
Formalizing Software Refactoring in the Distributed
Environment by aedNLC Graph Grammar

Leszek Kotulski, Adrian Nowak

Institute of Computer Science, Jagiellonian University
Nawojki 11, 30-072 Kraków, Poland

kotulski@agh.edu.pl, nowaka@ii.uj.edu.pl

Abstract. Being a commonly used technique to enrich the software structure,
refactoring – as well as any software changes performed every day – still lacks
a good formal definition. Especially in the distributed environment there is a
great need for a better mechanism allowing to avoid conflicts and properly
merge the changes introduced by different developers. In this paper we continue
our project of a core of distributed environment based on graph repository,
which helped us to defeat and significantly decrease problems of refactoring
conflicts. We focus on technical aspects of the environment and present precise
description of the refactorings with the help of aedNLC graph grammar and
graph transformation mechanisms. We also discuss some other properties of the
graph repository including its abilities to store dynamic software description.
Presented approach is based on UML notation, however it could be easily ex-
tended for any object-oriented language. The graph repository concept alone
could lead to a model of a modern integrated software development environ-
ment.

1 Introduction

Modifying and maintaining existing software has become an important part of the job
of software developers. Any changes made to the software (code or model) should
contribute to this software evolution and maturity. Some operations might change the
behavior of the software while others just modify the structure. These changes which
improve object-oriented software while preserving its behavior are well known as
refactorings [1, 2]. When applied properly, refactorings help in many ways to improve
not only the software itself [1] but also the whole process of software development
and maintenance.

Nowadays there exists a number of tools to support such operations for many dif-
ferent programming languages, e.g. Refactoring Browser [3] for Smalltalk or Eclipse
[4] for Java. A great deal of research in this area was conducted, but not much fo-
cused on formalizing the refactoring and its properties. Furthermore, the distributed
environment, used naturally in case of any application developed by a team, was not
taken into account. We try to deal with both these issues in the paper – formalize
refactoring in the distributed environment – since it is essential to take into account all
the factors which may have any influence on the refactoring operation.

342 Leszek Kotulski, Adrian Nowak2 Leszek Kotulski, Adrian Nowak

As pointed in [5, 6, 7] many problems appear when two developers decide to make
refactorings, in a parallel way, on the same software. As a very simple example, even
an Encapsulate Variable and a Move Variable refactorings applied to the same vari-
able by different developers cause a structural conflict, due to lost of the variable
identification in the system [7].

As a formal framework, we use graph-based representation, utilizing Mens’s nota-
tion [8]. However we extend the approach by introduction of the graph repository
concept [7] and online graph transformations controlled by aedNLC graph grammar
[9]. We compose refactorings from simple grammar productions, and provide atomic-
ity by a special execution environment. This formalism allows us to describe and syn-
chronize refactoring operations and also – under some conditions – exclude many
conflicts.

In the next section of the paper we present a concept of graph representation of the
software structures, where refactorings are represented as graph transformations. Sec-
tion 3 overviews appearance of refactoring conflicts in a collaborative environment
and some other common refactoring problems specific for team software develop-
ment. Section 4 introduces formal definitions. Section 5 describes details of represent-
ing refactorings as aedNLC grammar productions. Section 6 shows how the refactor-
ing conflicts can be automatically excluded using this approach. Some other
properties of the repository are also discussed. Finally, section 7 concludes our work
and proposes some future research.

2 Software as a graph

An idea of representing software as a graph is very reasonable and quite natural,
hence commonly used in research [8, 10] and tools [4]. Compared with tree based
representations it does not only allow to represent static relations between program
elements but also dynamic relations such as method call, variable access and late
polymorphism binding.

2.1 Metamodel

A graph representation of all allowed connections between potential software compo-
nents as well as all necessary attributes is known as a metamodel. Formally it is also
called a type graph [11, 8]. An example of a simplified metamodel for object-oriented
programming language (or UML class diagram) was presented in [7] and is now ex-
tended to distinguish method definitions – following Mens [8] – see figure 1.

