
An Approach to Software Quality Specification and
Evaluation (SPoQE)*

Iwona Dubielewicz1, Bogumiáa Hnatkowska1, Zbigniew Huzar1,
Lech Tuzinkiewicz1

1Institute of Applied Informatics, Wrocáaw University of Technology,
 WybrzeĪe WyspiaĔskiego 27, 50-370 Wrocáaw, Poland

{Iwona.Dubielewicz, Bogumila.Hnatkowska, Zbigniew.Huzar,
Lech.Tuzinkiewicz}@pwr.wroc.pl

Abstract. The paper discusses how to carry evaluation of software product
quality within software development process. The evaluation process bases on a
quality model being an instance of a quality model. Quality model, elaborated
basing on ISO quality standards, may be used both for specification of quality
requirements and quality assessment. The evaluation process is presented in
terms of activity diagrams. It is generic and may be concretized for two perspe-
ctives of software product quality, i.e. external, and internal quality. Simple ex-
ample illustrates the proposed approach.

1 Introduction

Quality of a software product can be defined as a totality of characteristics that bear
on its ability to satisfy stated and implied customer needs [5].

The meaning of the term “software product” is extended to include any artifact,
which is the output of any process used to build the final software product. Examples
of a product include, but are not limited to, an entire system requirements specifi-
cation, a software requirements specification for a software component of a system, a
design module, code, test documentation, or reports produced as a result of quality
analysis tasks [10].

The aim of the paper is to elaborate a generic process of software product evalua-
tion based on current ISO standards, relating to Software Quality Assurance (SQA).
The process is independent from specific software development methodology, and
shall ensure software product compliance with quality requirements, moreover with
required level of this quality.

SQA processes provide assurance that software products and processes in the pro-
ject life cycle conform to their specified requirements by planning, enacting, and per-
forming a set of activities to provide adequate confidence that quality is being built
into the software [10].

* The work was supported by polish Ministry of Science and Higher Education under the grant

number 3 T11C 06430.

An Approach to Software Quality Specification and Evaluation (SPoQE) 153

ISO standard [3] provides a new supporting process called Product evaluation. The
process is defined in informal way. The paper formalizes Product evaluation process
and presents it in the form of activity diagrams. The diagrams, expressed in SPEM
notation [9], include roles of stakeholders of software process development, and arti-
facts related to SQA. Considered activities are based on ISO standard [4], while arti-
facts are instances of our Software Quality Model of Requirement, Evaluation and
Assessment (SQMREA) [6]. The fact that ISO quality models are instances of
SQMREA explains why we have called SQMREA in [6] to be a quality meta-model.

The paper is organized as follows. Section 2 gives an overview of software quality
generic model. In Section 3 our formalization of evaluation process is given. Section
4, on the base of a simple example, explains how the evaluation process may be in-
stantiated. Finally, Section 5 discusses presented proposals and compares them to cur-
rent literature.

2 Generic model of software quality requirements evaluation and
assessment

Our proposal of software quality generic model for requirement, evaluation, and as-
sessment, called SQMREA, is shown in Figure 1. This is an extended version of the
model, presented in [6]. The model is presented as UML class diagram with a set of
OCL constraints (omitted in this paper).

The reason of SQMREA introduction is to enable evaluation and assessment of
quality levels of intermediate artifacts produced during software development as mo-
dels, specifications etc., and, finally, the resulting software product.

In general, according to ISO standards, quality assessment can be done from three
perspectives: external, internal, and in use perspective. The last perspective relates not
only to a software product itself but also to its operation in a specific environment and
specific context of use. Therefore, our SQMREA model takes into account only the
first two perspectives, which concern only a software product. The external perspecti-
ve represents a viewpoint of a user, while the internal perspective represents a view-
point of a software developer.

The choice of quality perspective plays the key role in model instantiation. Each
perspective determines a quality model, i.e. the set of selected characteristics and rela-
tionships between them. Instances of the generic model embrace not only ISO quality
models for a given perspective, but also other models that are different from ISO
quality models, for example, dependability models based on IEC 300 series of stan-
dards [10]. In the sequel, for the sake of brevity, we confine our consideration to ISO
quality models.

To do description of the SQMREA generic model more readable, we have grouped
its elements into four packages that are presented in Figure 2.

Two central packages relate to elements of quality model, and software requi-
rements respectively. The right side package relates to subjects of quality assessment,
while the left side one defines how to do the assessment.

