
From Hubs Via Holons to an
Adaptive Meta-Architecture – the “AD-HOC” Approach

Leszek A. Maciaszek

Macquarie University, Department of Computing,
NSW 2109, Sydney, Australia

leszek@ics.mq.edu.au

Abstract. The ever increasing sophistication of software systems brings with it
the ever increasing danger of humans losing control over their own creations.
This situation, termed the ‘software crisis’, is said to have existed since the
early days of software engineering and has been characterized by the inability
of software developers to produce adaptive systems. This paper addresses the
roots of the software crisis – the software cognitive and structural complexity
and how it could be conquered through the imposition of a meta-architecture on
software solutions. The meta-architecture, called PCBMER, epitomizes some
important characteristics of holons and holarchies underpinning the structure
and behavior of living systems.

1 Introduction

An adaptive system has an ability to change to suit different conditions; an ability to
continue into the future by meeting existing functional and nonfunctional
requirements and by adjusting to accommodate any new and changing requirements.
Adaptiveness is an overriding software quality that consists of a triple of critically
important sub qualities – understandability, maintainability, extensibility.

There are three principal underpinnings to achieving adaptive solutions [9]. The
first underpinning is the prior existence of a meta-architecture (framework) to guide
architects in doing their job of constructing architectural models for a particular
software system. The second underpinning to achieving adaptive solutions is an
enforcement of sound engineering principles. If the architectural design defines
adaptiveness, the engineering principles deliver adaptiveness. The third underpinning
to achieving adaptive solutions is an enforcement of sound managerial practices.
Managerial practices verify adaptiveness.

This paper addresses the first underpinning to achieving adaptive software systems.
The paper introduces and explains a meta-architecture called PCBMER that extends
earlier meta-architectures proposed by the author, of which the last is known as the
PCMEF framework (e.g. [10, 11]).

The acronym “AD-HOC” refers to our research aimed at modeling software
systems on the image of living systems. This research started more than a decade ago
with the papers [12, 13]. The research was then channeled to industry projects,
elaborated in successive experiments and papers, applied in the textbooks [10, 11],

2 Leszek A. Maciaszek2 Leszek A. Maciaszek

and it is now finding its way to a monograph still in writing during this manuscript
preparation [9]. Originally, the “AD-HOC” acronym stood for Application
Development – Holon-Object-Centric approach. The preferred meaning now is
Application Development – Holons, Objects, Components.

2 Complexity in the wires

The complexity of modern enterprise and e-business systems is in the wires – in the
linkages and communication paths between software modules rather than in the
internal size of the modules. The communication paths create dependencies between
distributed components that may be difficult to understand and manage (a software
object A depends on an object B, if a change in B necessitates a change in A).

Software adaptiveness is a function of the software cognitive and structural
complexity (e.g. [4]). It is a function of the ease with which we can understand the
software flow of logic and any resulting dependencies.

2.1 Networks

Fig.1 shows a possible system in which objects in various packages (components,
subsystems) communicate indiscriminately. This creates a network of
intercommunicating objects. The complexity of such systems grows exponentially
with the addition of new objects. Even if the complexity within packages can be
controlled by limiting the size of the packages, the complexity created by inter-
package communication links grows exponentially with the introduction of more
packages. The growth is exponential not necessarily because of the actual
dependencies between objects, but because the flat network structure (with no clearly
defined restrictions on communication paths between objects) creates potential
dependencies between any (all) objects in the system. A change in an object can
potentially impact (can have a “ripple effect” on) any other object in the system.

Assuming unrestricted origin/destination communication links (i.e. allowing both-
directional dependencies between objects), the cumulative measure of object
dependencies is given by a simple formula:

)1(� nnCCDnet (1)

where is the number of objects (nodes in the graph) and is a cumulative
class dependency in a fully connected network (assuming that objects refer to
classes).

n CCDnet

The formula computes the worst potential complexity, where each object can
potentially communicate with all other objects. For 17 classes in Fig.1, is
equal to 272 (17*16). Although the worst scenario is unlikely in practice, it must be
assumed in any dependency impact analysis conducted on the system (simply because
real dependencies are not known beforehand). Systems permitting an indiscriminate
network of intercommunicating objects are considered not adaptive.

