An Integrated Regression Testing Framework to
Multi-Threaded Java Programs

Bixin Li!*2, Yancheng Wang!, and LiLi Yang'

School of Computer Science and Engineering, Southeast University
No.2 Sipailou Road, Nanjing 210096, Jiangsu Province, P.R.China
2State Key Lab. for Novel Software Technology, Nanjing University
No.22 Hankou Road, Nanjing 210093, Jiangsu Province, P.R.China
bx.li@seu.edu.cn; http://cse.seu.edu.cn/people/bx.1i

Abstract. Regression testing is a process to retest modified programs to examine
whether or not new bugs were introduced by a modification. Currently, most of the
selective regression testing methods have been presented to test non-concurrent
programs, but few of them discussed the regression testing of concurrent programs.
In this article, a selective regression testing framework based on reachability
testing is proposed to solve the retesting problems in testing multi-threaded Java
programs, where both the identification of related components and the selection
of test cases are mainly concerned. The integration of selective regression testing
techniques and the idea of concurrent programs reachability testing makes the
framework be efficient. The adaptation of ESYN-sequence based test data coverage
adequacy criterion improves the ability to find bugs.

Key words: Regression testing; Multi-threaded program; Reachability testing

1 Introduction

Regression testing is a process to retest modified programs to examine whether or not new
bugs were introduced by a modification. In other word, one goal of regression testing is
to ensure that new functionality will not affect adversely the correct functionality
inherited from the original program. Selective regression testing attempts to identify
and retest only those parts of the program that are related to a modification. There are
two important problems need to be solved in selective regression testing[3][4]: how to
identify those existing tests that must be rerun since they may exhibit different behavior
in the changed program? and how to identify those program components that must
be retested to satisfy some coverage criterion? But it is very pity that even though
many regression testing methods have been proposed to test sequential programs, few
discussed the regression testing of multi-threaded Java programs. On the other hand,
Java is one of current main stream languages that is widely used to develop software in
different application areas, where Java supports concurrent programming with threads.
A thread is in fact a single sequential flow of control within a program, and each
thread has a beginning, an execution sequence, and an end. However, a thread itself is
not a program, it can not run on its own, it must runs within a program. Programs that
has multiple synchronous threads are called multi-threaded programs. Fig. 1 shows a
simple concurrent Java program that implements the Producer-Consumer problem.

An Integrated Regression Testing Framework to Multi-Threaded Java Programs 233

cel. public class Prod Coms { te24. public void run(){
me2. public static void main(String[] args) { s25. while(true){
s3. Buffer q = new Buffer(); $26. inname=q.Read();
s4. new Thread(new Producer(q)).start(); s27. use();
s5. new Thread(new Comsumer(q)).start(); }
}
s28. public use()
ce6. class Producer implements Runnable { {
ce7. Bufferq;
ce8. String name; $29. System.out.println(" Used name is:"+inname);

€9. public Producer(Buffer q)

{ }
s10. this.q=q; }
ce30. class Buffer {

tell. public void run(){
s12. int i=0;
s13. while(true)

ce31. String name="unknown";
ce32. boolean bFull=false;
me33. public synchronized void Write(String value){

{ s34. if (bFull)
sl4. if(i==0){ s35. try {wait();} catch (Exception e) {}
s15. name="EvenNumber"; $36. name= value;
} s37. try {Thread.sleep(1);} catch (Exception e) {}
else { s38. bFull=true;
sl6. name="0ddNumber"; $39. notify();
} }
s17. i=(i+1)%2; me40. public synchronized String Read(){
s18. q.Write(name); s41. if(!bFull)
s42. try {wait();} catch (Exception e) {}
} s43. bFull=false;
s44. notify();
cel9. class Comsumer implements Runnable { s45. return name;
ce20. Buffer q; }
ce2l. String inname; }

e22. public Comsumer(Buffer q){
s23. this.q=q;
}

Fig. 1. A Java program describing the Producer-Consumer problem

The program creates two threads Producer and Consumer. The Producer generates
an even or an odd alternatively, and stores it in a Buffer object. The Consumer consumes
all integers from the Buffer as quickly as they become available. Threads Producer and
Consumer in this example share data through a common Buffer object.