We start with description of the package Elements of Quality Requirement Speci-
fication, as comprehensive requirement specification is a starting point both to devel-

154 Iwona Dubielewicz, Bogumi™a Hnatkowska, Zbigniew Huzar, Lech Tuzinkiewicz

opment process of a software product and to its quality requirement specification and
evaluation. This specification is based on user needs that are informal by nature. The
needs serve as the basis for the formulation of requirements. A requirement is defined
as a condition or feature required by user to solve a problem or to reach specific goal
[10]. The requirements should be expressed quantitatively through referring to values
of software product attributes, i.e. measurable physical or abstract properties of the
product.

Software Product, Artifact Specification, Need, and Requirement classes are abstra-
ctions concerning software quality requirements. Their instances are specific for a gi-
ven software product. An instance of Software Product class can be associated with a
set of instances of Artifact Specification class. In our considerations, we abstract from
semantics of instances of Artifact Specification, and we concentrate only on asso-
ciations between this class and other classes. The association to Artifact Implemen-
tation class reflects obvious relationship between specification and implementation –
specification of an artifact may have many implementations. The association to Re-
quirement class (a requirement may be decomposed into other requirements) reflects
the fact that artifact implementations will be eventually evaluated in context of some
requirements. The association to Attribute class points the attributes that are involved
in artifact specification and should be also present in artifact implementation.

1..*

QualityLevel

assessFun()

MetricQualityLevel

Perspectives of
Quality Assessment

Elements of
Quality Model

Subjects of Quality
Assessment

AssessType
non-acceptable
minimal
target
exceeding

<<enumeration>>
Characteristic

QualityLevel

Quality

SPQualityLevel
Need

description
priority

Characteristic
description 0..1

0..1

0..* +sub 1..*
1..*

Requirement
QualityLevel

AttributeValue

MetricEvaluation
obtained

0..*

ArtifactQualityLevel

Attribute

SoftwareProduct

0..*
0..1

0..*

ArtifactImplementation

0..*

0..*

0..*

ArtifactSpecification
0..1

1..*

1..*
1..*

1..*
0..*

Elements of Requirement
specification

Requirement
description
priority
stability

0..*

0..*

1..*
0..*

0..1

1..*

0..1

+derived
0..1

0..*

1..*
+scope

Metric
0..*

1..*

1..*
0..*

0..*

1..*

0..*

0..*

Fig. 1. SQMREA generic model

Elements of Requirement
Specification

+ ArtifactSpecification
+ Need

+ Requirement
+ SoftwareProduct

Elements of
Quality Model

+ Attribute
+ Characteristic

+ Metric
+ Quality

Perspectives of Quality
Assessment

+ ArtifactQualityLevel
+ AssessType

+ Characteristic QualityLevel
+ MetricQualityLevel

+ QualityLevel
+ RequirementQualityLevel

+ SPQualityLevel

Subjects of Quality
Assessment

+ ArtifactImplementation
+ AttributeValue

+ MetricEvaluation

Fig. 2. Elements of main parts of SQMREA model

An Approach to Software Quality Specification and Evaluation (SPoQE) 155

To do quality requirements measurable the classes of Elements of Requirement
Specification package are associated with classes of the package Elements of Quality
Model. The main elements of this package are: Quality, Characteristic, Metric, and
Attribute classes. An instance of Quality class is a root of a hierarchy of characteris-
tics and sub-characteristics, and represents a given quality perspective. Standard [1]
defines the following characteristics for internal and external quality models: func-
tionality, reliability, usability, efficiency, maintainability and portability. These char-
acteristics may be subdivided into multiple levels of sub-characteristics. For example,
according to this standard, there are the following sub-characteristics for functional-
ity: suitability, accuracy, interoperability, compliance and security. For an agreed
sub-characteristic a set of metrics as functions on attributes is given. Acceptable
ranges of the metrics specify recommended values of attributes.

A requirement may be decomposed into other requirements. The leaves of the re-
quirement’s tree are associated with metrics by Metric Quality Level association class.

The elements of the left side package Perspective of Quality Assessment supple-
ment the package Elements of Requirement Specification by delivering functions that
assess quality levels for: (1) a requirement (Requirement Quality Level), (2) a charac-
teristic (Characteristic Quality Level), (3) an artifact (Artifact Quality Level), and (4)
a whole software product (SP Quality Level). The mentioned classes (in braces) are
specializations of an abstract Quality Level class. Each specialization of Quality Level
class should provide its own assessment function (assessFun). The functions yield
values of Assess Type, i.e. non-acceptable, minimal, target or exceeding. These values
define quality of a given element (requirement, characteristic, single artifact, and fi-
nally a software product, understood as a set of artifacts).