CCDnet

 2

From Hubs Via Holons to an Adaptive Meta-Architecture – the “AD-HOC” Approach 3From Hubs Via Holons to an Adaptive Meta-Architecture 3

Package A

Package B

Package C

Package A

Package B

Package C

Fig. 1. Network of intercommunicating objects

2.2 Networks with hubs

The exponential growth of complexity in flat network structures is not acceptable. We
need to have software architectural solutions that result in merely polynomial
complexity growth when new objects/components are added. Such architectural
solutions consist of meta-models, frameworks, principles, patterns, etc. At the most
generic level, the reduction of complexity can be achieved through so called hub
structures [3].

Fig.2 shows how the complexity of a system can be reduced by introducing hubs.
Each package defines a hub – an interface object (this could be a Java-style interface
or so called dominant class) through which all communication with the package is
channeled. Despite the introduction of three extra hub objects, the complexity of the
system in Fig.2 is visibly reduced in comparison with the same system in Fig.1.

More formally, the cumulative measure of object dependencies with hubs between
packages but with still unrestricted origin/destination communication links within
packages is given by the formula:

¦

���
h

i
iihubnet hhnnCCD

1
))1(())1((

(2)

wheren is the number of objects in each package plus the hub object, is the number
of hubs (i.e. the number of packages) and is a cumulative class

dependency in a hub network. For 17 classes and 3 hubs, is equal to 120.

h
CCDhubnet

CCDhubnet

 3

4 Leszek A. Maciaszek4 Leszek A. Maciaszek

Package A

Package B

Package C

Package A

Package B

Package C

Fig. 2. Reduction of complexity owing to hubs (interfaces) between packages

2.3 Hierarchies with hubs

For the flat network structures, the best complexity values can be obtained in a hub-
spoke structure, not discussed here [3]. However, in general, any network is a
hopeless structure. All complex systems that are adaptive take the form of a
hierarchy, or rather a holarchy (ref. Section 2). A hierarchy/holarchy consists of
hierarchically organized layers of objects with one-way (asymmetrical) dependencies
between the layers.

Fig.3 shows a hierarchical structure with hubs and downward only dependencies
between subsystems. Objects are grouped into subsystems instead of packages
(subsystems A-C mirror the structure of packages A-C in Fig.2). Subsystems are more
appropriate here because the notion of the subsystem (at least in the UML sense)
encapsulates some part of the intended system behavior, i.e. a client object must ask
the subsystem itself (represented by a hub object) to fulfill the behavior. The notion of
the package does not have such semantics [10].

The dependencies between subsystems are only downwards and the dependencies
within subsystems have no cycles [11]. Any upward communication between
subsystems is realized by a “dependency-less” loose coupling facilitated by interfaces
placed in lower subsystems but implemented in higher-level subsystems and/or by
event processing instead of message passing and/or by the use of XML-based meta-
level technologies. Similarly, cycles within subsystems are eliminated by using
interfaces, but also through refactoring techniques that extract circularly-dependent
functionality into separate objects/components.

The complexity formula for hierarchies with hubs is:

¦¦

�

�
�

root

j
j

root

i

ii
hubhier pooCCD

1
1

1 2
)1(

(3)

 4

From Hubs Via Holons to an Adaptive Meta-Architecture – the “AD-HOC” Approach 5From Hubs Via Holons to an Adaptive Meta-Architecture 5

where:

x is the number of objects in each subsystem including any hub objects, o i
x is the number of objects in each directly adjacent subsystem above any leave

subsystem minus any hub object (this computes the number of potential downward
paths to all hub objects in the adjacent subsystems),

1�jp

x and is a cumulative class dependency in a hub hierarchy (and
assuming as before that objects refer to classes).