To execute the program correctly, two conditions must be satisfied: the Producer can
not put any new integer into the Buffer unless the previously putted integer has been
picked up by the Consumer; the Consumer must wait for the Producer to put a new integer
into the Buffer if it is empty. In order to satisfy the these two conditions, the behaviors of
the Producer and Consumer must be synchronized in two ways: @ the two threads must
not simultaneously access the Buffer. A Java thread can handle this through the use of
monitor to lock an object. When a thread holds the monitor for a data item, other threads
are locked out and cannot inspect or modify the data. @ the two threads must do some
simple cooperation. That is, the Producer must have some way to inform the Consumer
that the value is ready and the Consumer must have some way to inform the Producer
that the value has been picked-up. This can be done in Java by using a collection of
methods of Object class, where method wait() is for helping threads wait for a condition,
and notify() or notifyAll() is for notifying other threads when that condition changed.

234 Bixin Li, Yancheng Wang, LiLi Yang

In this article, we suggest an integrated regression testing framework to test the
multi-threaded Java programs. The rest of this article is organized as follows: section 2
introduces several basic concepts and terminologies; section 3 introduces the integrated
framework; section 4 discusses the selective regression testing which will be adopted
in our framework; section 5 introduces the reachability testing based on extended
synchronization sequence; section 6 gives the case study; section 7 concludes the article
and discusses the works in the future.

2 Several concepts

In this section, we will clarify the meanings of some key concepts used in this article
so that we have a common concept foundation.

A synchronization object refers to an accessed shared variable. A synchronization
operation refers the operation on a synchronization object, it can be divided into
synchronization reading operation and synchronization writing operation on shared
variables.

A synchronization event is the process of synchronization operations on synchro-
nization objects. A synchronization sequence (or SYN-sequence) means a sequence of
synchronization events arranged in time order, which is the executive order of the
synchronization events in concurrent programs. A Feasible SYN-sequence means the
synchronization sequence that can be really executed in the source code, while a valid
SYN-sequence refers to the ones that are specified to be able to be executed by a soft-
ware specification. In general, the feasible SYN-sequences and the valid ones of a
program should be consistent, otherwise, there is an error in the implementation of the
program under test[S]. An event code block (or ECB) is defined as the code fragments
that are related to an event happened, it can be divided into synchronization event
code block (or SECode) and non-synchronization event code block (or N ECode).
SECodes means the code fragments relating to a synchronization event, N ECode
means the code fragments relating to a non-synchronization event.

3 Basic Idea of the Framework

3.1 Test-data Adequacy Criterion

A test-data adequacy criterion is a minimum standard that a test suite for a program must
satisfy[1]. An adequacy criterion is specified by defining a set of program components
and what it means for a component to be exercised. An example is the all-statements
criterion, which requires that all statements in a program must be executed by at least
one test case in the test suite. Here statements are the program components and a
statement is exercised by a test if it is executed when the program is run on that
test. Satisfying an adequacy criterion provides some confidence that the test suite
does a reasonable job for testing the program. In this article, the test-data adequacy

An Integrated Regression Testing Framework to Multi-Threaded Java Programs 235

criterion is a criterion based on Java multi-threaded Flow Diagram (or JMFD), we call
it all-feasible-ESYN-sequences criterion:

— The all-feasible-ESYN-sequences criterion is satisfied by a test suite 7" if for each
ESYN-sequence S there is some test case X in 7" that exercises S. An ESYN-sequence
is exercised by test case X if it is executed when the program is run with input X.

3.2 Basic Testing Steps

In this framework, the regression testing method to test multi-threaded Java programs is

suggested based on traditional selective regression testing and improved reachability

testing. The regression testing steps are listed here, but the detailed discussion will be

presented in section 4 and section 5:

1. Identify all ECBs to be tested.

2. Based on the criterion of covering all feasible ESYN-sequences, we select an
appropriate test case subset 7" from T, satisfying 77 C T

3. Compute the feasible ESYN-sequence and test it deterministically for each test case
in T” based on the idea of reachability testing.