Assessment functions form a hierarchy of functions relating to requirements (the
lowest level), sub-characteristics, characteristics, artifacts and software product (the
highest level of the hierarchy). The elementary assessment relates to a given metric
for a given requirement (Metric Quality Level), and is represented by a respective as-
sessFun function. The function classifies the set of possible values of a given metric
to one category of Assess Type. Other assessment functions are not elementary – they
are composed of assessment functions that are at lower hierarchy level.

The values of the assessment function for Metric Quality Level are arguments for
assessment functions of Requirement Quality Level. The values of the assessment
functions for Requirement Quality Level are arguments for others assessment fun-
ctions, i.e. Characteristic Quality Level, and Artifact Quality Level. Assessment of the
whole software product (SP Quality Level) is done with regard to the results from arti-
fact quality level assessments.

For example, assessment functions defined for i-level in hierarchy may take a form
as below:

asslevel(i)(x1, x2, …, xn) = min(asslevel(i-1)(x1), asslevel(i-1)(x2), …, asslevel(i-1)(xn)) (3.1)

where asslevel(i-1)(xk)�{Non-acceptable, Minimal, Target, Exceeding} for k = 1,…, n,
and the values are ordered linearly in the following way:

Non-acceptable < Minimal < Target < Exceeding
The composition may take different forms, for example, a given higher level as-

sessment function may take a form of weighted sum of values that are results of lower
level assessment functions.

156 Iwona Dubielewicz, Bogumi™a Hnatkowska, Zbigniew Huzar, Lech Tuzinkiewicz

The package Subjects of Quality Assessment contains the classes that represent in-
stances of artifacts (Artifact Implementation class), values of their attributes (Attribute
Value class), and metric evaluations (Metric Evaluation class), calculated based on at-
tribute values.

3 Model of evaluation process

This section presents our formalization of product evaluation process, informally de-
fined in ISO standard [4]. The formalization uses activity diagram for expressing arti-
facts flow among different roles engaged within the process. Artifacts used within the
process are instances of our SQMREA model. Roles are selected from those, pro-
posed in [11].

Model of software product evaluation process is presented in Figure 3.
As was mention in Section 2, the main elements of SQMREA model were divided

into four packages. The names of packages are used on the activity diagram as the
names of artifacts produced by different activities. This means that a given activity
yields all elements from the package. To simplify the picture only the outputs for ac-
tivities are presented. The output of a given activity is also an input for the following
one.

Fig. 3. Model of software product evaluation process

 The process starts with Preparing activity. This activity can take one of two forms
according to the quality perspective. In the case of external quality the activity is sub-
stituted by Software Requirement Specification activity, and in the case of internal
quality – by Internal Requirement Specification activity, see Figure 4.

Preparing activity

Quality Level
Definition

Quality Model
Definition

Measurement

Assessment

Perspectives of
Quality Assessment

Elements of
Quality Model

Elements of Requirement
Specification

[defined]

Subjects of Quality
Assessment

Quality Architect Quality Manager System Analyst

Implementation
Artifact

Assessment
Report

An Approach to Software Quality Specification and Evaluation (SPoQE) 157

During Software Requirement Specification activity system analyst should, first of
all, to determine the real purposes of the software. The purposes are expressed as
needs, and they are represented by instances of Need class in the activity diagram.
Needs are written informally, in natural language. Based on them system analyst iden-
tifies kinds of output artifacts, elicits quality requirements, and associates artifacts
specifications with quality requirements.

In te rn a l R e q u ire m e n t
S p e c if ic a tio n

E le m e n ts o f R e q u ire m e n t
S p e c if ic a t io n

[d e fin e d]

E x te rn a l
p e rs p e c tiv e

E le m e n ts o f R e q u ire m e n t
S p e c if ic a t io n

[f irs t-c u t]

In te rn a l
p e rs p e c tiv e

Elements of Requirement
Specification

[first-cut]

Software Requirement
Specification

Need

Fig. 4. Details for Preparing activity for external, and internal quality perspective

The requirements at that moment are described informally, what is marked by ob-
ject-flow state called “first-cut”. They take a form of system features. System feature
is defined as a general system service that is associated with fulfillment of one or
more needs [8]. ISO standard [4] introduces a term general requirement for system
features description. An example feature for a weapon control system can be defined
as: in the case of attack two independent authorizations are needed [8].

Based on general requirements system analyst decides what artifacts will be expec-
ted to represent a software product from interesting quality perspective (it proposes
instances of Artifact Specification class). When external perspective is considered the
example artifacts may be: executable components, user manual, installation manual,
and so on.

