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Abstract. DynAlloy is an extension of the Alloy specification language that
allows one to specify and analyze dynamic properties of models. The analysis is
supported by the DynAlloy Analyzer tool. In this paper we present a method
for translating sequential Java programs to DynAlloy. This allows one to use
DynAlloy as a new formal method for the analysis of Java programs. As an
application showing the utility of this formal method toward this task, we present
JAT, a tool for automated generation of test data for sequential Java programs,
implemented on top of the DynAlloy Analyzer.

1 Introduction

Alloy [9] is a relational modeling language. Its simplicity, object-oriented flavor, and
automated analysis support, have made this formal language appealing to a growing
audience. The Alloy Analyzer [10] transforms Alloy specifications (models) in which
domains’ sizes are bounded to a fix scope, into propositions that are later fed to
SAT-solvers such as Berkmin [6] or MChaff [15]. Then, given an assertion to be verified
in the model, the Alloy Analyzer attempts to produce a model of the specification that
violates the assertion. If no such model is found within the provided scopes, we can
gain more confidence that the analyzed property holds in the model. Of course, a
counterexample suffices to show that the model is flawed. We will include a description
of Alloy’s syntax and semantics in Section 2. It is nevertheless worth mentioning at
this point that Alloy models are static. That is, while Alloy functions seem to model an
input—output behavior by relating input and output variables, the classical first-order
semantics prevents actual state change or evolution.

The DynAlloy specification language was first introduced in [4] as an extension of
the Alloy language allowing us to cope with the lack of dynamics of Alloy. DynAlloy’s
semantics is based on dynamic logic [8], making then possible to specify atomic
actions (and complex actions from these) that actually modify the state. It also allows
one to assert properties about these actions by means of partial correctness assertions
[2]. In [3] we presented the DynAlloy Analyzer, which allowed us to effectively analyze
DynAlloy specifications.
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Contributions of the Paper

— From the foundational point of view, this paper introduces a translation of sequential
Java programs to DynAlloy. This translation provides us with a new formal method
for the analysis of Java programs using the DynAlloy Analyzer.

— In the applications side, we introduce JAT (Java Automated Testing), an application
of DynAlloy to the automated generation of test data for sequential Java programs.
JAT allows a user to generate test data according to various structural testing
criteria such as statement coverage, branch coverage or path coverage. JAT also
provides the user with information about non reachable code, and profits from the
existence of invariants and pre conditions written in JML [14], and previous partial
test suites, if these are available.

The paper is structured as follows. In Sections 2 and 3 we give brief introductions
to Alloy and DynAlloy, respectively. In Section 4 we show how to translate sequential
Java programs to DynAlloy. In Section 5 we present JAT, compare it with related work,
and evaluate its performance through examples. Finally, in Section 6 we present our
conclusions.

2 The Alloy Specification Language

In this section, we introduce the reader to the Alloy specification language by means of
an example. This example intends to illustrate the standard features of the language and
their associated semantics, and will be used in further sections.

Suppose we want to specify systems handling lists. We might recognize that, in
order to specify lists, a data type for the data stored in the lists is necessary. We can
then start by indicating the existence of a set (of atoms) for data, which in Alloy is
specified using a signature:

sig Data { }

In this signature we do not assume any properties about the structure of data.

With data already defined, we can now specify what constitutes a list. A possible
way of defining lists is by saying that a list consists of a datum, and an attribute next
relating the current node to the remaining part of the list:

sig List { val : lone Data,
next: lone List }

The modifier “lone” in the above definition indicates that attributes “val” and “next”
may relate a list with at most one element. These are partial functions from List to
Data and List to List, respectively.

