
Multidimensional Legacy Aspects of Modernizing Web
Based Systems

Henryk Krawczyk1, Konrad Dusza1, àukasz Budnik1, àukasz Byczkowski1

1 Gdansk University of Technology,
Faculty of Electronics, Telecommunications and Informatics

ul. Gabriela Narutowicza 11/12, 80-952 GdaĔsk, Poland

Abstract. The paper presents basic legacy transition techniques used in soft-
ware lifecycle either on system or component levels. It discusses a user case of
the Endoscopy Recommender System. It also considers an impact of require-
ments, programming platforms, software development strategies and software
standards on legacy status of web applications.

1 Introduction

With web technologies developing at a growing pace and IT systems being adopted
into business models, there occur situations where increasing number of companies
face the urging need for serious changes in their IT systems [1]. Legacy Information
Systems can be defined as “any IT system that significantly resists modification and
evolution” [2] that most often are the IT backbone of a company [3]. In general, the
topic of Legacy Information Systems has been thoroughly examined and the common
problems are well identified [3][4][5]. Even though, case studies show that no miracle
cure for “migration migraine” has been developed. However, there are three main
concepts regarding coping with Legacy Information Systems. These are [3] (from the
most lightweight, to the most revolutionary one) as follows:

Wrapping – accomplished by developing a small software component that con-
nects a legacy component with a new component. A wrapper serves as a translator in
communication between these components.

Migration – a much more complex approach, used when both wrapping and re-
development cannot be afforded either in terms of risk level or when transition be-
tween components must be transparent.

Re-development – means developing a component from scratch, usually re-
implementing a component in a different programming language.

All these strategies can be deployed on both the system level and on the compo-
nent level. For instance, we could wrap the business tier, re-develop presentation tier
and migrate data tier in a web application.

The next section discusses attributes that describe legacy characteristics of web-
based legacy IT systems. Section 3 describes a solution for legacy problems sup-
ported by a real-world case study. It concerns modernizing Endoscopy Recommender

Multidimensional Legacy Aspects of Modernizing Web Based Systems 3652 Henryk Krawczyk, Konrad Dusza, àukasz Budnik, àukasz Byczkowski

System working at the Medical University of GdaĔsk. Besides, it provides a general
methodology of developing legacy transition strategies in web based IT systems. The
concluding section presents general suggestions relating to inclusion of legacy factors
into software life-cycles.

2 Legacy Attributes of Web Applications

One can define a typical web-based legacy information application as a system which
functions are crucial for supporting business in the company of which upgrade in-
volves a high degree of risk. One example is an e-shop based on Apache 1.3, Perl
CGI-scripts and MySQL 3.2 DBMS in which business logic and presentation layer
are intertwined. The main questions concerning legacy issues are: When does a sys-
tem become a legacy one? When a transition cannot be avoided? A legacy system is a
system that still fulfills software requirements imposed by the contract under which
the system has been developed.

Below is the analysis of engineering-related external factors that are the catalysts
of changes in the system. They can be divided into four main categories: extra func-
tional requirements and expectations, technological platform changes, software archi-
tecture modifications, standards and interoperability support. These categories of
changes are illustrated in Fig.1 – Fig. 4.

The most common reason for serious improvements in an information system are
changes in software requirements. Apart from functional ones, there are groups of
other requirements that are often not fulfilled in the first version of a system. The
increasing importance of different kinds of requirements in time is suggested in Fig.1.

Fig. 1. Distribution of requirements importance in web based systems.

Today, there is a plethora of technologies that support web application develop-
ment (see Fig.2). Decision on rewriting a web application to a different technological
platform can be taken to: achieve better scalability, efficiency and maintainability;
show customers that the company uses the newest technologies; merge with other
systems written in other technologies. Some migrations are easy to conduct from that
point of view, eg. from PHP3 to PHP5, others require quite an effort (eg. PHP to
J2EE). In most cases, change of technological platform by itself should not be the
only reason to conduct migration.

Fig. 2. Utilization of technological progress in web application development.

366 Henryk Krawczyk, Konrad Dusza, äukasz Budnik, äukasz ByczkowskiMultidimensional Legacy Aspects of Modernizing Web Based Systems 3

Fig. 3. Trends in distributed software architecture development.

Switching between different technological platforms is often accompanied by a
decision to improve system’s architecture during migration (see Fig.3).

Software architecture evolves towards multi-tiered applications and SOA [7],
which are meant to be the tools for achieving business flexibility in on-demand solu-
tions. However, real-world web-based legacy systems often have data, business and
presentation intertwined, which is often a result of inappropriate development process
and setting aside the principles of software design for the sake of approaching dead-
lines.

