
Hybrid modeling and verification of Java based software

Konrad Ku™akowski†

Institute of Automatics,
AGH University of Science and Technology
Al. Mickiewicza 30, 30-059 Cracow, Poland

Abstract. From the very beginning, notions such as bisimulation and formal
methods like temporal logic HML or mu-Calculs were closely connected with
process algebra CCS. Another formal method that is widely used for similar
purposes is Petri nets formalism. The presented paper shows how the model
given in the form of a Petri net could be transformed into an equivalent algebraic
model. Some practical application of this method to the analysis of Java based
software will be discussed.

1 Introduction

A typical software life-cycle proceeds from the phase of gathering requirements and
forming specification to building and delivering a ready-to-use product. Usually it
consists of several subsequent steps or phases in which a more and more detailed model
of the system is built [1]. In this approach, it is useful to have a method of comparing
the initial specification of the system with another (maybe more detailed) specification.
One of the formal methods which can be used for this purpose is bisimulation [2].

The hybrid approach to software modeling and verification proposed in this paper
is based on labelled Petri nets (LPN) and process algebra CCS. It shifts consideration
about the model correctness from labelled Petri nets to the process algebra CCS. This
allows for verification of the correctness of Petri nets by means of native algebraic
mechanisms and notions. The shift is done by defining simple mapping between both
formalisms. This approach does not need a compositional net semantics [3].
Correctness is understood as a relation of satisfying the specification by the given
model [4]. Specification could be given in the form of Petri net, and in this case, we
would say that the model satisfies the specification if both the LPN representing model
and LPN representing specification are bisimilar. Bisimlarity checking is done in CCS. In
order to do so, both Petri nets will be transformed into corresponding agent expressions.
Specification could also be defined in the form of temporal logic formulas [5, 6]. The
presented hybrid approach might also be useful for analysing Java software. In this
paper, a sample program based on CyclicBarrier will be analysed in the context of the
hybrid approach based on Petri nets and process algebra CCS.

†Author was partially supported by MNiSW under grant 4 T11C 035 24



Hybrid modeling and verification of Java based software 119

2 Preliminary notions

Definicja 1. Labelled Petri Net (Labelled Place-Transition net) is a tuple
N = (P, T, F,K,W,L,M0) satisfying the following conditions:

– P is a finite, nonempty set of places.
– T is a finite, nonempty set of transitions.
– F � (P �T ) � (T �P ) is a set of directed arcs of the net known as a flow relation.
– K:P��N � {�} is a function assigning a positive integer to every place. The

value K(p), where p � P , indicates the maximum number of tokens that can be
held by p. If p =�, this means that the maximum number of tokens is unlimited.

– W :F��N � {0} is a function denoting the weight of each arc.
– M0:P��N � {0} is a function denoting an initial marking of the net.
– L : T��ActLPT is a labelling function which maps transitions to elements of

a finite set of ActLPT with a distinguished element � .

In the LPT net, an occurrence of transition ti� T, and in consequence, marking the
change from M to M

�
, will be denoted M ti��� M

�
, or M [ti�M

�
. For every

a � ActLPT ,M a��� M
�

means that M ti��� M
�
, such as L(ti) = a. The net

is called finite if �p � P K(p) �=�.

Definicja 2. A reachability graph of the Petri net N = (P, T, F,K,W,L,M0) is a
pair G = (V, A) over T , where:

– V = [M0� is a set of vertices,
– T – is a set of transitions ,
– A = {(M, t, M �) : M, M � � [M0� � M [t�M �} is a set of arcs labelled by the

names of transitions such that (M, t, M �) � A if execution of t cause a change of
marking from M to M �.

The notion of bisimulation was originally defined for process algebra CCS [7], and
it also could be easily defined for Petri nets [8]. In both formalisms, bisimulation
is defined over the space of states of a system. In CCS there is a set of all possible
derivatives of the given agent, whilst in the Petri net, this is a set of all possible
markings of the net. Thus, whenever we say that two nets are bisimilar, we mean that
their initial markings are bisimilar.