Graph nodes are labeled by: “Class” for nodes representing classes (or types),
“MethodDef” for method definitions, “Method” for method signatures, “VariableDef”
for variable definitions, “Variable” for variable signatures and “Parameter” for
method parameters. The separation between the definition and the method or variable
itself is crucial as we have to provide a possibility to introduce many definitions of a
single component within a hierarchy (due to late binding and polymorphism). We use
the UML notation, relying on the composition (depicted as filled rhombi) as the most
suitable for representing strong inclusion between main and part components – further

Formalizing Software Refactoring in the Distributed Environment 343Formalizing Software Refactoring in the Distributed Environment 3

called a <<member>> relation. Other relations are represented by attributed refer-
ences. Multiplicities of the relations are written along edges as number, range, or an *
(asterisk) in case of being not strictly defined. We do not interfere with methods bod-
ies (as [8] by introducing an expression component) – this is another hierarchy level
(after package and class levels) in hierarchical graph which we normally use as a full
metamodel – not essential to present in this paper. The OCL[12] in turns allows us to
express constraints to exclude illegal components and relations in the instance graph,
that is for example exclude two methods or two variables with the same signature
within a class.

Fig. 1. Simple metamodel.

For better understanding of the metamodel let us take a look at its sample instance
(Figure 2). Now we operate on particular components instances with given names and
attribute values.

Fig. 2. Example of the metamodel instance.

The relations “m is a member method of class C” or “v is a member variable of the
C” or “m calls n” can be expressed by a suitable node interconnection, presented ap-
propriately by compositions and associations. A real example of Local Area Network
with program code and method definitions was presented in [8].

344 Leszek Kotulski, Adrian Nowak4 Leszek Kotulski, Adrian Nowak

2.2 Refactorings

We assume that any changes made to the software will have one-to-one mapping in-
side the software instance graph. The result of such changes might be very simple,
like a single attribute change, but can be also quite complicated like change to thou-
sands of expressions appearing throughout the project.

An example of a Move Variable refactoring representation is depicted in figure 3.
There are two graphs describing the software fragment – before and right after the
transformation (as a result of applying a single grammar production or a whole set of
productions). Usually refactorings can be processed only when particular precondi-
tions are met [2, 10] (here the Move Variable can be applied when the variable called
“v” is not already defined within the class named “D”).

Fig. 3. Move Variable refactoring and its precondition - v is not in D.

3 Distributed environment

Software is usually developed by teams, which members are in different locations.
These developers usually work in their own local environments on their own copies of
the software, without any knowledge about modifications made by others – and this
may cause the problems considered below.

3.1 Refactoring conflicts

The main problem of applying changes in collaborative environment are conflicts,
usually detectable quite late, in the phase of software merging. These could appear as
syntactic, structural or semantic conflicts [6] – the first two types will be further con-
sidered in the paper.

Let us get back to the example mentioned in the introduction. Suppose two devel-
opers decide to make changes involving the same variable from the same class. One
of them performs the Encapsulate Variable refactoring (changing visibility and adding
setter and getter methods) while another performs the Move Variable refactoring
(from the class named “C” to another named “D”). When, probably after a sequence
of other modifications, developers finally decide to share new versions with the rest

Formalizing Software Refactoring in the Distributed Environment 345Formalizing Software Refactoring in the Distributed Environment 5

of the team, the second developer should encounter a problem - conflicts will appear
in all places where the variable was accessed or updated. The issue is that when using
any of currently existing commercial tools (e.g. the Eclipse [4] with external version
control system like CVS) the source codes of all classes are sent as text. This way we
are able to detect only very basic conflicts, and often there is no possibility to avoid
them. If we just try to automate the merging, we may lose the result of one refactoring
or get two similar variables [7]. In consequence, quite frequently a developer has to
realize what was really modified and decide which operation should be accepted. In
many cases it might be even necessary to redo some operations. Moreover, sometimes
such decisions must be discussed with the rest of the developer team.