Internal Requirement Specification aims with transforming external requirements
into internal ones that are associated with internal artifacts. The example internal arti-
facts may be: software requirement specification, software architecture document,
source code, and so on. Needs are omitted at this stage.

The most difficult is Quality Model Definition activity as it is responsible for trans-
formation of informally defined, general requirements into formally defined require-
ments. The main aim of this activity is to elaborate a quality model, expressed in
terms of characteristics, metrics, and attributes. These elements must be suitable for
interested quality perspective. Their association with not empty set of metrics formal-
ly defines the leaves of requirement tree. Some identified attributes may contribute to
more than one requirement for a software product. Some of them may be mutually in
conflict, which must be resolved.

For each pair: requirement-metric an instance of Metric Quality Level class and an
instance of Metric Evaluation class are created. The assessment function for instances
of Metric Quality Level will be defined in the next activity, called Quality Level Defi-
nition. The attribute obtained for instances of Metric Evaluation class will be filled in
Measurement activity.

158 Iwona Dubielewicz, Bogumi™a Hnatkowska, Zbigniew Huzar, Lech Tuzinkiewicz

Quality Level Definition activity yields assessment functions for elements which
quality we want to evaluate and assess. This activity is a complex one and can be de-
composed, as it is shown in Figure 5. The activity is repeated for each considered qua-
lity element we want to evaluate. First of all the assessment function for all pairs:
leaf-requirement—metric must be defined. Next, following assessment functions are
defined: for each leaf-requirement, for each artifact, and for the whole software prod-
uct. Quality Manager may introduce (or may omit) definitions of assessment func-
tions for selected characteristics from quality model.

Metric Quality

Level Definition
Requirement Quality

Level Definition

Characteristic Quality
Level Definition

Artifact Quality
Level Definition

SP Quality
Level Definition

[option]

Fig. 5. Details of Quality Level Definition activity

The last two activities in Figure 3 are deferred up to artifact implementations are
created. Measurement activity returns values of attributes used in metrics for any arti-
fact implementation, and deriving from attribute values metric evaluations for each
pair: leaf-requirement—metric. These evaluations are represented by obtained attrib-
ute in Metric Evaluation class.

During Assessment activity assessment functions, defined in Quality Level Defini-
tion activity are performed. Results of the functions are gathered in assessment report.

4 Example

Presented example deals with situation when at the beginning of the semester the
course timetable for students’ courses contains some inconsistencies. The timetable is
prepared manually using data from the given external database. So, the problem is
how to get feasible timetable within a given deadline. A software product, which sup-
ports the problem solution, is expected.

The investigation performed by system analyst with administrative staff shows that
possible reasons of timetable incorrectness come from:

x incomplete or incorrect input data,
x no direct access to database,
x constraints received from teachers,
x temporary overloading of faculty staff at the beginning of the semester.

To resolve problem the following information needs are formulated:

x recording of teacher’s constraints up to a given deadline,
x data relating to timetable should be accessible all time they are needed (*),
x preview of current assignments of lecturers and classrooms to courses during the

process of timetable preparation (*).

An Approach to Software Quality Specification and Evaluation (SPoQE) 159

To fulfill these needs requested software product should have the following features:

x system is accessible on demand,
x system enables reporting of current resource usage.

In further, we investigate an exemplary quality evaluation process conducted for
the needs marked by (*). Additionally, we restrict the example only to external per-
spective of software product quality.

Activity 1: Software requirement specification
Input: User needs
Output: Requirements specification; it contains following requirements:

R1) Some kinds of analytical reports are expected; the following two of them are
further considered:

Report1 – shows the vacancy of classrooms along weekdays
Report2 – shows preliminary timetable based on current assignments of lectur-

ers and classrooms to courses
R2) Report presentation should take a format of pivot tables and pivot charts
R3) Data for reports are retrieved from the external database
R4) System is accessible for use in any time when it is needed
R5) The expected software should be implemented on Microsoft platform.

Comment: The software functionality is limited to preparation of a set of
analytic reports to support current, manually conducted process of timetable
preparation.

Software Product (SP) will consists of two kinds of artifacts:
� Code: Resource Planning Reports system (RPR system)
� Documentation: User manual
The RPR system will operate in conjunction with:
� DBMS (MS SQL or Access)
� Excel

Activity 2: Quality model definition
Input: Requirement specification, list of artifacts, and ISO quality standards [1],

[2].
Output: Elements of quality model – presented in Table 1.