Alloy allows for the definition of signatures as subsets of the set denoted by another
“parent” signature. This is done via signature extension. For example, one could define
other (perhaps more complex) kinds of lists as extensions of the List signature:

sig Empty extends List {}
sig TwoList extends List { val2: Data }
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problem ::= decl” form
decl ::= var : typexpr
typexpr 1=

type

| type — type

| type = typexpr

form ::=

expr in expr (subset)

|!'form (neg)

| form and form (conj)

| form or form (disj)

| all v : type/form (univ)

| some v : type/form (exist)

expr 1=

expr + expr (union)

| expr & expr (intersection)
| expr — expr (difference)
|~ expr (transpose)

| expr.expr (navigation)

| xexpr (refl. trans. closure)
| "expr (transitive closure)

| {v: t/form} (set former)

| Var

Var ::=
var (variable)
| Var[var] (application)

Fig. 1. Grammar of Alloy

As specified in these definitions, Empty and TwoList are special kinds of lists. In TwoList,
a new attribute val2 is added to each list. As the previous definitions show, signatures
are used to define data domains and their structure. The attributes of a signature denote
relations. For instance, the “val” attribute in signature List represents a binary relation,
from list atoms to atoms from Data. Given a set L (not necessarily a singleton) of List
atoms, L.next denotes the relational image of L under the relation denoted by next.
Signature extension, as we mentioned before, is interpreted as inclusion of the set of
atoms of the extending signature into the set of atoms of the extended signature.

In Fig. 1, we present the grammar and the (informal) semantics of Alloy’s relational
logic, the core logic on top of which all of Alloy’s syntax and semantics are defined.
Adding a bit more of notation, given singleton unary relations A ={a} and B = {b},
we define A — B = {(a,b) }. Given a binary relation R, we define the update of R
by the pair A — B by

R++(A—-B)={(r,y) e R:x#a}tU{{(a,b)} .

So far, we have just shown how the structure of data domains can be specified
in Alloy. These models can be enriched with the addition of operations, properties
and assertions. Following the style of Z specifications, operations in Alloy can be
defined as expressions, relating states from the state spaces described by the signature
definitions. Primed variables are used to denote the resulting values, although this is
just a convention not reflected in the semantics. In order to illustrate the definition of
operations in Alloy, consider, for instance, an operation that specifies the appending of
a datum to the front of a list (usually called Cons):

pred Cons(d : Data,1,1” : List){ 0
I’.val = d and 1I’.next = 1}

As the reader might expect, a model can be enhanced by adding properties (axioms)
to it. These properties are written as logical formulas called facts in Alloy. We reproduce
some here. It might be necessary to say that lists are acyclic

fact AcyclicLists{ all 1 : List | 1 !in L("next) }
fact OneEmptv{ one Emptv }.
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The keyword “one” states that the set (unary relation) Empty is a singleton. More
complex facts can be expressed by using the quite considerable expressive power of the
relational logic. Assertions are the intended properties of a given model. Consider, for
instance, the following simple Alloy assertion, regarding the presented example:

assert ToOEmpty{ all I: List | 1 != Empty implies Empty in 1."next }

This assertion states that non empty lists (eventually) reach the empty list. Assertions
are used to check specifications. Using the Alloy analyzer it is possible to validate
assertions by searching for possible (finite) counterexamples for them under the
constraints imposed in the specification.

3 The DynAlloy Specification Language

DynAlloy is an extension of the Alloy modeling language. It allows us to define
atomic actions that modify the state, and build more complex actions from the atomic
ones. Atomic actions are defined by means of pre and post conditions given as Alloy
formulas. For instance, atomic actions that retrieve the first element in a list, or remove
the front element from a list are specified by

act Head(l : List, d : Data) act Tail(l : List)
pre = { 1 != Empty } pre = { 1 != Empty }
post = { d’ = Lval } post = { I’ = Lnext }

The primed variables d’ and 1’ in the specification of actions Head and Tail denote
the value of variables d and 1 in those states reached affer the execution of the actions.
While actions may modify the value of all variables, we assume that those variables
whose primed versions do not occur in the post condition retain their corresponding
input values. Thus, Head modifies the value of d, but [ keeps its initial value. This
allows us to use simpler formulas in pre-post conditions.

Equally important, DynAlloy allows us to assert properties about complex actions
by means of partial correctness assertions. For instance,

{ 1!= Empty }
Head(, d);
Tail(l)

{ Cons(d’,I’,]) }

The syntax of DynAlloy’s formulas extends the one presented in Fig. 1 with the
addition of the following clause for building partial correctness statements:

formula == ... | {formula} program {formula} “partial correctness”

Figure 2 shows how complex actions are built from atomic ones. Figure 3 describes
the semantics of DynAlloy.