During migration process, we might want to use a different software engineering
methodology than the one used during development of a legacy system. The will to
reconstruct the system in a different way is rarely the sole reason to migrate. Similar
situation arises with quality management. Migrations are often occasions to introduce
quality management into the software development process. In general quality man-
agement can contribute to the fact that the system will not be considered as a legacy
one for a long time.

Web application environments also include a numerous group of quickly evolving
standards that the application should comply with (see Fig.4). Introducing new func-
tionalities into application often involves conforming to a certain web standard, eg.
news headlines in RSS. When some web standards supersede others a web applica-
tion that does not conform to new standards is often considered legacy. However, in
most cases, wrappers should be a sufficient solution for such problems.

Fig. 4. Evolution of standards for web applications.

When determining the legacy status of an application, we should firstly determine
its current position on each of these timelines. The distance between the present date
and the latest date corresponding to the desired state of the system is a measure for
the system’s legacy level, which will help to determine the need for software devel-
opment. If a difference can be seen only in one or two aspects, then perhaps a simple
transition should be reconsidered. If not, developing a complex, component-level
transition strategy is recommended, with carefully planned use of wrapping, migra-
tion and re-development techniques.

Another legacy aspect is system interoperability, meaning, that if maintenance
phase changes distort system’s communication with other systems, then the other
systems become legacy ones. Such situation is usually unacceptable for most of pri-
mary system’s users. For example, our e-shop cooperates with another e-shop, which
was forced to change technology platform from ASP.NET to J2EE. Previously, we
used .NET remoting to access another shop’s data, now we have to switch to either

Multidimensional Legacy Aspects of Modernizing Web Based Systems 3674 Henryk Krawczyk, Konrad Dusza, àukasz Budnik, àukasz Byczkowski

Web Services or Java RMI. In such a case, we have to create new communication
module or wrap an existing one and introduce it into our system. The only way to
avoid or at least postpone interoperability-driven transitions is to develop systems
with high flexibility and extendibility. However, it is a very difficult task in practice.

3 A Solution for Legacy Problems with ERS Example

Transformation types discussed in Section 2, were applied in ERS development as
shown in Table 1. The first implementation of the Endoscopy Recommender System
(ERS) was deployed in 1997 as a standalone application, without using web tech-
nologies. The next generations of the system were introduced in 2001 and 2005 re-
spectively. Table 1 presents a detailed history of the system along with technologies
employed in each generation of the system and theirs key features.

Table 1. History of ERS development.

Version,
release date

Features Used tech-
nologies

Legacy transformation
approach

ERS 1, 1997 Database of patients and exami-
nation data. Reports and statistics
generation.

MS-DOS,
Clipper

none (first ERS version)

ERS 2, 2001 MST standardization of examina-
tion descriptions, client-server
architecture, replication of medi-
cal data for reliability improve-
ment.

Windows and
Linux, PHP4,
MySQL 3.23,
Java 1.2,
Apache 1.2

re-development (transi-
tion to web based plat-
form)

ERS 3, 2005 New, three-tiered architecture,
DVD medical data analysis,
security, safety and data integrity
assurance. Addition of new re-
ports and other functions re-
quested by client.

Windows and
Linux, PHP5,
MySQL 5,
Apache 2,
XML, XSLT,
SOAP

DBMS communication
wrapping, inner-system
data-flow migration to
XML,
presentation and busi-
ness tier re-development

As shown in Table 1, the system became legacy two times, in 2001 and 2005. The
reasons for transitions were as follows:

1. System requirements were defined incrementally because of extra needs of system
users – physicians.

2. Personnel rotation in system development team of successive versions (always
students of our faculty, each time with better knowledge of new software technol-
ogy)

3. Emergence of new web technologies provided means for achieving better imple-
mentations of functionalities and higher quality.

Below, we focus on transition from ERS 2001 to ERS 2005. Among different ap-
proaches we have decided to use the following one:

1. Begin with architectural changes.

368 Henryk Krawczyk, Konrad Dusza, äukasz Budnik, äukasz ByczkowskiMultidimensional Legacy Aspects of Modernizing Web Based Systems 5

2. Switch to a new technology (writing new source code).
3. Implement new functionalities.

This approach allows us to transform the system into a three-tiered application in
natural way. Medical environment is very volatile, which urged ERS to be highly
flexible and adaptive. Its component architecture was developed mainly to fulfill that
need. Development of a new, properly tiered architecture enabled designing a system
engine based on XML and XSLT processing. Transition to the latest PHP, MySQL
and Apache versions available made it possible to implement a broader set of re-
quirements.