Definicja 3. Let LPT1 and LPT2 be labelled Petri Nets. A strong bisimulation is the
relation B between the markings of LPT1 and LPT2, such that for all (M1, M2) � B
and for all a � ActLPT :

– ifM1
a��� M �1 thenM2

a��� M �2 for someM �2 such that (M �1, M �2) � B and
– if M2

a��� M �2 then M1
a��� M �1 for some M �1 such that (M �1, M �2) � B

The simlar definition could be given for a weak bisimulation. We would say that
M1 is strongly bisimilar to M2 and donote it M1 �M2, and M1 is weakly bisimilar
(observable equivalent) to M2 and denote it M1 �M2. Two Petri nets are in strong
(weak) bisimulation if their initial markings are in strong (weak) bisimulation.

Notions like strong and weak bisimulation were originally defined in the context of
process algebra CCS. Appropriate definitions, as well as a detailed description of the
formalism, might be found in various positions [9, 10].



120 Konrad Ku™akowski

3 Transformation of Labelled Petri Nets to CCS

Let N be a finite labelled Petri net and GN = (V, A) be its reachability graph. Because
N is finite, GN is also finite; i.e. both sets V and A are finite. Let us enumerate the
set of vertices as follows: V = (M0, . . . ,Mr). Let O(M) be a set of all vertices from
V that can be directly reached from M ; i.e.:

O(M) = {Mi � V : M [t�Mi � A}
For every vertex M � V let �(M) be the agent in the form:

�(M) = �Mi�O(M)L(ti).�(Mi)
where ti is a transition such that M [ti�Mi � A.

We would say that the symbol � denotes transformation of the given Petri net N ,
with the initial marking M0, to the corresponding CCS agent �(M0) according to the
scheme presented above.

Let us consider the net N1 (Fig.1).

Fig. 1. Petri net N1and its reachability graph

Transitions t1, t2, t3, of N1 are labelled correspondingly: L(t1) = c, L(t2) =
a, L(t3) = b. The reachability graph of N1 contains four vertices that denote four
possible markings: M0, . . . ,M3 (Fig.1). According to the assumed transformation
algorithm, the algebraic equivalent of N1 is the CCS agent �(M0) =

df
�(N1) defined

as follows:
�(M0) =

df
a.�(M3) + b.�(M1), �(M1) =

df
a.�(M2), �(M3) =

df
b.�(M2), �(M2) =

df

c.�(M0).
Transformation � is consistent with the relations of strong and weak bisimulations, which
means that if two Petri nets are bisimilar, their algebraic equivalents are also bisimilar.

Theorem 1. For two finite labelled Petri nets LPN1, LPN2 if LPN1 � LPN2,
thus also �(M (1)0 ) � �(M

(2)
0 ) where M (1)0 and M (2)0 are initial markings of LPN1

and LPN2.

Proof. Let us assume LPN1 � LPN2. Satisfying the equivalence �(M (1)0 ) �
�(M (2)0 ) requires:

– �a : �(M (1)0 )
a��� A(1)1 exists A(2)1 , such that �(M (2)0 )

a��� A(2)1
and A(1)1 � A

(2)
1

– �b : �(M (2)0 )
b��� B(2)1 exists B(1)1 , such that �(M (1)0 )

b��� B(1)1

and B(1)1 � B
(2)
1



Hybrid modeling and verification of Java based software 121

If for some a exists transition �(M (1)0 )
a��� A(1)1 , it means that by knowing the

construction of the agent �(M (1)0 ), we also know that M (1)0 [ti�M
(1)
1 , where L(ti) = a

and �(M (1)1 ) = A
(1)
1 . In other words, M (1)0

a��� M (1)1 . Because LPN1 � LPN2
there is M (1)0 �M

(2)
0 . Thus, on the basis of these two facts, there is M (2)2 such that

M (2)0
a��� M (2)1 . Let us denote A(2)1 = �(M

(2)
1 ). Considering the construction of

�(M (2)0 ), we know that there is transition �(M (2)0 )
a��� �(M (2)1 ).