One of the important features of Alloy is the automatic analysis possibilities it
provides. Similarly, in [3] we show how to translate DynAlloy specifications to Alloy
specifications in order to achieve analyzability. We reproduce the fundamental aspects
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act == p{pre(T)}{post(T)} “atomic action”
|  formula? “test”
|  act+act “non-deterministic choice”
| act;act “sequential composition”
| act” “iteration”

Fig. 2. Grammar for DynAlloy’s Actions

M[{a}p{B}tle = M]ale = Ve' (<e,e/> € Pp] = M[ﬁ]e')
P : program — P (env X env)
P[{pre, post)] {{e,€') : M[pre]le A M[post]e’ }

Pla?] = {(e€): Malene=¢"}
Plp1 + p2] = P[p] U Plps]

Plp1;p2] = Plp1]; P[p2]

Plp*] = Plp]"

Fig. 3. Semantics of DynAlloy.

of this translation below, and refer the reader to [3] for optimizations. We define below
a function wlp : program x formula — formula that computes the weakest liberal
precondition [2] of a formula according to a program (composite action). We will in
general use names x1, s ... for program variables, and will use names z/, 5, ...
for the value of program variables affer action execution. We will denote by «|? the
substitution of all free occurrences of variable x by the fresh variable v in formula a.

When an atomic action a specified as a{pre(T)}{post(Z,z)} is used in a composite
action, formal parameters are substituted by actual parameters. Since we assume all
variables are input/output variables, actual parameters are variables, let us say, 3. In
this situation, function wip is defined as follows:

wipla(g), f] = pre]y — allﬁ(posﬂ%g = f%) ) )

A few points need to be explained about (2). First, we assume that free variables in f
are amongst y/, Tg. Variables in T are generated by the translation function pcat
given in (3). Second, 7 is an array of new variables, one for each variable modified by
the action. Last, notice that the resulting formula has again its free variables amongst
1/, To. This is also preserved in the remaining cases in the definition of function wlp.

For the remaining action constructs, the definition of function wlp is the following:

wlplg?, f] = g=1f

wlp[p1 + p2, f] wip[p1, f] A wip[p2, f]
wip[piip2, f] = wip[p1, wip[p2, f]]
wip[p*, f] Nizo wip[p', f] -

Notice that wilp yields Alloy formulas in all these cases, except for the iteration
construct, where the resulting formula may be infinitary. In order to obtain an Alloy
formula, we can impose a bound on the depth of iterations. This is equivalent to
fixing a maximum length for traces. A function Bwlp (bounded weakest liberal
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precondition) is then defined exactly as wlp, except for iteration, where it is defined by
Buwlp[p*, f1 = Ny Bwlp[p’, f], and n is the scope set for the depth of iterations.

We now define a function pcat that translates partial correctness assertions to Alloy
formulas. For a partial correctness assertion {«a(y)} P(y) {8(w,y’)}

peat({a} P {8} =vi(a = (Bub [po7]) EE) . )

Of course this analysis method where iteration is restricted to a fixed depth is not
complete, but clearly it is not meant to be; from the very beginning we placed restrictions
on the size of domains involved in the specification to be able to turn first-order
formulas into propositional formulas. This is just another step in the same direction.

4 Translating Java Programs to DynAlloy

It will be made clear in this section that once DynAlloy is available, translating Java
becomes immediate. It is also clear that other programming languages, or description
languages, can be easily translated to DynAlloy without requiring complicated ad-hoc
translations. In Fig. 4 we present the grammar for the subset of Java we will translate
in this article. We have also dealt with dynamic dispatch, but is not treated in this
paper due to space limitations.

program ::= classdecl* procdecl*
classdecl ::= class class {class field;}
procdecl ::= class static proc (class var,){stmt}
stmt ::= var = new class()

| var = expr

| expr.field = expr

| while pred { stmt }

| if ( pred ) stmt else stmt

| stmt ; stmt
expr ::= null | var | expr.field

| expr.proc(expr,. . ..expr)
pred ::= expr (boolean)

| expr == expr | lexpr | expr && expr

Fig.4. The syntax of a subset of Java

In order to handle aliased objects appropriately, we adopt the object model of
JAlloy [11]. The JAlloy model of the List signature requires just a basic signature for
lists without fields

sig List { },
and fields are considered as binary relations

val : List — lone Val,
next : List — lone List .
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These binary relations can be modified by the DynAlloy actions. We will in general
distinguish between simple data that will be handled as values, and structured objects.
Action SetNext is now specified as follows:

act SetNext(11, 12 : List, next : List — lone List)
pre = { 11 != Empty }
post = { next’ = next ++ (11 — 12) }