CCDhubhier

Subsystem C

Subsystem B

Subsystem A

Subsystem X

Subsystem ZSubsystem Y

Subsystem C

Subsystem B

Subsystem A

Subsystem X

Subsystem ZSubsystem Y

Subsystem C

Subsystem B

Subsystem A

Subsystem X

Subsystem ZSubsystem Y

Subsystem C

Subsystem B

Subsystem A

Subsystem X

Subsystem ZSubsystem Y

Fig. 3. Reduction of complexity in a hierarchy with hubs

Comparing between Fig.3 and Fig.2, is equal 63 whereas is

equal 120. The overall for the model in Fig.3 is equal 111 (63 for
subsystems A-C plus 48 for the remaining subsystems).

CCDhubhier CCDhubnet

CCDhubhier

 3 Holons and holarchies

The complexity of living systems by far exceeds the complexity of any man-made
system. This observation is easily validated by a simple fact that many intricacies of
living organisms escape human understanding. Despite of, or rather owing to, this
complexity – living systems are able to adapt to changing environments and evolve in

 5

6 Leszek A. Maciaszek6 Leszek A. Maciaszek

the process. Therefore, it seems sensible to study the structure and behaviour of living
organisms in search for paradigms of use in the construction of software solutions.

Living systems are organized to form multi-leveled structures, each level
consisting of subsystems which are wholes in regard to their parts, and parts with
respect to the larger wholes. Thus molecules combine to form organelles, which in
turn combine to form cells. The cells form tissues and organs, which themselves form
larger systems, like the digestive system or the nervous system. These, finally,
combine to form the living person; and the 'stratified order' does not end there. People
form families, tribes, societies, nations. All these entities - from molecules to human
beings, and on to social systems - can be regarded as wholes in the sense of being
integrated structures, and also as parts of larger wholes at higher levels of complexity.

Arthur Koestler [5] has coined the word holon (from the Greek word: holos =
whole and with the suffix on suggesting a part, as in neutron or proton) for these
entities which are both wholes and parts, and which exhibit two opposite tendencies:
an integrative tendency to function as part of the larger whole, and a self assertive
tendency to preserve its individual autonomy. Koestler uses the term holarchy (or
holocracy) to name a hierarchy of holons from one point of development to another.
Fig.4 represents a possible mental picture of a holarchy. Looking downward, a holon
is something complete and unique, a whole. Looking upward, a holon is an
elementary component, a part. The diagram captures the essence of holons as defined
by Koestler: “Generally speaking, a holon on the /n/ level of the hierarchy is
represented on the /n+1/ level as a unit and triggered off as a unit. Or, to put it
differently: the holon is a system of relations which is represented on the next higher
level as a unit, i.e., a relatum.” [5, p.72].

Organs

Organism

OrgansOrgans

Organ Systems

Organs

Organism

OrgansOrgans

Organ Systems

Fig. 4. A holarchy

Individual holons within a holarchy are represented by four main characteristics:
(1) their internal charter (interactions between them can form unique patterns), (2)

 6

From Hubs Via Holons to an Adaptive Meta-Architecture – the “AD-HOC” Approach 7From Hubs Via Holons to an Adaptive Meta-Architecture 7

self-assertive aggregation of subordinate holons, (3) an integrative tendency with
regard to superior holons, and (4) relationships with their peer holons.

Holarchies do not operate in isolation, but interact with others. “Thus the
circulatory system controlled by the heart and the respiratory system controlled by the
lungs function as quasi-autonomous, self-regulating hierarchies, but they interact on
various levels.” [7, p.463]. Koestler uses the term arborization for vertical structures
and reticulation for horizontal net formations between holarchies.

Behavior of holarchies is defined by fixed rules and flexible strategies. The rules
are referred to as the system’s canon that determines its invariant properties – its
structural configuration and/or functional pattern. “The canon represents the
constraints imposed on any rule-governed process or behaviour. But these constraints
do not exhaust the system’s degrees of freedom; they leave room for more or less
flexible strategies, guided by the contingencies in the holon’s local environment. …
In acquired skills like chess, the rules of the game define the permissible moves, but
the strategic choice of the actual move depends on the environment – the distribution
of the chessmen on the board.” [6, pp.293-294].

