Modeling of Component-Based Self-Adapting Context-
Aware Applications for Mobile Devices

Kurt Geihs!, Mohammad U. Khan!, Roland Reichle!
Arnor Solberg®, Svein Hallsteinsen

! University of Kassel, Wilhelmshoeher Allee 73, FB16,
34121 Kassel, Germany
{geihs, khan, reichle}@vs.uni-kassel.de
http://www.vs.uni-kassel.de/
2 SINTEF ICT, Strindveien 4,
NO-7465 Trondheim, Norway
{Armor.Solberg, Svein.Hallsteinsen} @sintef.no

Abstract. A challenge in distributed system design is to cope with the dynamic
nature of the execution environment. In this paper, we present a model-driven
development approach for adaptive component-based applications running on
mobile devices. Context dependencies and adaptation capabilities of applica-
tions are modeled in UML. We present our new modeling approach and UML
profile. A short description of the required middleware infrastructure is given
and the transformation technique of the UML models to platform specific code
is briefly introduced. An application example illustrates the modeling and de-
velopment approach. The presented research results have been obtained as part
of the European IST project MADAM.

1 Introduction

Many people carry a mobile device of some sort wherever they go, and an increas-
ingly diverse set of mobile devices (PDAs, smart phones, laptops etc.) are becoming
widely available. As a matter of fact, people become more and more accustomed to
using mobile services ubiquitously in both work and leisure situations. Clearly, the
performance and quality of mobile applications crucially depend on the dynamically
changing properties of the execution context, e.g. communication bandwidth fluctu-
ates, error rate changes, battery capacity decreases, and a noisy environment may
obliterate the effect of sound output. Therefore, applications on mobile devices need
to adapt themselves to their current operational context automatically according to
goals and policies specified by the user and/or the developer.

The development of self-adapting applications opens up a great challenge: The
range of devices, types of infrastructure, types of context dependencies, ways in
which context can change, situations in which users can find themselves and the func-
tions they want, introduce great complexity and demand a systematic, general meth-
odology to design and implement self-adapting applications.

84 Kurt Geihs, Mohammad U. Khan, Roland Reichle, Arnor Solberg, Svein Hallsteinsen

Our goal is to develop such a methodology for future self-adapting applications.
We want to provide users with applications that are robust and retain their usability
and good performance even in the case of context changes. At the same time we want
to free system developers and system managers from much of the low-level details of
configuration, operations and maintenance activities.

In this paper we present the modeling of adaptive applications with UML as part of
an MDA-based development approach. Self-adapting applications are built as com-
ponent frameworks with integrated variability, i.e. the application developer specifies
variation points when designing an application. During application runtime, if the
context changes, adaptation is performed by selecting a suitable application variant,
i.e. component configuration, that fits to the current context conditions. All of this is
supported by a powerful middleware platform. The choice of using the UML as the
modeling language stems from the intention of achieving the benefits of the MDA
approach in the application development and complying with popular UML tool envi-
ronments. Our UML adaptation model is platform independent and it can be auto-
matically transformed to programming language code.

Section 2 of this paper contains an overview of the basic concepts for adaptation
and the system architecture and presents the underlying development approach. In
Section 3 we present our modeling approach. A new UML profile facilitates the
specification of adaptive applications together with its context dependencies. An ex-
ample is given to illustrate the approach. Section 4 very briefly introduces the model
to code transformation technique. Related work is discussed in Section 5. Finally, in
Section 6 we comment on experiences with the approach, and we point to future
work.

2 Adaptation Approach

The goal of adaptation is to provide the best possible service to the user based on the
current context and user preferences. In order to facilitate the development of applica-
tions that are able to adapt to context changes, the developer must specify how alter-
native variants can be derived. These variants provide the same basic functionality
but differ in their extra-functional characteristics and resource requirements. In order
to facilitate reasoning and decision making about adaptation, the developer must
specify the context dependencies and a utility function that is evaluated to estimate
the suitability of a variant in a given context. In the following we present a conceptual
model for designing applications with built-in variability and, their relation to the
context. The underlying middleware that provides the platform to run the applications
is briefly introduced.