We introduce now in DynAlloy atomic actions that create objects, and atomic
actions that modify an object’s field. We denote by Objects, the unary relation (set)
that contains the set of objects from class C' alive at a given point in time. This set can
be modified by the effect of an action. In order to handle creation of an object of class
C in DynAlloy, we introduce an atomic action called NewC, specified as follows:

act NewC(o : C)
pre = { true }
post = {0’ lin Objectsc and o’ in Objects’}

Notice that Objects should have been passed as a parameter. In order to maintain
notation simple, we keep this kind of variables global. An atomic action that sets the
value of field f of object o, is described in DynAlloy as follows:

act Setf(o: C,v:C,f:C—(C)
pre = { o in Objects }
post={f =f++ (0 — v) }

From the class extension hierarchy in Java, a signature extension hierarchy is
defined in DynAlloy. A class declaration

class C {
C, fieldy;
Ck ﬁeldk;}

produces a DynAlloy model that includes definitions for a signature C' and the necessary
actions for creating objects and modifying their fields:

sig C { }

NewC(o : C)

Setfieldi (o : C, v : Cq, field; : C — Cy)
Setfieldi(o : C, v : Cy, field, : C — Cy)

We proceed now to the translation of simple statements.

v=new C +— NewC(v).
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In order to translate assignment of an expression to a variable, we introduce action
VarAssign as follows:

act VarAssign(vl, v2 : C)
pre = { true }
post={ vl’=v2}

The translation then becomes:
v=e +~— VarAssign(ve) .

In order to translate the assignment of an expression e to the f-field of an object o,
we use action Setf. The translation of the statement then becomes:

of=e +— Setf(oef).

For more complex program constructs, the translation is defined as follows,

while pred {stmt} —  (pred?;stmt)”;(!pred)?,
if (pred) stmtl else stmt2 +—  (pred?;stmtl) + ((!pred)?;stmt2),
stmtl ; stmt2 — stmtl;stmt2,

where the boldface stmt, stmt1 and stmt2 stand for the recursive application of the
translation to the statements stmt, stmtl and stmt2, respectively.

5 Test-Data Generation with JAT

JAT is a tool that generates test input data for Java methods according to different
white-box testing criteria. The current prototype of JAT does statement coverage, branch
coverage and path coverage. In order to obtain a finite Alloy formula, we finitize the code.
This is done by performing up to a predetermined (user defined) number of loop unrolling
or recursive call unfolding. Also, for those methods called from the analyzed method that
are provided with a JML contract, the user can choose whether she/he prefers to use the
contract in the test generation process, or rather to inline the code in the caller method.

In Section 5.1 we describe the architecture of JAT. In Section 5.2 we present a case
study. Finally, in Section 5.3 we analyze related work.

5.1 The Architecture of JAT

Figure 5 provides the architecture of JAT. Boxed entries in the figure correspond to
processes, while non boxed entries correspond to data. Arrows show the flow of data
between processes. JAT takes, as a mandatory input, compilable source Java code,
together with an indication of the method to be tested. Optional inputs to the tool are
a partial JUnit [12] test suite, and JML [14] annotations for data invariants and pre
conditions of methods.
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Java partial JUnit
method test suite
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Fig. 5. Architecture of JAT

The Control Flow Graph Thinner The thinner starts by constructing the method’s
control flow graph (CFG). Given the source code for the method under analysis, and
the partial test suite (if any tests are available), the CFG thinner analyzes the coverage
produced by the provided test suite. It runs first the method under analysis in all
input data available in the provided test suite, and marks the traversed statements and
conditions in the CFG. In this way we have a partial coverage of the CFG. Notice that
a good starting test suite will greatly improve the test input data generation process.