The ERS database engine was migrated from MySQL3 to the newest MySQL5 and
took full advantage of its new DBMS features (see Table 1). All broken interrelations
were copied into separate database. Medical data collected by many years should
never be deleted or discarded. Instead, they should be stored in safe and secure ar-
chives – this data is a great source of information. Foreign key constraints were added
– responsibility for foreign key checks was transferred from programmers to DBMS
and is processed automatically without any interference. New ERS uses also trigger
mechanism for consistency checks during e.g. delete operations. Data storage engine
was moved from MyISAM to InnoDB. Transaction support was implemented in the
target system and the new ERS now works in fully transactional mode.

To cope with intertwined business logic tier, our team created a template of the
ERS business logic, which proved very useful in further development. Previously,
business logic of the system was highly integrated with other tiers, which forced
programmers to carefully analyze this aspect and separate respective business func-
tions. As a result, an XML file was created, which contained data describing division
of business functionalities into modules and structure of entire system. Later we used
the XML business logic files to automatically generate directory tree, database que-
ries and even code templates for the system, which was achieved by building differ-
ent sets of XSL transformation sheets. XML business logic files also helped develop-
ers to keep references between parts being re-developed and corresponding function-
alities in the legacy version of ERS. We found this feature particularly useful when
assuring that the new version meets all functional requirements that the old system
met.

Although the ERS interface turned to be proper for managing functionalities of-
fered by the system, and it did not need updating itself, a new system architecture
forced developers to isolate presentation logic from the rest of a system, which was
highly interspersed with business and data tier’s code in the previous ERS generation.

Knowledge collected during earlier stages of ERS development helped to decide,
which parts of the system can be transformed and how. Analyses of risk, costs and
benefits have shown that the structure of legacy data in the system should remain
unchanged. What could have been done was the creation of wrappers enabling ac-
cessing previous, legacy-structured data-tier in order to migrate to new MySQL5
DBMS with all the latest transaction techniques. The rest of the system was re-
developed in correlation with new ERS system architecture. It guaranteed easy modi-
fications and expansion, which is highly valued in system user’s environment.

Our experience gained during the development of ERS 2005 shows that a method-
ology to create transition strategy can be developed and included in a software lifecy-

Multidimensional Legacy Aspects of Modernizing Web Based Systems 3696 Henryk Krawczyk, Konrad Dusza, àukasz Budnik, àukasz Byczkowski

cle development. A system becomes legacy one during maintenance phase, when
system’s current features no longer satisfy the needs of users and its environment.
Moreover, the legacy state is periodic, and should be expected in every life-cycle
regardless of software engineering techniques and technological frameworks used.
Web applications are even more endangered to legacy issues as the technologies used
in this area of IT are not mature and evolve faster than in other areas.

4 Conclusions

Software life-cycles foresee the needs for smaller changes of software and its re-
quirements during different phases and at the same time neglect the legacy issue
caused by both user requirements changes and technological progress. The legacy
boundary is often flexible and the legacy state is proclaimed arbitrarily by business-
related managers regardless of the life-cycle.

In order to conduct a transition from a legacy system to a newly developed one,
one of the three approaches can be adopted both on system and a component level.
These approaches are wrapping, migration and re-development. They differ in terms
of software re-use that can be applied and the effort that has to be committed to the
transition process.

Our work on ERS has shown that further legacy transitions of information systems
are inevitable. However, the integration of the legacy state into our software life-
cycle should reduce the cost of future legacy transition, due to greater flexibility of a
system architecture and design. In this case, previous transition took 18 months, and
the present one – 15 months, measuring from the decision to initiate legacy transition
to deployment of the final product.

References

1. Flawn D, The Legacy Systems Dilemma Fujitsu, Legacy Migration,
http://www2.cio.com/consultant/report2337.html

2. Brodie M., Stonebraker M., Migrating Legacy Systems: Gateways, Interfaces and the In-
cremental Approach, Morgan Kaufmann Publishers, Inc. USA, 1995

3. Bisbal J., Lawless D., Wu B., Grimson J., Legacy Information System Migration: A Brief
Review of Problems, Solutions and Research Issues, Computer Science Department, Trinity
College, Dublin, Ireland 1999

4. Hassan A. E., Holt R. C. A Lightweight Approach for Migrating Web Frameworks, Soft-
ware Architecture Group (SWAG), Department of Computer Science University of Water-
loo, Waterloo, Canada 2004

5. Hassan A. E., Holt R. C. A Visual Architectural Approach to Maintaining Web Applica-
tions, Software Architecture Group (SWAG), Department of Computer Science University
of Waterloo, Waterloo, Canada 2002

6. Krawczyk H., Knopa R., Kruk S., Mazurkiewicz A., ZieliĔski J., Predictive-incremental
strategy of application development, KKIO 2001, Otwock, Poland

7. OASIS, Reference Model for Service Oriented Architecture, http:// www.oasis-
open.org/committees/download.php/16628/wd-soa-rm-pr1.pdf