2.1 Application Variability Model

In our approach applications are component based and the variability is achieved
by applying similar concepts as used by the product family community [1]. The varia-
tion points are realized by using the concepts of ComponentType and Plan.

Modeling of Component-Based Self-Adapting Context-Aware Applications 85

Conceptual Component Model. According to Szyperski [2], a Component is a unit
of composition with contractually specified interfaces and explicit dependencies
where dependencies are specified by stating the required interfaces and the acceptable
execution platform(s). Naturally, components may be composed of other software
components and may use other components or resources. Our component model is
consistent with the concepts of existing component models like CCM, EJB and .NET
with the exception that in our current implementation, we use a single class for
realizing the atomic component. But this concept is easily extendable.

The conceptual component model of our approach is shown in Figure 1. A Com-
ponent has exactly one type. A Component Type can have different realizations. It
provides and requires services through ports. The characteristics of the component
type are defined through its set of Port Types. The Port Type is specified through its
set of extra functional characteristics represented by its required and provided
QoS_Properties. The functional characteristics of a Port Type are represented by its
provided and required interfaces.

+/requiredint
’

+/pT‘ovidedInt

* +/providedProperties *
QoS_Property Port Type [| Component Type

- * +/requiredProperties *
realizes

‘ reaI‘izes R
QoS_Propedy_Constraintm‘ Port ’7 Component 1

N +use
influence use use

UserEnvEntity Resource Software Component [
Finfluence™=>

+use—"
influence

User

Fig. 1. Conceptual component model

The specification of provided and required services can be seen as defining con-
tracts between components. The Port Types define component contracts through their
associated provided and required QoS_Properties. Property constraints associate con-
crete values with the properties of a component, which may be expressed as constants
or as expressions.

A Component can be a SoftwareComponent, a Resource or a UserEnvEntity. A
SoftwareComponent can be composed of other components and may collaborate with
other software components and use resources through its ports. A Resource represents
a run time source of supply and has a limited capacity, which is expressed by its prop-
erties. During runtime, consumption and availability of the resource may vary and
need to be monitored by middleware services.

86 Kurt Geihs, Mohammad U. Khan, Roland Reichle, Arnor Solberg, Svein Hallsteinsen

The User in the model of Figure 1 represents the actual user of the applications.
UserEnvEntity represents entities of interest in the user environment, such as light
and noise. The user environment entities may impact resources and other user envi-
ronment entities.

In our work we have identified three types of context, i.e., user context that relates
to the user of a service, system context that encompasses the properties of the execu-
tion environment of an application and application context that encompasses the
properties of an application providing a service. Context elements are realized
through components and context characteristics are expressed as QoS properties of
the component.

Dynamic Creation of Application Variants. In our conceptual model an application
is represented by a Component Type. The recursive closure of all realizations
corresponds to what is often referred to as a component framework [2].

Meta-level description Component concepts

Application
Type
isa

Component | "ealize

describe Type
realization of

Component

specialize

Composition Blueprint Atomic Composite
Plan Plan Component Component

described by

Fig. 2. Component framework

In Figure 2, an application is a software component and an Application Type is
considered to be a Component Type. The realization of a Component Type is de-
scribed using Plans. Components can be atomic as well as composite; accordingly
there are two types of Plans: Blueprint Plan and Composition Plan. A Blueprint Plan
describes an atomic component and it basically contains a reference to the class that
realizes the Component. The Composition Plan recursively describes a composite
component by specifying the involved Component Types and the connections be-
tween them. A plan represents one possible realization of the associated component
type. Variation is obtained by describing a set of possible realizations of a Compo-
nent Type using Plans.