4. Judge whether or not it is necessary to design new test cases to meet the coverage
criterion. If the answer is positive, we should create new test cases T".

5. Compute the feasible ESYN-sequence and test it deterministically for each test case
in T" based on the idea of reachability testing.

6. Create the new available test case set for the modified program based on T, T , 7"
and record the related running information that is useful to the regression testing
performed next time.

Being similar to traditional regression testing methods, step 1 and 2 are the basic
tasks to select the test case set. The big difference is that this method chooses to cover
all feasible ESYN-sequences as the criterion, but traditional methods choose to cover all
feasible SYN-sequences, paths or branches. In this framework, the ESYN-sequence is
composed of one or more ECBs, whereas each ECB consists of one or more SECodes
and N ECodes.

4 Identifying All ECBs To Be Tested

To identify the ECBs is to find all ECBs that are related to a modification, different
kinds of modifications will have different affections on a ECB, so it is necessary to
clarify which types of modification will be included in this article.

4.1 Types of the Modification

The types of program modification included in this article should be corrective

modification and progressive modification, thereinto:

1. Corrective modification only changes the internal behavior of a ECB, but doesnt
change the dependence relationships between two ECBs.

2. Progressive modification not only changes the internal behavior of a ECB, but also
change the dependence relationships between two ECB:s.

236 Bixin Li, Yancheng Wang, LiLi Yang

Each of them can still be divided into following three sub-types of modifications: @
statement modification means doing some modifications to a statement or a control
predicate. @ statement insertion means inserting a statement or a control predicate to a
program. @ statement deletion means deleting a statement or a control predicate from a
program.

We have different ways to identity the related ECBs when we do different
modifications to the multi-threaded programs. In this article, we will borrow concurrent
program slicing techniques to identify and capture those interested ECBs .

4.2 Slicing Multi-Threaded Java Programs

As to concurrent programs, there are several kinds of techniques are adopted to slice
them, thereinto, the technique based on MDG (multi-threaded dependence graph), which
was proposed by Zhao[9], is the representative one of them. For easy to understand,
we iterate it here in brief. The MDG of a concurrent Java program is composed of
a collection of thread dependence graphs each representing a single thread in the
program, and some special kinds of dependence arcs to represent thread interactions
between different threads. Then, the two-pass slicing algorithm based on MDG can be
described as follows: in the first pass, the algorithm traverses backward along all arcs
except parameter-out arcs, and set marks to those vertices reached in the MDG; In the
second pass, the algorithm traverses backward from all vertices having marks during
the first step along all arcs except call and parameter-in arcs, and sets marks to reached
vertices in the MDG. The slice is the union of the vertices of the MDG has marks
during the first and second steps. Similarly, we can also apply the forward slices of
concurrent Java programs. In addition to computing static slices, the MDG is also
useful for computing dynamic slices of a concurrent Java program.

4.3 Identifying the ECBs

In multi-threaded Java programs, the ECBs to be identified is the same level as method,
there are two strategies to identify the related ECBs using program slicing: according
to the first strategy, we first compute the statement-level static slice with respect to the
slicing criterion s, v, where s is the modified point and v is the modified variable; if
a ECB includes a statement or control predicate in the static slice, then mark the ECB.
By this way, we can identify all related ECBs. Obviously, we can do this easily by
using the method proposed by Zhao[9]. According to the second strategy, we can use
hierarchical slicing model[8] to identify all related ECBs.

In this article, we will discuss how to use the first strategy to identify ECBs to be
related to the modification, the steps that we propose in this article to identify ECBs
are as follows:

1. Create Java multi-threaded program dependence graph (MDG).

2. Compute statement-level static slice using the modified statement and variable as
the slicing criterion, basing on the graph-reachability algorithm.