Since the concept of holon was introduced by Koestler in [5], it has been used by
various branches of science ranging from biology via communication theory to more
practical uses for implementation of holonic manufacturing systems [16]. Holons and
holarchies offer great architectural and other solution ideas for implementing software
systems. Successful systems tend to resemble holarchies in many of their aspects,
including the ability to hide complexity in successively lower layers, whilst providing
greater levels of abstraction within the higher layers of their structures.

The space limitations do not allow us to discuss software technologies (some
established, other emerging) that parallel various holon ideas [9]. Most interesting
parallels seem to be:

1. Arborization Æ object composition (e.g. the GoF composite pattern).
2. Reticulation Æ weaving in aspect-oriented programming.
3. Fixed rules Æ meta-architectures.
4. Flexible strategies Æ autonomous agents in multi-agent systems.

4 Dependencies

Our goal is to minimize code dependencies through skillful architectural design. A
necessary condition to understand a system behavior is to identify object
dependencies and measure ripple effects that they may cause. A ripple effect of a
dependency is a chain reaction that a change to a supplier object may cause on all
client objects that directly or indirectly depend on the supplier.
In simple systems, the ripple effect can be determined by the analysis of actual
dependencies in the code. But even in simple systems, finding all actual dependencies
may be difficult if some suppliers of services are chosen dynamically at run-time and
are, therefore, unknown at compile-time (i.e. not directly visible in the source code).
It follows that the ripple effect, for all but very simple systems, needs to be
determined by the analysis of all potential dependencies in the code, i.e.
dependencies that are allowed by the architectural design of the system, whether or

 7

8 Leszek A. Maciaszek8 Leszek A. Maciaszek

not they actually exist (and assuming that architectural design is adhered to in the
implemented code). Fig.5 provides a classification of dependency relationships
relevant to the discussion in this chapter.

x relies-on-metatechnology m x subscribes-to-event e

cumulative dependency

architecture-managed

x uses-interface i

technology-managed

on components/
subsystems

x eliminates-cycle c

x inherits-from y

x delegates to y

turning costly
into neutral

x forwards to y

x instantiates y

on systems

on packages

programmatic

compile-time

on calls/
signals

on classes/
interfaces

x accesses y

dependency

x mutates y

declarative

neutral

run-time

potential

actual

costly

Fig. 5. Dependencies

A hierarchical architectural structure is undefined unless we determine precisely
what dependencies are allowed between hierarchy layers and within the layers, and
what their potential ripple effect is. These are architecture-managed dependencies
that are under complete control of system developers.

However, application software is implemented using particular system software
and applying particular development technology (application servers, databases,
libraries, etc.). The system software takes then responsibility for some important
functionality, which otherwise would have to be implemented in the application
software. Clearly, application software depends on system software, but these are
dependencies that cannot be really managed by application developers. These are
meta-level technology-managed dependencies.

Ideally, the integration of application and system software should be based on
declarative dependencies documented in various configuration files, preferably XML
files. Configuration files act as agents able to determine actions to be taken (planners),
selecting between different possible actions (decision makers), managing execution
requests (mediators), etc.

 8

From Hubs Via Holons to an Adaptive Meta-Architecture – the “AD-HOC” Approach 9From Hubs Via Holons to an Adaptive Meta-Architecture 9

Increasingly, XML-style declarative dependencies replace hard-coded
programmatic dependencies not only in integration development (including
integration of application and system software) but also within application
development. As compared with declarative dependencies, programmatic
dependencies introduce tight-coupling between client and supplier objects and are
significantly more difficult to manage. Sometimes, programmatic dependencies are a
sign of weaknesses in the technology applied, but in general they are just a way of
making programming objects to communicate in order to make the application
perform required tasks.

As mentioned, the main purpose of measuring dependencies is to define their
ripple effects so that their impact on system complexity and adaptiveness can be
quantified. However, not all dependencies are equally costly. Some categories of
dependencies are relatively neutral in the calculations aiming at establishing
cumulative dependencies for the system. There is also an important category of
dependencies under the name turning costly into neutral – they can be used as a way
of enforcing the agreed principles of the architecture so that the complexity of the
system can be managed.