The question arise whether A(1)1 � A
(2)
1 , i.e. if �(M (1)1 ) � �(M

(2)
1 ) (and similarly,

if B(2)1 � B
(1)
1 ). Let us note thatM (1)1 �M

(2)
1 (as a consequence of LPN1 � LPN2).

In other words, using the same reasoning as presented above, but this time applied to
the nets LPN1(M

(1)
1 ) i LPN2(M

(2)
1 ) – i.e. to net LPN1 with marking M (1)1 and

net LPN2 with marking M (2)1 , we may show that �(M (1)1 ) � �(M
(2)
1 ), which is of

course true if and only if A(1)2 � A
(2)
2 and B(2)2 � B

(2)
1 ,... and so on. By repeating this

operation, we prove equivalences: A(1)3 � A
(2)
3 ,A(1)4 � A

(2)
4 ,... and correspondingly

B(2)3 � B
(1)
3 ,B(2)4 � B

(1)
4 ,... etc.

After the r-th iteration, we have to prove that �(M (1)r ) � �(M (2)r ). These two
agents satisfy the relation � if A(1)r+1 � A

(2)
r+1 and B(1)r+1 � B

(2)
r+1. If in steps l1, l2, such

that 0 < l1 < r, 0 < l2 < r, the equivalences A(1)l1 � A
(2)
l1

and B(1)l2 � B
(2)
l2

have been
proven, where A(1)r+1 = A

(1)
l1

, A(2)r+1 = A
(2)
l1

, B(1)r+1 = B
(1)
l2

and B(2)r+1 = B
(2)
l2

, we may
stop our reasoning at this point. If not, this situation must happen at the latest for r = pq,
where p is the number of vertices in the reachability graph GLPN1 and q - is the number
of vertices in the reachability graph GLPN2 . This is because, if we reach r-th step of
out reasoning (r = pq), this means that for every pair of agents �(M (1)i ), �(M

(2)
j ),

where M (1)i , M
(2)
j � VLPN1,VLPN2 , it is true that �(M (1)i ) � �(M

(2)
j ).

According to the presented reasoning scheme, the following theorems can also be proved.

Theorem 2. For two finite, labelled Petri nets LPN1 and LPN2, if LPN1 � LPN2,
thus also �(M (1)0 ) � �(M

(2)
0 ), where M (1)0 and M (2)0 are initial markings of LPN1

and LPN2.

Theorem 3. For every two finite labelled Petri nets LPN1,LPN2
if �(M (1)0 ) op �(M

(2)
0 ), then LPN1 op LPN2, where op � {�, �},

and M (1)0 ,M (2)0 are initial markings of LPN1 and LPN2.

4 Hybrid modeling – case study

Petri Nets are very often used in the modeling of reactive systems behaviour. The Petri Net
could act both as a specification or as a design. When specification is considered, usually
a small Petri Net is used. It defines activities which determine basic system functionality.

The ideas of strong and weak bisimulation could be implemented into the Petri Net
formalism. Thanks to the presented transformation, analysis of bisimilarities on the basis
of the net’s algebraic representation is possible. It also allows us to: model comparisons



122 Konrad Ku™akowski

in terms of bisimulation property and project validation against specification which
might be written in the form of a set of temporal formulas.

Di�erent model comparisons

Let us consider a model of a system that consists of several di�erent processes
responsible for data processing and one process responsible for printing the result. In
our example, data processing consists of two separate activities denoted correspondingly
by a and b. Data processing is complete if both activities are done. A result printing
is represented by activity c. The order of activities, a and b is not important. Both
sequences a, b and b, a are allowed. The only requirement is that a and b must take
place before c. In our mini-system, these activities will be modeled by actions; i.e. the
activity is complete if an action occurs.

Assuming that actions a and b occur independently (e.g. in a separate processes),
a situation like the one described above is modeled by the net N1 shown in the figure 1.
In general, N1 depicts the system in which two di�erent processes do action a and b,
and next they wait until c is done.