3. Mark the ECBs that include the statements or control predicates in the static slice.

Forward slicing can be used to identify the ECBs affected directly or indirectly by
the modified value of the variables. while, the backward slicing algorithm can be used to
identify the ECBs which directly or indirectly affect the values of variables to be modified.

An Integrated Regression Testing Framework to Multi-Threaded Java Programs 237

There are different identification methods of ECBs for different types of program
modification. In this article, as examples, we only discuss the types of modifications
and identification methods listed in Tab. 1. In general, for each symbol + in Tab. 1, we
should compute a slice.

Tab. 1. The identification methods and the types of modifications

pes of modification Corrective modification Progressive modification
Statement Statement Statement Statement Statement | Statement
Identifying methods correction deletion insertion correction deletion insertion
Backward slicing - - + + - +
Forward slicing - + + + + +

Corrective Modification For corrective modification, the dependence representation
in the dependence graph of program P is completely same as that of program P’,
because such modification does not change the dependence relationships between ECBs,
Therefore, for program P’, it is enough to build the internal dependence relationships
only for the ECBs related to the modification. Based on the modified statement and
the variables used in it, we can compute the corresponding slice for three types of
modifications so as to identify the ECBs related to these modifications. The computing
steps are as follows:

1. Statement modification: compute the forward or backward slice for such modified
statement in program P’. The ECBs that include a statement or control predicate in
the slice will be regarded as the related ECBs.

2. Statement insertion: compute the forward or backward slice for such inserted
statement in program P’. The ECBs that include a statement or control predicate in
the slice will be regarded as the related ECBs.

3. Statement deletion: compute the backward slice for such inserted statement in
program P. The ECBs that include a statement or control predicate in the slice will
be regarded as the related ECBs.

Progressive Modification For progressive modification, we need to build complete
MDGs for program P and P’ respectively, because the dependence relationships
between ECBs have been changed after the modification, we should treat them
differently. As we know, there are three kinds of dependence relationships between
ECBs, i.e., synchronization dependence, data dependence and control dependence.
Synchronization dependence is produced by calling methods wait and notify to activate
event synchronizing. Data dependence is produced by the definition of a variable in one
ECB, whereas the use of the variable in another ECB. Control dependence is produced
by the happening of one event will be dependent on the condition in another event of the
same thread. For progressive modification, we can deal with it regarding to following
two cases: (1) The dependence relationships between ECBs have been changed but the
structure of organizing ECBs remains unchanged. Under this condition, the modification
to ECBs will cause the change of data dependence and control dependence, but won’t
cause synchronization dependence to change. For that, we can identify those ECBs
related to computing the corresponding slice over the MDG of the modified program P’

238 Bixin Li, Yancheng Wang, LiLi Yang

based on above three types of modification: statement modification, statement insertion

and statement deletion. (2) Both the dependence relationships between ECBs and the

structure of organizing ECBs have been changed after the modification. The reason that
causes the structure of organizing ECBs to change is the insertion and deletion of the
synchronization ECBs. Therefore, we can identify those related ECBs as following steps:

1. The deletion of the synchronization ECBs: In the ECBs deleted from program P,
find the statement and variables which have dependence relationships with other
ECBs in program P and use these statements and variables as slicing criteria to
compute the backward slices. The ECBs related to these slices will be regarded as
the related ECBs.

2. The insertion of the synchronization ECBs: In program P’, find those inserted
ECBs and determine the statements and variables which are dependent on other
ECBs in program P’, we use these statements and variables as slicing criteria to
compute the forward slices and backward slices. The ECBs related to these slices
will be regarded as the related ECBs.

3. The movement of the synchronization ECBs can be used replace the insertion and
deletion of the synchronization ECBs. If the result of moving synchronization ECBs
causes the dependence relationships to change, we use the changed statements and
variables as the slicing criteria to compute slices so as to determine those related
ECBs. Otherwise, we needn’t do anything.