3.2 Graph repository

Number of conflict possibilities arise together with the number of changes being ap-
plied. If we are able to imagine a sequence of refactoring operations on the same
piece of code or a group of such sequences, then it is easy to imagine that conflicts
number might increase dramatically1.

Further, when concerning large refactorings performed step by step even through
few days (and so interacting with many other changes, no matter how carefully
planed), it is easy to notice that a kind of long term control mechanism is necessary.

The mentioned mechanism should also support ordinary developers work, that is
provide possibilities such as undo the changes (including refactorings) or history and
version management.

Refactoring tools already utilize a full code description but currently all analysis is
done in complete separation from the rest of the distributed environment. We suggest
to utilize a graph repository, introduced by us in [7]. The internal graph describing
current state of the maintained software will be modified by a graph transformation
system [13] according to software changes. The term “graph repository” is used on
purpose, to put the emphasis on concurrent access to the graph. We assume that the
graph should give us a possibility of unique components identification. It is an in-
stance of the metamodel and additionally may hold some technical attributes for bet-
ter description and analysis of refactoring preconditions as well as performance is-
sues.

4 Formal definitions

The solution presented in the paper is supported by an aedNLC graph grammar [9, 13,
14, 15], so the basic properties of this grammar should be outlined.

1 Important issue here, not only applicable when considering distributed environment, is pro-

viding a possibility of operation grouping in order to get better performance e.g. by gathering
preconditions or finding context once.

346 Leszek Kotulski, Adrian Nowak6 Leszek Kotulski, Adrian Nowak

4.1 EDG Graph

The graph generated by grammar consists of nodes and directed edges; both nodes
and edges are labeled (its general properties are established e.g. a can node represent
class or method) and attributed (the individual components properties are defined e.g.
class name).

An attributed directed node- and edge-labeled graph, EDG graph, over 6 and * is a
quintuple H = (V, D, 6, *, G), where:
V – is a finite, non-empty set of nodes, to which unique indices are

 ascribed, defining the order within the set
6 – is a set of attributed node labels
* – is a set of attributed edge labels
D – is a set of edges in the form of (v,P,w) where w, v � V and P � *
G: Vo6 – is a function, which labels the nodes.

For the metamodel presented in the section 2.1 we should have:
6 = {“Class”, “Method”, “MethodDef”, “Variable”, “VariableDef”, “Parameter”}
* = {<inheritance>, <member>, <type>, <parameter>, <call>, <access>, <update>,
<lookup>}

4.2 Graph transformation

Any graph grammar production P is represented by a left-hand (L) and a right-hand
side (R) graphs and an embedding transformation E, thus P=(L, R, E). Modification of
the graph H, describing a current state of the system, is made by applying graph
grammar production. First, a subgraph of the H, that is homomorphic (by a homo-
morfism h) to L is localized (so the subgraph is equal to h(L)), next h(L) is removed
from H and the right-hand side graph R is placed instead; the embedding transforma-
tion E specifies a way in which the nodes of the graphs R and H-h(L) should be asso-
ciated by edges. The left-hand and right-hand sides of productions could be easy pre-
sented graphically, but the embedding transformation is rather described using a
special notation.

The equation E(ҞJ, in, v) = {(Q, (X, S), P, in)} is interpreted as follows: every edge
labeled by “J” and coming into (thus “in” or “out” will be used to show a direction)
the node h(v) within the graph H should be replaced by an edge connecting a node
(w) labeled by “Q” from the right–hand side graph R with a node labeled by “X” from
the rest of the graph (H-h(L)) on condition that the formula S is fulfilled (for the
nodes belonging to this edge). Newly introduced edge will be labeled by “P” and will
come into the node w. In order to simplify the notation, we assume that the dangling
edges (not described by E) will be connected to a node (inside right-hand side graph
R) with the nodes designated as follows:
x if the removed node (u�L) appears in the right-hand side of production (i.e. exist

node with the same index as u) the edge will be connected to this node
x otherwise the edge will be connected to the least node inside R with the same la-

bel as u.
The above rule we will call COPY_REST embedding transformation rule.