The notion of object can refer to a programming element of any granularity (call
(message), signal (event), class, package, component, subsystem, or the entire
system). Accordingly object dependencies can be specified on any of these object
types. Object dependencies of lower granularity need to be then considered when
determining dependencies of higher granularity. Because classes are the main
programming modules in contemporary systems, class dependencies are the focal
point of all modern complexity metrics, such as the CK metrics [2].

5 PCBMER meta-architecture

There is no one unique or best meta-architecture that could provide a framework for
constructing adaptive complex system. Also, depending on the application domain,
the system characteristics and the category of development/integration project,
various variations of a particular meta-architecture can be determined and used. The
pivotal meta-architecture, which we advocate, is called PCBMER. The PCBMER
framework defines six hierarchical layers of software objects – Presentation,
Controller, Bean, Mediator, Entity and Resource.

5.1 PCBMER layers

Fig.6 illustrates the Core PCBMER architectural framework. The framework borrows
the names of the external tiers (the Client tier and the EIS tier) from the Core J2EE
framework [1]. The tiers are represented as UML nodes. The dotted arrowed lines are
dependency relationships. Hence, for example, Presentation depends on Controller
and on Bean, and Controller depends on Bean. Note that the PCBMER hierarchy is
not strictly linear and a higher-layer can have more than one adjacent layer below
(and that adjacent layer may be an intra-leaf, i.e. it may have no layers below it).

 9

10 Leszek A. Maciaszek10 Leszek A. Maciaszek

Fig.6 presents two variants of the Core PCBMER framework – one defined on
UML packages and the other on UML subsystems. As opposed to the variant with
packages, the services that components/subsystems provide are fully encapsulated and
exposed as a set of ports that define the provided and required interfaces.

PCBMER (defined on packages)

Bean

Presentation

Controller

Entity

Mediator

Resource

EIS Tier

Client Tier

Layer 5
(intra-leaf)

Layer 4

Layer 6 (leaf)

Layer 2

Layer 1 (root)

 Layer 3
(intra-leaf)

PCBMER (defined on subsystems)

<<subsystem>>
Mediator

Minterface

<<subsystem>>
Entity

Einterface

<<subsystem>>
Presentation

<<subsystem>>
Resource

Rinterface

<<subsystem>>
Bean

Binterface

<<subsystem>>
Controller

Cinterface

Client Tier

EIS Tier

 Layer 5
(intra leaf)

Layer 1 (root)

Layer 3
(intra-leaf)

Layer 4

Layer 6 (leaf)

Layer 2

Fig. 6. The Core PCBMER meta-architecture

The emphasis that the notion of component places on encapsulation, ports and
interfaces makes components directly applicable for modeling hub structures.
Therefore, architectural frameworks presented in the context of subsystems may
imply lower cumulative class complexity than those presented with the notion of
package.

The Bean subsystem represents the data classes and value objects that are destined
for rendering on user interface. Unless entered by the user, the bean data is built up
from the entity objects (the Entity subsystem). The Core PCBMER framework does
not specify or endorse if access to Bean objects is via message passing or event
processing as long as the Bean subsystem does not depend on other subsystems.

 10

From Hubs Via Holons to an Adaptive Meta-Architecture – the “AD-HOC” Approach 11From Hubs Via Holons to an Adaptive Meta-Architecture 11

The Presentation subsystem represents the screen and UI objects on which the
beans can be rendered. It is responsible for maintaining consistency in its presentation
when the beans change. So, it depends on the Bean subsystem. This dependency can
be realized in one of two ways – by direct calls to methods (message passing) using
the pull model or by event processing followed by message passing using the push
model (or rather push-and-pull model)

The Controller subsystem represents the application logic. Controller objects
respond to the UI requests that originate from Presentation and that are results of user
interactions with the system. In a programmable GUI client, UI requests may be menu
or button selections. In a web browser client, UI requests appear as HTTP Get or Post
requests.

The Entity subsystem responds to Controller and Mediator. It contains classes
representing “business objects”. They store (in the program’s memory) objects
retrieved from the database or created in order to be stored in the database. Many
entity classes are container classes.