The representation of applications as Components, Component Types and Plans
enables the automatic creation of application variants by recursively resolving the
variation points. This reduces the modeling effort significantly. The application de-
veloper has to provide only the overall component structure of an application, but
there is no need to specify all the possible application variants explicitly. The model-
ing of one Composition Plan can result in several application variants. In a Composi-

Modeling of Component-Based Self-Adapting Context-Aware Applications 87

tion Plan only the cooperating Component Types are specified, which in turn can
have several different realizations described by their corresponding Plans. Besides, if
another component is developed that realizes an already existing Component Type
further application variants can be derived without much additional modeling efforts.
Only the Blueprint Plan and the extra-functional properties of the component have to
be specified.

2.2 Middleware Support for Adaptation

The structure of the middleware platform for running the applications is shown in
Figure 3. The Context Manager monitors and processes the context information by
means of context sensors. The Adaptation Manager receives context information and
decides about the adaptation activities. If adaptation is needed, the Adaptation Man-
ager dictates the Configurator to start up the appropriate configuration.

Context Adaptation Configu-
Manager Manager rator

Fig. 3. Middleware building blocks supporting self-adapting applications

The middleware core is responsible for the automatic creation of the application
variants as described in the previous section and provides fundamental services for
the management of applications, components and component instances. The core re-
lies on the basic mechanisms for instantiation, deployment and communication pro-
vided by an underlying distributed computing infrastructure.

The Adaptation Manager reasons on the impact of context changes and is respon-
sible for selecting the application variant (or set of application variants if multiple ap-
plications are running) that best fits the current context. In order to evaluate the ap-
propriateness of a particular variant of an application, the utility of the variant is
computed. Utility functions along with QoS properties are assigned to each Compo-
nent Type. For a composite component, the utility value and property constraints can
be derived from these.

The Configurator is responsible for the instantiation and configuration of the com-
ponents that form the selected variants of the running applications.

3 Model Development

We follow the Model Driven Architecture (MDA) approach [3]. An abstract, plat-
form-independent model is needed to capture the adaptation capabilities of complex
applications and an automatic transformation to code eases the implementation sub-
stantially because it reduces the probability of making mistakes such as omitting pos-
sible application configurations in the implementation.

88 Kurt Geihs, Mohammad U. Khan, Roland Reichle, Arnor Solberg, Svein Hallsteinsen

For the platform-independent modeling, we use standard UML 2.0 specification
[4]. In addition to this, we extend the standard UML 2.0 specification by introducing
a new UML profile, in order to allow generating abstract descriptions of the applica-
tion’s variability and adaptation capabilities. This abstract specification is trans-
formed to appropriate Java code that is responsible for creating the data structures for
the Component Types and Plans and for publishing them to the middleware. Our
UML-based model builds on experiences with an earlier XML-based model [5].

3.1 UML Profile

We use the UML 2.0 Composite Structure as a baseline in order to model the applica-
tion architecture. All entities that represent the application context, the resources and
the software components (see the conceptual component model in Figure 1) that com-
prise the applications can be modeled and linked by appropriate associations. For
modeling architectural design we have extended the sub-packages InternalStructures
and Ports described in the UML 2.0 superstructure specification. The complete de-
scription of the profile is beyond the scope of the paper and in the following we pre-
sent the most relevant part of the profile used for modeling the adaptibilty of applica-
tions.

The UML profile defines the component types of the conceptual model by extend-
ing the EncapsulatedClassifier of Composite Structures, as shown in Figure 4. Thus, a
component type of the conceptual model of Figure 1 is defined as an Encapsulated-
Classifier. UserenvEntities, resources and software components are realizations of a
Component Type. A Plan describes the realization of a ComponentType.