Formalizing Software Refactoring in the Distributed Environment 347Formalizing Software Refactoring in the Distributed Environment 7

The homomorphism used have to be unambiguously defined, so when the left-
hand-side graph of the considered production consists with a single node vL then we
assume the homomorphism is defined as a unique homomorphism from the node vL to
the node for which the production is applied that is v. Note that, in such a case the
embedding transformation is equivalent to the one introduced in [9, 16].

Application of productions should be done in context of the repository graph H by
a special Derivation Control Environment (DCE). The proposition of DCE usage is
based on previous solutions that were utilized to control the software allocation proc-
ess in a distributed system [14] and to describe a behavior of the mobile agent systems
[13].

The DCE services developers and system requests; when a request appears either a
waiting control thread is activated or a new thread of control is created for starting
point.

Fig. 4. Derivation control environment.

The DCE can be interpreted as a diagram (see Figure 4) connecting control points
(the dotted circles) inside which a synchronizing functions Waitk (if exist) and a selec-
tor Ȇk are sequentially evaluated. The synchronizing function Waitk is evaluated bas-
ing on the current graph value and the queue of requests (that have to be sent to the
DCE). If this evaluation fails then the control point activity will be delayed until the
environment changes (i.e. a new request appears), otherwise the selector Ȇk is evalu-
ated (also basing on the same elements) and designates the proper transition. The
transition not only moves the activity to the next control point but also both a seman-
tic function and the graph grammar production (pointed out as edge attributes – SFi
and Pi) are performed. The semantics function (associated with the transition):

- adds new request to the order queue (requesting some actions from refactoring sys-
tem),

- removes the request, which is serviced from the queue,
- evaluates parameters of the right-hand side graph of the production.

When the production P is applied to the current graph H a new graph H' is created
in a way defined by the transformation rules of the graph grammar associated with
this derivation control diagram.

Introduction of the concurrent threads of control simplifies the DCE description,
however to assure proper data modifications we have to introduce a general synchro-
nization rule: each thread of control has exclusive access to the data representing

348 Leszek Kotulski, Adrian Nowak8 Leszek Kotulski, Adrian Nowak

graph H and to the requests queue in the period beginning from Waitk evaluation to
the moment when a new graph H' is created.

5 Refactorings as aedNLC grammar productions

As described in the section 2.2 any refactoring corresponds to the graph repository
transformation. To introduce such transformation we need to be able to apply an ade-
quate grammar production. However, due to restrictions on the graph, graph grammar
and performance issues, we will usually need several productions to define a single
refactoring. For this we will further utilize the derivation control mechanism de-
scribed in the previous section. In order to easily describe refactorings we will use pa-
rameterized productions – to locate nodes of the left-hand side L of production by
graph indices and to avoid ambiguous definition of the homomorphism h. For sim-
plicity, due to one-one mapping, we will also incorporate all information from “Vari-
ableDef” and “MethodDef” nodes into “Variable” and “Method” accordingly. Let us
introduce productions for considered refactorings.

5.1 Move Variable

The MoveVariable refactoring should take effect not only in origin (C) and destina-
tion (D) classes but also in all places where the variable was updated or accessed (e.g.
in Java by adding new imports or class prefixes). Fortunately this information is asso-
ciated with VariableDef node, so embedding transformation consist only of the
COPY_REST rule.

An adequate part of the derivation control diagram is presented in Figure 5. The
condition 31 corresponds to the MoveVariable refactoring precondition that is “v is
not in D”. The Move variable production Pmv is the same as the transformation shown
previously in Figure 3.

Fig. 5. A part of the appropriate DCE for MoveVariable(v, C, D).