The CFG thinner then produces appropriate subgraphs of the CFG to be translated
to DynAlloy in order to look for new test input data. From the supplied subgraph of the
CFG, JAT produces one input datum. The source method is then executed on this input,
and the coverage marking in the original CFG is updated by adding the marking of the
newly covered statements and conditions. The thinning process then starts again from
the newly marked CFG.

Notice that retrieving proper subgraphs of the CFG allows us to get better analysis
times by reducing the size of the problem to be solved.

The JML— Alloy Translator JML [14] preconditions and data invariants allow us to
generate better test input data, i.e., generation of data that does not satisfy invariants or
is not expected as input from the method is prevented.
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The DynAlloy Analyzer The DynAlloy Analyzer is used in order to find a model of the
specification produced by the Java—DynAlloy translation. In case the DynAlloy Analyzer
succeeds in finding an appropriate model, from this model we can retrieve a path on the
DynAlloy code (and therefore on the original Java code), as well as an input datum i.

The Test Case Generator We will call the path in the Java code inferred from the
DynAlloy Analyzer abstract, as opposed to the concrete path in the Java code obtained
by executing the Java source code with input ¢ on the Java virtual machine. Although it
seems like both paths ought to be the same, the use of incorrect JML specifications
may produce wrong paths. The test case generator then generates the concrete path and
compares the abstract and concrete paths. If they are different, it generates a report for
the user, and a JUnit test showing the difference between the value obtained by the
concrete execution and the value at the end of the abstract path is generated. This helps
the user in finding bugs in the JML specifications. In case the abstract and the concrete
path agree, a JUnit test template is generated containing a description of the found
input datum. This template is then fed to the CFG thinner.

5.2 Case Study: Red-Black Trees

In order to evaluate the usability of JAT, we looked for branch coverage in an
implementation of sets using red-black trees. The implementation was obtained from
the class TreeMap in the java.util package. We analyzed the method “add” that inserts
an element in a tree and restores the red-black tree invariant.

In order to handle trees whose height is less than or equal to 6, we performed up to 6
loop unrolls in method treelnsert. The total number of lines of code checked, considering
the inlined methods and the loop unrolls, is of approximately 230 lines. There are
16 branches to be covered. Following the technique we described in Section 5.1, the
CFG thinner produced 9 subgraphs of the CFG. Looking for test inputs from these 9
CFGs allowed us to cover 15 out of the 16 branches, within a scope of 4. Actually, the
remaining branch corresponds to an if statement where the if branch is always taken.

In Table 1 we present the analysis times of JAT using DynAlloy. SAT-solvers are
usually very sensitive to increases in scope. Fortunately, test input data generation
most of the times requires small structures to achieve a high coverage, and therefore
SAT-solving becomes a viable technique. This hypothesis on the factibility of using
small scopes is known as the small scope hypothesis. Different columns show the
analysis time for different scopes. Running times were computed in a computer with a
64-bit AMD Athlon 3200 with 2 GB of RAM running on a dual channel architecture.
Time is expressed in seconds.

Scope 3 4 5 6 7 8 9 10 11
52 | 56 | 63 | 80 | 101 | 101 | 102 | 120 | 150

Tab. 1. Running times for the generation of test data.
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5.3 Related Work

A vast amount of research on test input data generation has been done in the last few
years. Some research, as is the case in the SLAM project [1] or in the case of the
DART tool [5], assumes absence of aliasing. On the other hand, we aim at the analysis
of programs that make extensive use of complex structures. Other research points
toward specification testing. For instance, TestEra [13] uses the Alloy Analyzer for
specification based testing. Tools such as CUTE [16], Symtra [18], or the work of
Visser et al. [17] using Java Pathfinder, base their research on symbolic execution. We
solely depend on SAT-solving for analysis purposes. An approach close to ours is the
one followed in the INKA tool [7]. The tool handles complex data structures in C, but
cannot handle dynamic allocation.

6 Conclusions

We have presented a novel formal method for the analysis of Java programs based on a
translation of Java programs to DynAlloy, and the use of SAT-solvers. The experiments
we have conducted show that JAT can be effectively used in the analysis of non trivial
Java methods that create objects and handle complex data.
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