<<metaclass>>
EncapsulatedClassifier

<<extends>> <<extends>>
<<Stereotype>> describes <<Stereotype>> realizes <<Stereotype>>
Plan realization ComponentType < Component
<<Stereotype>> <<Stereotype>> <<Stereotype>> <<Stereotype>> <<Stereotype>> <<Stereotype>>
CompositionPlan BlueprintPlan Application UserenvEntity Resource SoftwareComponent

Fig. 4. Plan, Component Type and Component are considered as classes with internal struc-
tures

Figure 5 presents the stereotypes for QoS Property and PortType. The
QoS_Property extends the UML metaclass Property in order to express the extra-
functional properties of different variants of applications. QoS _Properties are pro-
vided or required through ports. Ports realize Port Types. Port Type is an extension of
the UML Port metaclass and it is characterized through its provided and required QoS
properties.

Modeling of Component-Based Self-Adapting Context-Aware Applications 89

«metaclass» «metaclass»
Port Property
«extends» «extends»
» +ProvidedQoS *
«Stereotype» realizes «Stereotype» [- R «Stereotype»
Port PortType +RequiredQoS QoS_Property

Fig. 5. QoS_Property extends UML Property and PortType is an extension to UML Port meta-
classes

For property constraint and utility function we have the following stereotypes:
QoS _Property Constraint, Required QoS, Provided QoS and UtilityFunction as
shown in Figure 6.

«Stereotype» «metaclass» «metaclass»
utility Constraint Property
Zﬁ «extends» /«extends» «extends»
«Stereotype» «Stereotype» +constrains «Stereotype»
UtilityFunction QoS_Property_Constraint |« «| QoS_property
«Stereotype» «Stereotype»
Provided_QoS Required_QoS

Fig. 6. Property and PropertyConstraint

A QoS _Property Constraint defines constraints on a Property for a particular com-
ponent. The Property is provided or required through the port types of the component
type. The stereotypes Provided QoS and Required QoS include a set of property
constraints and indicate if the Property is required or provided respectively. Utility-
Function is a generalization of the UML 2.0 standard stereotype <<utility>>, which
designates classes having no instances; but denoting non-member attributes and op-
erations. This provides a basic support that satisfies our requirement of expressing the
utility of application variants as functions.

3.2 Modeling Example

The modeling technique has been applied to develop two comprehensive distributed
applications. Here we use one of them, namely the SatMotion application in order to
illustrate the modeling.

The actual modeling of the application starts with the modeling of requirements
along with the context and its resources. Here we present a simplified model to focus
mainly on the modeling of self-adaptation. Our emphasis is on the variability model
of the application which is used to automatically derive the application variants (ar-
chitecture). During the adaptation process, the suitability of these variants is evalu-
ated and the best fitting variant is chosen to run.

90 Kurt Geihs, Mohammad U. Khan, Roland Reichle, Arnor Solberg, Svein Hallsteinsen

Description of the Application. SatMotion is a commercial distributed application
that facilitates the setting up of Internet connections via satellite terminals (also
known as VSAT terminals). It basically provides assistance to the field installer on
the antenna alignment procedure. It runs on PDAs (e.g. IPAQ) and conventional
laptops. The client software of SatMotion consists of a control module, a command
editing module, a graphics module, a math processor module, a recording module and
an offline analysis module. The server software consists of a communication control
module, a storage module and an instrumentation control module.

The SatMotion application offers two main operating modes: Two-Way and One-
Way. For both modes, two sub-modes, BasicClient and Recorder, are available which
are active depending on the concrete task to be performed by the user. The Two-Way
mode implements a two way communication tool able to command the remote in-
strument, which receives signal traces information from the server and can also send
commands to the server side. SatMotion One-Way is a simplified version of the Two-
Way mode, enabling just one-way communication for the reception of information
from the server. While the Two-Way mode requires a low-latency and highly reliable
connection to perform bidirectional operations, the One-Way mode can work with a
lower network quality to offer the same real-time signal visualization to the user.
Both operating modes, Two-Way and One-Way are complemented by an offline cli-
ent mode. This variant needs no network connection and is able to play, perform
measurements, generate reports etc. on recorded spectrum activity, received previ-
ously in an online mode (either One-Way or Two-Way) and stored on the handheld.
As indicated by the three different modes, the self-adaptive capabilities of the appli-
cation address mainly changes in the network context.