5.2 Encapsulate Variable

The EncapsulateVariable should make the considered variable v a private, add get()
and set() methods as well as introduce calls to these methods in all places where the
variable was accessed or updated. We can provide three separated productions – two

Formalizing Software Refactoring in the Distributed Environment 349Formalizing Software Refactoring in the Distributed Environment 9

for introducing the methods (Figure 6a, 6b) and one for changing the variable attrib-
ute (Figure 6c) – the sequence is controlled by dedicated DCE fragment (Figure 6d).
The embedding transformations are, accordingly:

E1(Ҟ<access>, in, 2)) = {(Method, (Method, true),Ҟ <call>, out)}

E2(Ҟ<update>, in, 2)) = {(Method, (Method, true), Ҟ<call>, out)}

E3 � COPY_REST

The condition 31 is checking whether the methods set() and get() already exist in
class “D”, 32 is always true and 33 checks if the variable is public (in case it is not no
production is applied).

Fig. 6. EncapsulateVariable(v, C). a) production P1 - introduces get() method, b) production P2
- introduces set() method, c) production P3 - changes the variable visibility to private, d) DCE
used to control application of these productions.

350 Leszek Kotulski, Adrian Nowak10 Leszek Kotulski, Adrian Nowak

6 Graph repository idea revisited

Our approach supporting global refactoring consists of Graph Management System[7]
(GMS) and a few Local Refactoring Environments (LRE). The GMS maintains the
graph repository. Each of LRE performs the sequence of the following tasks:

x asking the GMS for searching a part of the graph associated with the refactoring
operation (and possibly, synchronize it with the others) – find_context request

x performing the refactoring operation basing on the code,
x informing the GMS that the refactoring operation has to be performed –

Move_variable, Encapsulate_variable requests
x updating the code maintained by LRE on GMS demands.

The first task performed by the GMS is a simple semantic action of searching for
information in the graph. The second GMS task is associated with applying a graph
grammar production (modifying the graph repository) and with execution of the se-
mantic action (which requests all LREs to update the code maintained by nodes modi-
fied by this production).

Let us trace the above schema on the example (Figure 7a). Both developers are
choosing some components to modify – the repository is looking for the right context.
For unique identification of the components and better performance the GMS main-
tains unique indices for every node in the graph. An attempt to apply the Encapsulate
Variable to “v” results on identifying nodes with indices 1 and 2,similarly an applica-
tion of the Move Variable to move “v” from “C” to “D” results in identifying nodes
with indices 1, 2 and 3.

Fig. 7. Synchronization process using indexed EDG graphs.

Formalizing Software Refactoring in the Distributed Environment 351Formalizing Software Refactoring in the Distributed Environment 11

After the context of these operations has been established we can read and share
this part of graph in a parallel way. The Move variable and Encapsulate variable re-
quests on the nodes can be serviced by DCE. However sometimes the request can not
be served or can be only served partially with respect to preserving some of precondi-
tions associated with the request. Let us note the important role of the semantic ac-
tions, that are tracing the graph modification (associated with the embedded transfor-
mation) and creating the refactoring orders for all LREs maintaining the source code
associated with this graph modification.

Finally, in cooperation, both LREs and the GMS update the graphs to new in-
stances. It is easy to notice that the order in which the developers make synchroniza-
tion does not matter (Figure 7d). The key assumption for this method is that both pro-
ductions have to preserve nodes indices.

It is easy to find out that the following conflicts pointed by [5] can be excluded in
the same way:

- Rename Variable and Move Variable applied to the same variable,
- Rename Variable and Variable Encapsulate applied to the same variable,
- Rename Variable and Pull Up Variable applied to the same variable,
- Rename Method and Pull Up Method applied to the same method,
- Rename Method applied twice (separately by two developers) to the method within

the same class,
- Rename Variable applied twice to a variable within the same class.

While dealing with other conflicts, when adding new components or deleting exist-
ing ones, the proposed method is not useful. To avoid such conflicts we have to ex-
clude concurrent execution of the conflicted refactoring operations. This is a simple
task from synchronization point of view (some operations can be delayed until global
predicates, based on attributes, are fulfilled). This solution is still difficult to approve
by developer teams. One of the developers should wait, however now the time of
waiting is considerably decreased (only one refactoring operation should be com-
pleted instead of a full sequence). Moreover, introduction of the graph repository
causes that developers are informed about conflict just in the time when it appears,
while earlier they were informed after finishing of sharing a new software version.

