the sound of
the cooling fan on the processor);
d) the assets can be acquired by a person who has access to the system administrator
privileges.
2. Integrity
a) the password can be overwritten by a malicious extension of the application;
b) the relation between computer and can be changed by such an extension.
3. Availability
a) the password file can be destroyed by a malicious extension of the application;
b) the password can be destroyed by a malicious extension;
c) the application can be hung by a malicious extension.

In this research we focused on the ways to prevent attacks that exploit bugs in the
software. That is why we look mainly at the leaking of passwords from the application
which can be prevented by the way the source code is written. We limit our further
considerations to cases (1.(a))ii)-(1.(a))v), (b)), (2.), and (3.).

4 Employed formal techniques

4.1 JML constructs used in the case-study

We present here the most important features of JML which are used in the case study
to prevent the coding errors that might lead to the cases of information compromise
described at the end of Section 3.

JML assertions are written in the source code comments of a special form. The
comments which can span several lines have the form /*@ ... @*/ while one-line
specifications follow //@.

Ghost fields enable a thorough analysis of the information flow and type properties.
Variables of this kind are auxiliary fields which are not used by the implementation,
but occur in specifications. We can declare in the Object class a field which allows to
mark objects as confidential or non-confidential:

//@ ghost public boolean isConfidential = false;

334 Aleksy Schubert, Jacek Chrzgszcz

Similarly, the container classes can have a ghost field which indicates the type of the
elements gathered in it:

//@ instance ghost public “TYPE elementType;

Another example of the use of the ghost field is the variable which keeps track of the
aliasing of objects. We can declare owner of each object

//@ ghost public Object owner;

and delegate to the owner the right to modify the state.

The mere declaration of the fields does not ensure that particular code property is
maintained. We need additional mechanisms which are described hereafter.
Object Invariants express properties which should hold at the entry and exit to each
method. The invariants serve as a device to describe the meaning of the consistency of
the object data. They can express for instance that certain variables are set to certain
values, e.g.

//@ invariant passwords.isConfidential == true;

Object invariants allow to specify that the contents of the passwords container class
Computer is confidential. They also allow us to specify that collections contain particular
kinds of objects (e.g. that the collection of passwords contains objects of the class
Password; Java 1.4 does not guarantee this in its type system) as well as that certain
data was initialised during the lifetime of an object, and that certain data is not shared
between different objects. These specifications allowed us to diminish chances that the
data from the confidential container would leak, that uncontrolled exceptions would
occur, and that certain data would be shared in an uncontrolled way.

Pre- and postconditions Each method in Java code is supposed to be called in
certain context i.e. it assumes that certain fields of its object are appropriately set, that
the parameters come from specific ranges (e.g. between 0 and 10), that a particular
parameter has a particular type, and in general that certain relations hold between the
input data and/or the fields of the object. Here is an example of such a precondition

/*@ requires !mstring.isConfidential && mstring.owner == this ...
@*/
private ... String decrypt(..., String mstring, ...)

In this case we specify that the method decrypt requires the parameter mstring to be
not confidential (for instance we may impose the policy that we decrypt only data
which is publicly available).

Similarly, it is usually the case that a method guarantees that certain fields are set
or that a certain relation between the object state, result and the input data holds. This
is done by means of postconditions. We can for instance specify that the result of the
decrypt method is confidential and should be protected from exposure in the code of
the application.

/*@ ... ensures “result.isConfidential && “fresh(“result) ...
@*/
private ... String decrypt(..., String mstring, ...)

ESC/Java2 as a Tool to Ensure Security in the Source Code of Java Applications 335

In this case we specify that the method decrypt requires the parameter mstring to be
not confidential (we impose the policy that we decrypt only data which is anyway
public). Additionally, we require the result to be fresh i.e. that the resulting object is
created inside the decrypt method. This solution is one of the way to prevent from
uncontrolled aliasing of the confidential data.

Control over exceptions The exception mechanism used in Java is sometimes
insufficient. It is permitted to omit runtime exceptions in throws declarations. ESC/Java2
signals when the runtime exception thrown is not declared in the throws clause.
Additionally, the JML specifications allow to describe exactly the conditions which are
guaranteed to hold after an exception is raised.

/*¥@ ... signals (EncryptionlmpossibleException el)

@ mstring.length() % 2 == 1 ——
@ mstring.length() ;2;
@*/

private ... String decrypt(... String mstring, ...)