This very popular synchronisation model was reflected in modern Java in the form
of a CyclicBarrier class [11]. It provides a convenient synchronisation aid that allows
one thread to wait until other threads complete their tasks. Of course the requirement
that before c both actions a and b must occur might be fulfilled di�erently. Let us
consider a NaivyApp simple sequential application which may perform two possible
scenarios: a, b, c and b, a, c. In deed, these application also meets the requirements that
both actions a and b must occur before c.

The behaviour of NaivyApp is modeled by the net N2 shown in the figure 2. This
net corresponds to a simple sequential program that performs the actions a, b, c or
b, a, c repeatedly in turn.

Fig. 2. Net N2 and its reachability graph

Because both nets N1 and N2 represent the programs that satisfy our informal
specification, the question comes up whether their behaviours are the same. In order to
answer this question, the reachability graph of N2 is built (figure 2). It enable us to
construct agent �(N2), which is the algebraic representation of N2.
�(M (2)0 ) =

df
a.�(M (2)1 ) + b.�(M (2)3 ), �(M

(2)
1 ) =

df
b.�(M (2)2 ), �(M

(2)
2 ) =

df

c.�(M (2)0 ), �(M
(2)
3 ) =

df
a.�(M (2)2 )

According to the theorem 3, the nets N1 and N2 are bisimilar if agents �(M0) and
�(M (2)0 ) are bisimilar. A quick automatic check proves that �(M0) � �(M (2)0 ) [12],
and thereby it will be shown that N1 � N2.



Hybrid modeling and verification of Java based software 123

5 Summary

For several years, a significant increase of demand for reliable multi-threaded software
can be be observed. As a result, libraries supporting the building of concurrent
applications for many programming languages are available [13, 11] (e.g. a recent
version of Java incorporates the new java.util.concurrent package). This trend also
make stronger a need for the creation of convenient and versatile formal methods that
support specification and design of concurrent software.

The hybrid modeling technique presented above helps to achieve this goal. It
facilitates using bisimulation in the context of models given in the form of Petri nets.
Because of transforming a net to an appropriate CCS agent, it is possible to proceed
with further analysis in well defined algebraic formalism, including suitable tools such
as CWB [12].

Defining algorithms and methods that shorten the distance between formal methods
such as Petri nets or CCS algebra and the Java language will pose a challenge to author
in the near future.

References

1. McConnell, S.: Code Complete. Microsoft Press, Redmond, WA. (1993)
2. Bruns, G.: Distributed Systems Analysis. Prentice Hall (1997)
3. Goltz, U.: CCS and Petri Nets. In: Semantics of Systems of Concurrent Processes, Berlin -

Heidelberg - New York, Springer (1990) 334–357
4. Ku�akowski, K.: Konstrukcja i Analiza Oprogramowania Sterowników Wspomagana

Metodami Formalnymi. PhD thesis, Akademia Górniczo-Hutnicza (2003)
5. Groote, J., Voorhoeve, M.: Operational semantics for petri net components (2003)
6. Fencott, C.: Formal Methods for Concurrency. International Thomson Computer Press,

Boston, MA, USA (1995)
7. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
8. Jancar, P., Esparza, J.: Deciding finiteness of Petri Nets up to Bisimulation. Lecture Notes

in Computer Science 1099 (1996)
9. Milner, R.: A Calculus of Communicating Systems. Volume 92 of LNCS. Springer-Verlag

(1980)
10. Fidge, C.: A comparative introduction to CSP, CCS and LOTOS. Technical report (1994)
11. Lea, D.: Concurrent Programming in Java. The Java Series. Addison-Wesley, Reading, MA

(1997)
12. Moller, F., Stevens, P.: Edinburgh Concurrency Workbench user manual (version 7.1).

(Available from http://homepages.inf.ed.ac.uk/perdita/cwb/)
13. Niño, J., Hosch, F.A.: An Introduction to Programming and Object Oriented Design Using

Java 1.5. Second edn. Wiley, Hoboken, NJ (2005) With CD-ROM.