The selection of different variants of the application also depends on the internal
and external context and resource conditions of the application. Examples for the re-
sources and context elements are: device resources (power drain, power level, mem-
ory, processor), user environment (light source, noise), system infrastructure (I/O ex-
tension, screen dimensions, screen colours, brightness), network (type, latency,
capacity, throughput), application (status, operating mode), etc.

Variability Model of the Application

«CompositionPlan»
OnlineTWBasicClient

«BlueprintPlan»
StandBy

Describes realization Describes realization

«CompositionPlan»
OnlineTWRecorder

«Application»
SatMotion

Describes realization
<t -

«CompositionPlan»
OnlineOWBasicClient

<7

Describes realization

«CompositionPlan»
OfflineClient

Describes realization

«CompositionPlan»
OnlineOWRecorder

Fig. 7. Plans for the SatMotion application

Modeling of Component-Based Self-Adapting Context-Aware Applications 91

In the variability model, the SatMotion application is represented as a Component
Type that can be realized by any of six Plans, e.g. OfflineClient, OnlineTWRecorder,
StandBy etc. as shown in Figure 7. Thus variability is introduced through the possi-
bility of choosing among different plans for the application.

A BluePrintPlan represents the end of the recursion and describes the details of an
atomic component. As shown in Figure 7, the SatMotion application can be realized
according to one BluePrintPlan and five CompositionPlans. A composition plan is
further specified recursively through other composition plans and blueprint plans.

«ComponentType» «ComponentType»

GC_TO_UI
Controller

UL_TO_MATH GC_TO_MATH

MATH_TO_UI MATH_TO_GC

«ComponentTyp

»
MathProcessor

Fig. 8. Component types and their associations in the OnlineTWBasicClient Plan

Let us look at the OnlineTWBasicClient plan of Figure 7. Its component composi-
tion is shown in Figure 8. The component types Ul, Controller and MathProcessor
will be decomposed further until all possible variation points have been resolved and
the recursion stops at a BluePrintPlan. Please note that all of these possible variations
are evaluated in the Adaptation Manager at run-time in terms of their specified utility.

An example of a BlueprintPlan describing one possible realization of the Control-
ler Component Type and providing a OneWayController is shown in Figure 9. It con-
tains a definition of a Utility Function, the Component itself and the Property Con-
straints of the various ports of the component regarding device resources and
network.

«Required_QoS» N
{memory >= 10 MB}
{power_drain = Normal}

«SoftwareComponent» {power_level = Medium}
OneWayController |10 pgv R,ES-'"
«UtilityFunction» et
OneWay ControllerUtility |, «Required_QoS» N
{network_latency = Low}
t?:’:‘_E:r _—B_E_si _| {network_required = WiFi}
{throughput = Medium}

Figure 9: BlueprintPlan for a OneWayController

In Figure 9, simple expressions are shown as QoS Property Constraints. How-
ever, in most cases property constraints can be represented as larger arithmetic ex-
pressions involving a number of different QoS Properties.

It is to note here that there are architectural constraints that can limit the creation of
meaningful application variants. For example, a OneWayController can only use a
one way mode of the U, thus its combination with a TwoWayUI will be futile. More-

92 Kurt Geihs, Mohammad U. Khan, Roland Reichle, Arnor Solberg, Svein Hallsteinsen

over, there can be components realized by the same class but with slight changes in
their property requirements that can be adjusted by simple configuration parameters.
Having separate Blueprint Plans for each of them would cause a big modeling effort.
We are currently working on these issues and modeling support will be provided ac-
cordingly in the near future.