7 Conclusions

In the paper we propose a solution dealing with refactoring conflicts based on [5]
classification. Introduced graph repository concept, properly transformed (under con-
trol of graph grammars) is completely enough to defeat the kind of conflicts where the
key problem was losing method or variable identification while merging the changes.
The introduced environment allows us to solve these conflicts automatically.

In order to prove the theoretical value of the method the centralized service of the
graph repository is sufficient, but in the practical solution it seems that the repository
should be distributed (together with system source code). Fortunately, for the aedNLC
graph grammar semi-parallel derivation mechanism over the distributed graph has
been introduced [13]. Moreover, the parser of aedNLC graph grammar is based on

352 Leszek Kotulski, Adrian Nowak12 Leszek Kotulski, Adrian Nowak

ETPL(k) graph grammar with O(n2) computational complexity [16] and the effec-
tiveness is the most important issue in the system working online. Graph parsing will
be useful when describing and allocating the nested distributed system [6], we can
utilize it to exchange whole subgraphs in case of complex refactorings.

The graph repository could be further utilized by holding additional attributes of
the software, also including dynamic parameters suitable to calculate metrics and us-
ing these to perform automate refactorings. Derivation control diagram is able to
manage refactoring compositions to introduce patterns and should be extended to
manage plans of large refactorings (under interactive control of a developer).

References

 1. Fowler, M.: Refactoring: Improving the Design of Existing Programs. Addison-Wesley
(1999)

 2. Opdyke, W.F.: Refactoring: A Program Restructuring Aid in Designing Object-Oriented
Application Frameworks, Ph.D. thesis, University of Illinois at Urbana-Champaign (1992)

 3. Roberts, D., Brant, J., Johnson, R.: A Refactoring Tool for Smalltalk, Theory and Practice
of Object systems (1997) 253-263

 4. Eclipse Foundation, http://www.eclipse.org/eclipse/, The Eclipse Project (2005)
 5. Mens, T., Taentzer, G., Runge, O.: Detecting Structural Refactoring Conflicts Using Criti-

cal Pair Analysis. Electronic Notes in Theoretical Computer Science, Vol. 127(3) (2005)
113-128

 6. Mens, T.: A state-of-the-art survey on software merging, IEEE Transactions on Software
Engineering 28(5) (2002) 449-462

 7. Kotulski, L., Nowak, A.: Graph Repository As a Core of Environment for Distributed Soft-
ware Restructuring and Refactoring, 24th IASTED International Conference on Applied In-
formatics, Insbruck (2006)

 8. Mens, T., Eetvelde, N., Janssens, D., Demeyer, S.: Formalising Refactoring with Graph
Transformations, Journal of Software Maintenance and Evolution (2004) 1001-1025

 9. FlasiĔski, M., Kotulski, L.: On the Use of Graph Grammars for the Control of a Distributed
Software Allocation, The Computer Journal, 35(1) (1992) 167-175

10. Roberts, D.: Practical Analysis for Refactoring, Ph.D. thesis, University of Illinois at Ur-
bana-Champaign (1999)

11. Engels, G., Schurr, A.: Encapsulated Hierarchical Graphs, Graph Types and Meta Types,
Electronic Notes in Theoretical Computer Science (1995) 2

12. Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with UML,
Addison-Weslay (1998)

13. Kotulski, L.: Parallel Allocation of the Distributed Software Using Node Label Controlled
Graph Grammars, Krakow, Poland, Jagiellonian University, Inst. of Comp. Science (2003)

14.Kotulski, L.: Model systemu wspomagania generacji oprogramowania wspóábieĪnego w
Ğrodowisku rozproszonym za pomocą gramatyk grafowych (in Polish), Krakow, Poland, Ja-
giellonian University Press (2000)

15. Kotulski, L.: Graph representation of the nested software structure, Proc. 5th International
Conference on Computational Science, Atlanta, GA (2005) 1008-1011

16. FlasiĔski M.: Power Properties of NLC Graph Grammars with a Polynomial Membership
Problem, Theoretical Computer Science, 201(2) (1998) 189-231