In this example, when the EncryptionlmpossibleException is raised, the decrypted string
has improper format. Here, this means that either the string is too short or has odd length.

JML allows also for other means to control the occurrence of exceptions. In
particular, it allows to supplement a variable declaration with an information on whether
the variable is allowed to be null. This enables fine-grained control over the occurrence
of the NullPointerException. This feature is visible for instance in the way the decrypt
method is annotated:

private /*@ non null @*/ ... String decrypt(
/*@ non'null @*/ String mstring,
/*@ non'null @*/ String passwordsPassword2)

In this case, we allow the decrypt method to be called with non-null parameters only.
This method also can only return non-null values. ESC/Java2 checks that whenever the
method is called, the actual parameters are non-null. It can also exploit the information
that the result is non-null.

We also decided to protect the application against the type-cast errors. The main
problem occurs when the collections are used as the operations that return elements
of collections usually return objects of the class Object which should have to be
subsequently cast to actual types. In JML, this behaviour can be modelled by a property
of the collection which contains the elements:

/*@ invariant passwds.elementType == “type(Password) && ...

In this case, we enforce that the type of elements in the passwds collection is always
equal to the type Password.

Specifications of the standard library One more crucial JML feature is its ability to
separate the specification from the actual implementation. In this way, we can describe
the behaviour of the classes in the standard Java API without modification (or even
access) to the actual source code. In this case study, we had to specify the behaviour
of the methods in the standard library with regard to the newly added ghost field
isConfidential. We also had to add general specifications for some classes which have
not been specified yet in the original specification bundle shipped with ESC/Java2.

336 Aleksy Schubert, Jacek Chrzgszcz

4.2 The use of ESC/Java2 in the case-study

In order to verify the conformance of the source code to the specifications, we used the
extended static checking tool ESC/Java2. This tool translates the JML specifications
together with the source code to formulae in the first-order logic and feeds them into
the Simplify theorem prover. This prover verifies if there are logical inconsistencies
in the formulae, in particular it is able to discover counterexamples to the specified
specifications.

The light-weight approach to apply this kind of tool is just to provide some
specifications to the source code depending on the development needs (for instance one
may decide to introduce non null annotations only during the development of the
application and then afterwards to introduce more thorough annotations whenever a
bug is encountered) and after an initial analysis, treat the output of the tool as a false
positives list. This list is archived and whenever new features are introduced or bugs
fixed the developers can focus on the difference between the original report and the
newly generated one.

In this case study, we took another approach. We wanted to get rid of all the warnings
to gather as many information on bugs or on inconsistencies in the code as possible.

5 Discovered code inconsistencies

We started the work on the application without significant knowledge of the JML and
JML tools like ESC. Both authors of the source code give programming courses,
especially Java programming courses so one may assume that the quality of the initial
code was at least at the level of an average graduate.

In the course of the code annotation and analysis we discovered the following code
flaws:
e We discovered that certain standard library methods we used throw the runtime
exception HeadlessException which is not reported in the throws clauses. In order to
make sure that the messages in these exceptions do not compromise any sensitive data,
we introduced an explicit reporting on exceptions of this kind throughout the code of
the application.
e We introduced new exceptions to the application to handle erroneous situations
which were omitted during the initial development of the source code.
e We found that a printing of confidential data for debugging purposes had been left in
the code.
e We discovered numerous lacking null checks.
e We discovered a few lacking sanity range checks for the data used.
o It turned out several times that we expected the standard GUI library Swing to return
non-null results whereas in fact they do not. This was especially appealing as in order
to discover that it was really the case that we had to analyse a few subsequent internal
calls in the Java standard library.
e We removed methods which leaked references to the content of internal security
sensitive information. This was a flaw of the initial design. We decided to remove the
methods as they were not used in the solution, but could be exploited in attacker code
to compromise integrity and/or availability of the passwords.