4 Transformation of the Model to Programming Language Code

Development of the abstract model and performing automatic code generation pro-
vides high flexibility. If another target-platform should be addressed, the abstract high
level model can be reused, only the transformation has to be adjusted to meet the
needs of the new platform. Furthermore, if changes in the overall structure of the ap-
plications are necessary, the modifications can be done at the higher abstraction level
of the model and the corresponding code is generated automatically. Abstract system
specifications are also useful to manage the set of application variants and to ensure
completeness.

In our work, we use the Eclipse Modeling Framework, in which UML modeling
tools like Omondo and Borland Architect Together can be integrated. The UML
model of the application can be exported as XMI according to the metamodel defined
by the EclipseUML?2, which is a lighter version of the OMG UML 2.0 specification.
The UML2 model exported as XMI is taken as input to generate programming lan-
guage code using MOFScript, which comes as an Eclipse plug-in. The generated code
is then published to the middleware.

The transformation technique is introduced for the completeness of the MDA ap-
proach; however, this paper focuses mainly on the modeling aspect and the details of
the transformation technique are beyond its scope.

5 Related work

There are several research projects dealing with the development of frameworks and
middleware in order to support adaptive applications. Examples are CASA [6], Con-
ductor [7], QuO [8] and Rainbow [9]. In these projects, adaptation modeling mainly
focuses on the rules and strategies for adaptation. Coming from a different perspec-
tive, TRAP/J [10] supports application adaptation for existing Java applications by
means of reflection and aspect oriented programming techniques.

Our work is based on the model-driven development paradigm and aims at plat-
form independent but middleware-specific specifications of the variability and adap-
tation capabilities of applications. In order to allow the selection of the best fitting
application variants based on the utility concept, we have to provide modeling sup-
port for the extra-functional properties and property constraints of applications.
Therefore parts of our UML profile naturally provide similar modeling constructs as
OMG’s UML Profile for Quality of Service and Fault Tolerance Aspects [11] which
includes modeling support for QoS constraints.

Modeling of Component-Based Self-Adapting Context-Aware Applications 93

Examples for other research projects exploiting the benefits of the model-driven
development paradigm and extending UML for providing the platform independent
modeling support are MODA-TEL [12], aiming at the MDA-based development of
telecommunication systems, and COMBINE [13], dealing with the component based
development of enterprise systems. However, these projects focus on the model-
driven development of static applications, whereas we aim at modeling the dynamic
variability and self-adaptation capabilities of applications.

Another project developing a framework for adaptive mobile applications and ser-
vices is FAMOUS [14]. However, the project does not emphasize the model-driven
development approach and therefore does not aim at automatic code generation from
platform-independent models. In [15] an adaptive middleware framework for context-
aware applications is presented. However, it lacks the discussion of the development
support for adaptive applications.

6 Conclusions

In this paper we have presented a modeling technique for self-adapting, context-
aware applications with UML 2.0 in line with the Model Driven Architecture ap-
proach of software development. Our focus has been on the specification of applica-
tion adaptability. The abstract platform-independent adaptation model is transformed
to platform-specific code by a transformation.

The specified modeling and transformation techniques have been applied and
tested with the development of two real-life commercial distributed applications. Our
experiences are promising and support our initial hypothesis: An abstract, platform-
independent model facilitates considerably the engineering of adaptation capabilities
of complex distributed applications. The model supports dynamic configuration
evaluation and selection of suitable application variants at run-time. The automatic
transformation to code eases the implementation to a large extent and it reduces the
probability of omitting possible application configurations in the implementation.

While working with the trial applications, we have found out that when adaptation
occurs often application configurations are evaluated that are practically infeasible. In
order to reduce the computational complexity we need to avoid these configuration
plans up-front. As future work, we will extend our modeling support for the concepts
like architectural constraints and parameterized components in order to solve the
above mentioned problems. The transformation support will be improved as well. We
will also generalize our notion of context and adaptation towards service contexts and
distributed adaptation scenarios where more than one computing device is involved in
the adaptation process.