4.4 Identification Algorithm: Identifying All Related £CBs By Using Both
Backward and Forward Slicing

Program modification includes corrective modification and progressive modification.
Progressive modification consists of two kinds of types: the first type has not affected the
structure no matter what change you have done, the second type has changed the structure
when you do some modification. The second type is a kind of complex one that can be
regarded as the composition of many single-statement modifications, so it can be divided
into single statement modifications. To deal with such modification, it is needed not only
rebuild the program dependence graph of P’, but also repartition the set of ECBs of
P’ . We compute the ECBs to be related for each modification to simple statement, the
resulting set of these ECBs will be the set of ECBs related to the second modification.

Once the related ECBs are identified, we can perform the regression testing to Java
multi-threaded programs as following steps : (1) choose appropriate test cases based
on the relationships between old test cases and the identified ECBs; (2) compute the
feasible ESYN-sequences; (3) do the deterministic testing based on selected test cases
and the feasible ESYN-sequences.

How to build the relationships between old test cases and the identified ECBs
and how to choose properly test case are two important and complex questions, we
won’t discuss them in details in this article. For simplicity, here we will focus on the
identification of related ECBs after the introduction of the regression testing method and
the construction of ESYN-sequence. As a case study, we use simple selection criterion:
for a given test case, if some related ECB is included in one of its ESYN-sequence, the
test case is also regarded as a selected test case. Even through the precise is not very
high, this technique can insure that the set of selected test cases is safe.

5

An Integrated Regression Testing Framework to Multi-Threaded Java Programs 239

Reachability Testing

In this section, we explain how to generate effective test sequences to satisfy the
all-feasible-ESYN-sequences criterion.

5.1 JMFD: A Java Concurrent Model

To describe exactly the concurrent mechanism of a multi-threaded Java program so as
to generate ESYN-sequence, we borrow the model from Li’s method and extend its
functionality by adding some new elements[7]. We call this model Java multi-threaded
flow diagram (JMFD), where the node denotes event, the edge denotes flow. The steps
for constructing JMFD are as follows:

1.

2.

Use square with round corner notation to denote the start node and end node of the
program, marked with start or end.

Use square notation, with the formula S, or 5, being filled in it, to denote
synchronization read or write event respectively; use ellipse notation with a name
to denote a non-synchronization event; the creation and run event of a thread is
denoted as a non-synchronization event with Tname.start being filled in it.

. Use solid line directed edge to denote the control flow in a program; use uniform

dashed line directed edge to denote the concurrent flow in multithreaded programs.
Use nonuniform dashed line directed edge to denote the synchronization control
flow among the synchronization events of different threads.

Starting from the main thread, construct the JMFD hierarchically till the JMFD for
the whole program has been constructed.

In this article, we mainly concerns the behavior feature of a multi-threaded Java

program for a given test case. Therefore, firstly, we should build the JMFD of a
multi-threaded Java program for the special test case. Fig 2 shows the JMFD of the
program in Fig. 1.

Fig. 2. The JMFD of Producer-Consumer program

240 Bixin Li, Yancheng Wang, LiLi Yang
5.2 Computation of the ESYN-sequences

For the feasible SYN-sequence S of concurrent program P, the prefixes of other
feasible SYN-sequence of P are called the race variants[5], and accordingly, for the
feasible ESYN-sequence S’ of concurrent program P’, the prefixes of other feasible
ESYN-sequence of P’ are also called the race variants.

We can compute the race variants of synchronization sequence by building a race
variant diagram that is a tree, where the node denotes a general prefix of a given feasible
synchronization sequence .S or denotes one of its race variants. The creation process of
the tree nodes in the race variant diagram is completed by considering the all possible
orderings of synchronization read or synchronization write event. The building process
of race variant diagram is in fact the process to compute the variants of synchronization
sequences, when the whole race variant diagram is constructed, the computation
process of race variants of a synchronization sequence ends. To compute other feasible
synchronization sequence, we must use a given test case and corresponding race variant
of S to execute the replay operation of a concurrent program based on the prefix[2].
From the definition of ESYN-sequence, we have following proposition:

Proposition 1 If the time-order remains unchanged, a SYN-subsequence of a feasible
ESYN-sequence is a feasible SYN-sequence.