ESC/Java2 as a Tool to Ensure Security in the Source Code of Java Applications 337

e We also gave up one design solution which was connected with the use of interfaces.
We used in one class a field of an interface type. The problem with the interface types
is that one can extend an existing class to be an implementation of the interface. In this
situation, one can obtain very troubling aliasing possibilities which were suggested by
the tool. As our focus was on security, we decided to sacrifice the ease of extendability
with regard to the issue for a more secure solution when the possibility of the future
aliasing is diminished.

e The application contains a graphical user interface. The GUI library is a very big and
complicated piece of code. In the course of the case study, it turned out that we made
many assumptions on the data exchange between the application and the GUI library
during the development stage. Thanks to the tool support we were able to introduce all
the necessary checks concerning the data that comes from the GUI library to prevent
uncontrolled break down of the application due to bugs or unknown features of the
GUI code. It turns out that these additional checks are especially important since the
Swing library works partly by means of registering objects for callbacks. As some
asynchronous event may trigger such a callback in the middle of the construction
process for a bigger object, such a sanity checks may be critical for the secure execution
of the resulting application.

6 Encountered problems and deficiencies of the tools

Additional annotation support ESC/Java2 is a tool that checks the conformance of the
specifications with the existing source code at compile time. The tool enforces that the
process of annotating is local — the specifications that describe the intent for the
current piece of code are in its close vicinity. This feature imposes that specifications
serve as the documentation for the code. However, some design decisions in one
place dictate some solution in a distant place. For instance, requiring non-nullness for
certain field may require or imply some other fields to be non-null. What is more, such
conscious design decisions may be contradictory. The process of co-ordination for
non-null annotations is very tedious and it is sometimes difficult to figure out which
real design decisions led to particular contradictions. This process, however, could be
automated using known information flow techniques similar to JFlow [4]. A similar
remark can be made for the confidentiality annotations that we proposed.

Annotation overhead The annotation process is quite labour intensive. It resembles
to some degree providing another implementation of the existing functionality. Still, the
descriptions contribute to fewer lines than the real code. In fact, they do not describe
the same functionality of the code, but only some of its additional aspects.

Specifications of the standard library Another deficiency of ESC/Java2 is that the
standard Java library is not completely covered with specifications. The most basic
classes in java.lang or java.util have already been specified in great detail, but there are
no specifications for GUI API. We had to provide our own specifications there. This
deficiency, however, has one advantage. In order to specify them, we had to analyse the
code of the methods which were interesting for us. This revealed that in many cases the
specifications provided in the Sun JavaDocs are not sufficient for security purposes.

338 Aleksy Schubert, Jacek Chrzgszcz

Human error in specifications There is no guarantee, that the specifications that are
written in the application are 100% correct. The process of writing the specs is as
error prone as the usual source coding. Still, the double description of the programme
behaviour increases the chances that a particular behaviour is the result of a conscious,
well founded decision of a programmer or designer.

Bugs and incompleteness of the tools Similarly, there is no guarantee that the
tool we used is bug free. Actually, during the course of the case-study a few bugs in
ESC/Java2 were discovered. These bugs increased the time needed to develop the
whole project. Moreover, the documentation of ESC/Java2 says explicitly that the tool
is not sound with regard to the Java semantics. In particular, it does not handle the
integer overflow and all memory management problems connected with the execution
of a Java programmes. Still, the work with the tool allows to increase the confidence
that the application has fewer bugs. The actual application of the tool in the industrial
context should be coupled with the common testing techniques.

Problems with modelling in JML The proposed solution to trace the information flow
of the confidential data has one deficiency. It allows to trace the flow of objects only
and is incapable of tracing the information flow of data encoded as primitive values. We
found a workaround for that. We generated a list of method calls in the application and
whenever a method with primitive types in parameters was called we inspected the code
by hand. This however is not satisfactory and in order to avoid that we face an strong
design constraint — the security sensitive applications which are to be checked with
tools like ESC/Java2 should wrap the primitive types with objects like Integer or Float.

Another deficiency is difficulty in describing the content of the current stack in
JML. This is important when one describes the result of the message printed out after
an exception is thrown. It is possible to model this in the current version of JML, but it
incurs a high specification overhead.

7 Conclusions

The techniques employed in this case study are still very time consuming and additional
tool support to avoid manual annotation of all the information flow paths would be of
great value here. However, they are capable of pinpointing certain bugs and source code
deficiencies. Assuming that the specification process is similar to the programming and
that the verification process using ESC/Java2 is similar to debugging, we can estimate
the time needed to develop the annotations that match the source code to be 24 days
(assuming typical programming efficiency 20 lines per day).