Acknowledgement

The work presented in this paper is done as part of the MADAM [16] project funded
by the European Commission under the 6" framework programme. We would like to

94 Kurt Geihs, Mohammad U. Khan, Roland Reichle, Arnor Solberg, Svein Hallsteinsen

express our thankful gratitude towards the MADAM consortium and the commission
for their valuable support.

References

1. Gomaa, H. and M. Hussein (2003), "Dynamic Software Reconfiguration in Software Prod-
uct Families", 5th Int. Workshop on Product Family Engineering (PFE), Lecture Notes in
Computer Science, Springer-Verlag.

2. Szyperski, C., "Component Software: Beyond Object-Oriented Programming", Addison
Wesley, 1997 (2nd ed. 2002, ISBN 0-201-74572-0).

3. OMG MDA Homepage: http://www.omg.org/mda/

4. UML 2.0 Specification: http://www.omg.org/cgi-bin/apps/doc?formal/05-07-04.pdf

5. Kurt Geihs, Mohammad Ullah Khan, Roland Reichle, Arnor Solberg, Svein Hallsteinsen,
Simon Merral, "Modeling of Component-based Adaptive Distributed Applications" DADS
Track, The 21st Annual ACM Symposium on Applied Computing, Dijon, France, April 23
27,2006

6. Arun Mukhija and Martin Glinz, "The CASA Approach to Autonomic Applications", Pro-
ceedings of the 5th IEEE Workshop on Applications and Services in Wireless Networks
(ASWN 2005), Paris, France, June-July 2005.

7. Mark Yarvis, Peter Reiher, Gerald J. Popek, "Conductor: A Framework for Distributed Ad-
aptation”, Proceedings of the Seventh Workshop on Hot Topics in Operating Systems,
1999.

8. Joseph Loyall, Emerging Trends in Adaptive Middleware and its Application to Distributed
Real-time Embedded Systems. Third International Conference on Embedded Software
(EMSOFT 2003), Philadelphia, Pennsylvania, October 13-15, 2003.

9. Shang-Wen Cheng, An-Cheng Huang, David Garlan, Bradley Schmerl, and Peter Steenki-
ste, "Rainbow: Architecture-Based Self Adaptation with Reusable Infrastructure", IEEE
Computer Vol. 37 Num. 10, October 2004.

10.S. Masoud Sadjadi, Philip K. McKinley, Betty H.C. Cheng, and R.E. Kurt Stirewalt,
"TRAP/J: Transparent generation of adaptable Java programs", In Proceedings of the Inter-
national Symposium on Distributed Objects and Applications (DOA'04), Agia Napa, Cy-
prus, October 2004.

11. http://www.omg.org/cgi-bin/apps/doc?ptc/04-09-01.pdf

12. A. Gavras, M. Belaunde, L. Ferreira Pires, J.P.A. Almeida. “Towards an MDA-based de-
velopment methodology for distributed applications.” In: Proceedings of the 1st European
Workshop on Model-Driven Architecture with Emphasis on Industrial Applications (MDA-
IA 2004), CTIT Technical Report TR-CTIT-04-12, University of Twente, ISSN 1381-3625,
Enschede, the Netherlands, March 2004, pp. 71-81.

13. http://www.opengroup.org/combine

14. Hallsteinsen, S., Stav, E. and Floch, J., Self-Adaptation for Everyday Systems, ACM
SIGSOFT Workshop on Self-Managed Systems (WOSS '04), Newport Beach, CA, USA,
2004.

15.M. C. Hiibscher, J. A. McCann, An adaptive middleware framework for context-aware ap-
plications, Personal and Ubiquitous Computing, Vol. 10, No.1, pp. 12-20 (2006).

16. MADAM Project Homepage: http://www.ist-madam.org