So, we can compute EYSN-sequence by extending the computing algorithm of
SYN-sequence so that it can deal with non-synchronization event[5][6]. For instance,
SYN-sequence[1] = (S}, Sk S2 52, ...) is a feasible synchronization sequence in
the Producer-Consumer program in Fig 1, the Consumer thread exercises the event
sequence S[2] = (S}, P1, S2, Py, ...), meanwhile, the Producer thread exercises the
event sequence S[3] = (P, S}, P2, S2,...). The event sequence S[3] shows that
the synchronization event S’ must happen after the non-synchronization event P,
and that the non-synchronization event P, must happen before the synchronization
event S2. Similarly, the non-synchronization event P, must happen between the
synchronization events STl and Sf. So, if we insert the non-synchronization event P,
P, into SYN-sequence[[1]] according to the event sequence constraint conditions during
the thread execution[5], we can obtain the ESYN-sequence. Tab. 2 shows a set of
ESYN-sequences, which is computed over the SYN-sequence[1].

Tab. 2. The feasible ESYN-sequences computed from the SYN-sequence[[1]

No. | ESYN-sequence

(P2, SL, Py, Sk, P, 52,52, ...
(P, SL, Py, Sk, 52, P, 52, ...
(P, SL,SE Py, P, 52,52, ...
(P2, SL,SY. Py, 8% Py, 52, ..

ENJ RSN Y
N7 N N g

The event sequence constraint condition during the thread execution are as follows:

— All events in the thread, including synchronization event and non-synchronization
event, must be in time-order, i.e., the event sequence belonging to the same thread
in a ESYN-sequence must be consistent with the thread executuon event sequence

An Integrated Regression Testing Framework to Multi-Threaded Java Programs 241

— The running of events in a thread must happen after the thread is created. As a
example, in Fig.2, the event in Consumer thread must happen after the Initial event
in the main thread.

The algorithm for constructing ESYN-sequence is as follows:

1. For a given test case X and a given SYN-sequence S, compute the race variants of
SYN-sequence S, by changing its race condition.

2. Basing on the event sequences constraint conditions during the thread execution,
add all the non-synchronization events related to race variants of the SYN-sequence
to the race variant so as to construct the race variant of the ESYN-sequence.

3. Using test case X and the race variant of each the ESYN-sequence of S to perform
the multithreaded program replay operation based on prefixes so as to compute the
other feasible SYN-sequences and feasible ESYN-sequence produced.

4. For each new SYN-sequence, repeat steps 1,2 and 3 till no new ESYN-sequence
produced.

6 Case Study

6.1 Corrective Modification

Fig. 1 is a typical Java multithreaded program of the Producer-Consumer problem.
The program code can be divided into five non-synchronization ECBs including
Initial, Tp.start, Tc.start, P, and P, and two synchronization ECBs including S,
and S,. Fig 2 is a JMFD of the program in Fig.1 where statement 3 forms the
non-synchronization event Initial representing the initialization operation, statement 4
and 5 forms non-synchronization events for the creation of threads Tp.start and Tc.start,
respectively.p is the name of Producer thread, c is the name of Consumer thread. The
statements from 10 to 17 form the non-synchronization event P> in the Producer thread,
representing the event of producing data; statement 18 calls synchronization method
Write, which forms the synchronization event, marked as S,,. Similarly, statement 26
calls synchronization method Read, which forms the synchronization event, marked as .S,

The method called by statement 27 forms the non-synchronization event representing
the consuming operation. Now, suppose that we do some changes to the program, for
example, we change statement s38:bFull=true to bFull=false, then the process is as
follows using our regression testing method: firstly, we should create the multi-threaded
program dependence diagram, and know from the MDG where such modification
has not caused the change of dependence relationships, so we can operate along
the case-modification branch in the identification algorithm for identifying ECBs for
the corrective modification. In program P’, we use js38,bFull; as slicing criterion
to compute forward slice and backward slice: the backward slice is —s41,s42” and
the forward slice is —me2, s4, tell,s13,s18,me33,s38”. The ECBs are related to
these resulting slices are: non-synchronization event code blocks Tp.start and P»,
and synchronization event code blocks S, and S,. All these ECBs are the ECBs
related to the statement modification. Finally, we should select appropriate test case
to finish the reachability testing, and ensure each related ECB will be covered by
a test case at least. In other words, the coverage criterion is to cover all feasible