Although the methods do not give the guarantee of full security, they provide a
certain standardised level of assurance that the source code is well written with regard
to the assumed threat analysis. They can be used in areas where the high cost of their
applicability can be matched with the high cost of possible design or implementation
flaws. Moreover, it is usually the case that the reading of the specifications is easier
than the reading of the actual source code, as they provide certain abstraction of the
functionality. They also give a stable representation of the expected functionality while
the implementation is free to change. In this way, these techniques can also contribute
to more stable maintainability of the source code.

ESC/Java2 as a Tool to Ensure Security in the Source Code of Java Applications 339

References

10.

11.

12.

13.

14.
15.

16.

17.

. Bush, W,, Pincus, J., Sielaff, D.: A static analyzer for finding dynamic programming errors.

Softw. Pract. Exper. 30(7) (2000) 775-802

Hovemeyer, D., Pugh, W.: Finding bugs is easy. In: OOPSLA’04 Companion, ACM Press
(2004) 132-136

Evans, D., Larochelle, D.: Improving Security Using Extensible Lightweight Static Analysis.
IEEE Softw. 19(1) (2002) 42-51

Mpyers, A.: JFlow: Practical Mostly-Static Information Flow Control. In: POPL. (1999)
228-241

Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended
static checking for Java. In: PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference
on Programming language design and implementation, New York, NY, USA, ACM Press
(2002) 234-245

Corbett, J.C., Dwyer, M.B., Hatcliff, J., Roby: Bandera: a source-level interface for model
checking Java programs. In: ICSE 00, ACM Press (2000) 762-765

Burdy, L., Requet, A.: Jack: Java Applet Correctness Kit. In: Gemplus Developer Conference
2002, Singapore (2002)

. van den Berg, J., Jacobs, B.: The LOOP Compiler for Java and JML. In: TACAS 2001:

Proceedings of the 7th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, London, UK, Springer-Verlag (2001) 299-312

. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A Notation for Detailed Design. In: Behavioral

Specifications of Businesses and Systems. Kluwer (1999) 175-188

Burdy, L., Cheon, Y., Cok, D., Ernst, M.D., Kiniry, J., Leavens, G.T., Leino, K.R.M., Poll,
E.: An overview of JML tools and applications. Software Tools for Technology Transfer
7(3) (2005) 212-232

Leavens, G.T., Baker, A.L.: Enhancing the Pre- and Postcondition Technique for More
Expressive Specifications. In: FM ’99: Proceedings of the Wold Congress on Formal
Methods in the Development of Computing Systems-Volume II, London, UK, Springer-Verlag
(1999) 1087-1106

Ruby, C.D.: Safely creating correct subclasses without seeing superclass code. In: OOPSLA
’00: Addendum to the 2000 proceedings of the conference on Object-oriented programming,
systems, languages, and applications (Addendum), New York, NY, USA, ACM Press (2000)
155-156

Chalin, P.: Improving JML: For a Safer and More Effective Language. In Araki, K., Gnesi,
S., Mandrioli, D., eds.: FME 2003: Formal Methods, International Symposium of Formal
Methods Europe. Volume 2805 of LNCS., Springer (2003) 440-461

Meyer, B.: Object Oriented Software Construction, Second Edition. Prentice Hall (1997)
Cok, D.R., Kiniry, J.R.: Esc/Java2: Uniting ESC/Java and JML: Progress and issues in
building and using ESC/Java2 and a report on a case study involving the use of ESC/Java2
to verify portions of an Internet voting tally system. In Barthe, G., Burdy, L., Huisman, M.,
Lanet, J.L., Muntean, T., eds.: Construction and Analysis of Safe, Secure, and Interoperable
Smart Devices: International Workshop, CASSIS 2004. Number 3362 in LNCS, Marseille,
France, Springer (2004)

Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J.
ACM 52(3) (2005) 365473

Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An overview. In:
Construction and Analysis of Safe, Secure and Interoperable Smart devices (CASSIS).
Number 3362 in LNCS, Springer (2004) 49-69

340

18.

19.

Aleksy Schubert, Jacek Chrzgszcz

Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular
reusable verifier for object-oriented programs. In: Fourth International Symposium on
Formal Methods for Components and Objects (FMCO’05), Post-Proceedings. LNCS (2006)
to be published.

Breunesse, C., Catafio, N., Huisman, M., Jacobs, B.: Formal methods for smart cards: an
experience report. Science of Computer Programming 55 (2005) 53-80