The Mediator subsystem establishes a channel of communication that mediates
between Entity and Resource classes. This layer manages business transactions,
enforces business rules, instantiates business objects in the Entity subsystem, and in
general manages the memory cache of the application. Architecturally, Mediator
serves two main purposes. Firstly, to isolate the Entity and Resource subsystems so
that changes in any one of them can be introduced independently. Secondly, to
mediate between the Controller and Entity/Resource subsystems when Controller
requests data but it does not know if the data has been loaded to memory or it is only
available in the database.

The Resource subsystem is responsible for all communications with external
persistent data sources (databases, web services, etc.). This is where the connections
to the database and SOA servers are established, queries to persistent data are
constructed, and the database transactions are instigated.

The Core PCBMER framework has a number of immediately visible advantages
resulting in minimization of dependencies. One noticeable advantage is the
separation of concerns between subsystems allowing modifications within one
subsystem without affecting the other (independent) subsystems or with a predictable
and manageable effect on the other (dependable) subsystems. For example, the
Presentation subsystem that provides a Java application UI could be switched to a
mobile phone interface and still use the existing implementation of Controller and
Bean subsystems. That is, the same pair of Controller and Bean subsystems can
support more than one Presentation UI at the same time.

The second important advantage is the elimination of cycles between dependency
relationships and the resultant six-layer hierarchy with downward only dependencies.
Cycles would degenerate a hierarchy into a network structure. Cycles are disallowed
both between PCBMER layers and within each PCBMER layer.

The third advantage is that the framework ensures a significant degree of stability.
Higher layers depend on lower layers. Therefore, as long as the lower layers are stable
(i.e. do not change significantly, in particular in interfaces), the changes to the higher
layers are relatively painless. Recall also that lower layers can be extended with new
functionality (as opposed to changes to existing functionality), and such extensions
should not impact on the existing functionality of the higher layers.

 11

12 Leszek A. Maciaszek12 Leszek A. Maciaszek

5.2 PCBMER structural complexity

To compute cumulative dependencies between program’s objects we use structural
complexity metrics and apply them to a particular design and to a resulting
implementation. The metrics can apply to objects of various granularities, from
methods in classes to subsystems and systems. However, in the structural complexity
argument, the most indicative is a cumulative dependency computed on classes.

In traditional software engineering sense, structural complexity metrics reveal the
classic tension between cohesion and coupling of objects (e.g. [15]). Coupling is
really another name for dependency between objects. Two objects are coupled if they
collaborate with one another. In good designs, coupling is minimized so that
collaboration is just enough to perform required tasks. As opposed to our stance on
dependencies, coupling allows both-ways collaboration, i.e. cycles are permitted.

If coupling is a relationship between objects, cohesion defines the internal
responsibilities of each object. “A class with low (bad) cohesion has a set of features
that don’t belong together. A class with high (good) cohesion has a set of features that
all contribute to the type abstraction implemented by the class.” [14, p.246].

The objective is to have low coupling and high cohesion, but unfortunately these
two concepts contradict each other. For any system, the challenge is to define a right
balance between coupling and cohesion. The best known strategy to balance coupling
and cohesion in object-oriented designs is known as the Law of Demeter (LoD)
(Lieberherr and Holland, 1989). The LoD is known in the popular formulation as
“talk only to your friends” principle. It aims at minimizing coupling by prescribing
what targets are allowed for messages within class methods. Note that the LoD has a
direct counterpart in the PCBMER’s NCP principle.

 We believe that a starting point to achieve proper balance between the system-
wide cohesion and coupling is to ensure that the initial definition of each class is
determined alone on the basis of its cohesiveness. We, therefore, assume that – for
comparisons of structural complexities in various designs for the same system – the
cohesion of classes is constant (with reason, of course; i.e. classes cannot be grouped
together to achieve lower coupling, but extra classes may be created to ensure
architectural conformance or to take advantage of a particular technology).

With the above in mind, the generic cumulative class dependency formula for the
Core PCBMER defined on subsystems is the same as Formula 3 for hierarchies with
hubs (this is a generic formula and other formulas may apply to specific PCBMER
architectures derived from the Core framework). Strictly speaking, there is a
difference in the way the formula is applied because the PCBMER framework permits
a lower-layer subsystem to be communicated from more than one higher-layer
subsystem. However, these higher-layer subsystems are considered to be “directly
adjacent”, thus the formula applies as stands. Note that because only downward
dependencies are allowed, the communication from higher-layer subsystems retains
the hierarchical properties of the PCBMER framework.