242 Bixin Li, Yancheng Wang, LiLi Yang

ESYN-sequences which includes the related ECBs. The testing result shows that there
are some faults with the corrective modification to statement 38, it makes infeasible
ESYN-sequence=(Py, SL, P, 52) become feasible ESYN-sequence

6.2 Progressive Modification

Suppose that we delete the statement s39 in the program in Fig.1, the consequence is
that the dependence edge from statements s39 to s42 will be deleted. Such modification
causes the dependence relationships between ECBs to change, it belongs to the type of
progressive modification. After the construction of MDG and JMFD of program P, we
can obtain the set of ECBs of program P by identifying the ECBs along the type of
statement deletion of progressive modification. The concrete steps are: (1) compute the
backward static slice w.r.t. slicing criterion js39,monitor;, in program P based on the
identification algorithm of related ECBs, the result is —s39,s42”. The related ECBs that
we have are synchronization event code blocks S,, and S.; (2)select enough test case
related to cover those related ECBs so as to do reachability testing and ensure each
related ECB will be covered by at least a test case; (3)perform the reachability testing
process. The result shows that there are some faults with the deletion of statements
$39,it will cause the deadlock of the program and make the feasible ESYN-sequences
covering S,, and S, become infeasible ESYN-sequences.

7 Conclusion

In this article, we suggest a regression testing framework to test Java multi-threaded
programs based on the integration of both the improved reachability testing and
traditional selective regression testing of sequential programs. The adoption of selective
regression testing technique makes the efficient be high, the use of reachability testing
solves the problems that caused by the non-deterministic behavior of the multi-threaded
programs. Meanwhile, program slicing techniques are borrowed to identify the related
ECBs so as to increase the safety and decrease the total cost of the regression testing.

Acknowledgments. This work is partially supported by the National Science Foundation
of China (No. 60473065) and partially supported by the open foundation of State Key
Lab. for Novel Software Technology, Nanjing University(No.A2005 08). The authors
also thank those anonymous reviewers for their valuable suggestions on the draft.

References

1. D. Binkley. The application of program slicing to regression testing. Information and Software
Technology (I&ST) special issue on program slicing, 40 (11-12): 583-594, 1998.

2. R.Carver and K. Tai. Replay and testing for concurrent programs. IEEE Software, 3(1991):66-74

3. T. L. Graves, M. J. Harrold, J. Kim, A. Porters, G. Rothermel. An empirical study of regression
test selection techniques. ACM Transactions on Software Engineering and Methodology.
10(2), 2001.

An Integrated Regression Testing Framework to Multi-Threaded Java Programs 243

. R. Gupta, M. J. Harrold, and M. L. Softa An approach to regression testing using slicing. In:
Proceedings of the Conference on Software Maintenance, November 1992.

. G. H. Hwang, K. C. Tai, and T. L. Huang. Reachability testing: an approach to testing
concurrent software. In: Proceedings of First Asia-Pacific conference on software Engineering,
246-255, 1994.

. J. Lei, R. Carver. Reachability testing of concurrent programs. Technical Report
GMU-CS-TR-2005-1, George Mason University.

. S. Li, H. Chen, and Y. Sun. A framework of reachability testing for Java multi-threaded
programs 1EEE International Conference on System, Man and Cybernetics, 3(2004):2730-2734
. B. Li, X. Fan, J. Pang, J. Zhao. A model for slicing Java programs hierarchically. J. Comput.
Sci. & Technol, 19(6):848-858, 2004.

. J. Zhao. Slicing concurrent Java programs. In: Proceedings of Seventh International Workshop
on Program Comprehension, 126 -133, 1999