Formula 3 ensures polynomial growth of dependencies between architectural layers
represented as subsystems, while allowing exponential growth of class dependencies
within layers. However, the exponential growth can be controlled by grouping classes
within a layer into nested subsystems (as subsystems can contain other subsystems).
The communication between nested subsystems can then be performed using hubs.

 12

From Hubs Via Holons to an Adaptive Meta-Architecture – the “AD-HOC” Approach 13From Hubs Via Holons to an Adaptive Meta-Architecture 13

6 Summary

In this paper we: (1) explained the interplay between software complexity and
adaptiveness, (2) showed that hierarchical structures with hubs minimize complexity
in the wires (and mentioned, but not elaborated, that hub-spoke structures can provide
further minimization), (3) talked about the structure and behaviour of living systems
in terms of holons and holarchies and linked these concepts to software systems, (4)
provided an elaborated classification of object dependencies, (5) introduced the
PCBMER meta-architecture and defined its layering structure, architectural principles,
and structural complexity.

The lack of space did not permit to address software engineering practices and
technologies that could guarantee the compliance of an implemented software system
with the PCBMER meta-architecture and its principles. Similarly, no reverse-
engineering verification procedures were defined to substantiate in metrics the level
of compliance in the implemented system. Many of these issues have been addressed
in other “AD-HOC” papers and are being compiled into a book [9].

References

1. Alur, D. Crupi, J. and Malks, D.: Core J2EE Patterns: Best Practices and Design Strategies.
2nd edn. Prentice Hall (2003)

2. Chidamber, S.R. and Kemerer, C.F. A Metrics Suite for Object Oriented Design. IEEE Tran.
od Soft. Eng. 6 (1994) 476-493

3. Daskin, M.S.: Network and Discrete Location. Models, Algorithms and Applications John
Wiley & Sons (1995)

4. Fenton, N.E. and Pfleeger, S.L.: Software Metrics. A Rigorous and Practical Approach.
PWS Publ. Comp. (1997)

5. Koestler, A.: The Ghost in the Machine. Hutchinson (1967)
6. Koestler, A.: Janus. A Summing Up. Hutchinson (1978)
7. Koestler, A.: Bricks to Babel. Random House (1980)
8. Lieberherr, K.J. and Holland, I.M.: Assuring Good Style for Object-Oriented Programs.

IEEE Soft. 9 (1989) 38-48
9. Maciaszek, L.A.: Development and Integration of Adaptive Complex Enterprise and E-

business Systems. Pearson Education (2007) (in preparation)
10. Maciaszek, L.A.: Requirements Analysis and System Design. 2nd edn. Addison-Wesley,

Harlow England (2005)
11. Maciaszek, L.A. and Liong, B.L.: Practical Software Engineering. A Case-Study Approach.

Addison-Wesley, Harlow England (2005)
12. Maciaszek, L.A. De Troyer, O.M.F Getta J.R. and Bosdriesz, J: Generalization versus

Aggregation in Object Application Development - the “AD-HOC” Approach. Proc. 7th
Australasian Conf. on Inf. Syst. ACIS’96., Hobart, Tasmania, Australia (1996) 431-442

13. Maciaszek, L.A. Getta, J.R. and Bosdriesz, J.: Restraining Complexity in Object System
Development - the "AD-HOC" Approach. Proc. 5th Int. Conf. on Inf. Syst. Development
ISD’96, Gdansk, Poland (1996) 425-435

14. Page-Jones, M.: Fundamentals of Object-Oriented Design in UML. Addison-Wesley (2000)
15. Pressman, R.S.: Software Engineering. A Practitioner’s Approach, 6th edn. McGraw-Hill

(2005)
16. Tharumarajah, A. Wells, A.J. and Nemes, L.: Comparison of the Bionic, Fractal and

Holonic Manufacturing System Concepts. Int. J. Comp. Integr. Manufact. 3 (1996) 217-226

 13