Table 1. Quality model for RPR system

Quality model
characteristic/
subcharacteristic

Metric/
Metric_ID Measurement formula & attributes Tracing

for
Assign

to

Functionality/
Suitability

Coverage/
Fsm1

X=1-A/B
A–number of function incorrect or missing
B–number of function described in re-
quirement specification

R1 Code
Doc

Functionality/
Interoperability

Data
exchangeability/
Fim1

X=A/B
A–number of data formats exchanged suc-
cessfully with other software
B–total number of data formats to be ex-
changed

R3 Code

160 Iwona Dubielewicz, Bogumi™a Hnatkowska, Zbigniew Huzar, Lech Tuzinkiewicz

Usability/
Usability compli-
ance

Usability
compliance/
Ucm1

X=1-A/B
A–number of usability compliance. items
missing
B–total number usability compliance items
specified

R2 Code
Doc

Reliability/
Recoverability

Availability/
 Rrm1

X=A/B
A–total available cases of user successfully
software use when attempt
B–total number of cases of user’s attempt
to use software during observation time

R4 Code
Doc

Functionality/
Interoperability

MS software
compliance/
Fim2

X=A/B
A–number of Microsoft software products
being used
B–total number of used software products

R5 Code

Activity 3: Quality level definition
Input: Quality model definition for RPR system
Output: During this activity the assessment functions for all elements from assess-

ment perspective package are established. First, the metric quality level
assessment functions for any pair: requirement-metric are defined. They
are shown in Table 2.

Table 2. Definition of assessment function for metric quality level

Req. Metric_ID Assessment function definition
R1 Fsm1 Minimal>0.80; Target=1.0
R2 Ucm1 Minimal>0.5; Targett0.9
R3 Fim1 Minimal=0.9; Target=1.0
R4 Rrm1 Non-acceptabled0.5; Minimal<0.9; Target=0.9; Exceeding>0.9
R5 Fim2 Non-acceptabled0.8; Minimal<1.0; Target=1.0

We have assumed the assessment functions for all quality levels are defined ac-

cording to the formula (3.1). The only difference is the formula of an assessment
function for SPQualityLevel, and it is defined as follows:

Non-acceptable if xCode = Non-acceptable
assSP-level (xCode, xDoc) = Minimal if xCode = Minimal (4.1)
 Target if xCode = Target and xDoc � Minimal
 Exceeding if xCode = Exceeding and xDoc � Minimal

The assessment functions are accepted or given by user.

Activity 4: Measurement
Input: Code and documentation of RPR system.
Output: During this activity the measurement of software artifacts is performed.
The resulting metric values are presented in Table 3.

Table 3. Examples of performed measurements for metric level

Obtained metric values Metric_ID Metric Code Documentation
Fsm1 coverage X = 0.85 X = 0.4

An Approach to Software Quality Specification and Evaluation (SPoQE) 161

Ucm1 usability compliance X = 0.9 X = 0.8
Fim1 data exchangeability X = 1 n/a
Rrm1 availability X = 0.6 X = 1
Fim2 MS software compliance X = 1 n/a

*n/a – not applicable
Comment. The measurement of SP is performed in user’s environment

Activity 5: Assessment
Input: Results of activities 3 and 4
Output: Quality values for all levels

Using the assessment function (3.1) defined in clause 3, for each level of assess-

ment there were obtained values given in tables 4–7. As each requirement has one as-
sociated metric only, the results of quality values for requirement quality level are the
same as for metric quality level. The assessments are done independently on each
level for every artifact.

Table 4. Obtained quality values for metric and requirement quality level

Obtained quality values Req Metric_ID Code Documentation
R1 Fsm1 Minimal Non-acceptable
R2 Ucm1 Target Minimal
R3 Fim1 Target n/a
R4 Rrm1 Minimal Target
R5 Fim2 Target n/a

Table 5. Obtained quality values for sub-characteristic level

Obtained quality values Sub-characteristic Metric_ID Code Documentation
Suitability Fsm1 Minimal Non-acceptable
Interoperability Fim1

Fim2
Target n/a

Usability compliance Ucm1 Target Minimal
Recoverability Rrm1 Minimal Exceeding

Table 6. Obtained quality values for characteristic level

Obtained quality value Characteristic
Code Documentation

Functionality Minimal Non-acceptable
Usability Target Minimal
Reliability Minimal Exceeding

Table 7. Obtained quality values for artifact level

Artifact Obtained quality value
Code Minimal
Documentation Non-acceptable

162 Iwona Dubielewicz, Bogumi™a Hnatkowska, Zbigniew Huzar, Lech Tuzinkiewicz

Final assessment of the RPR system quality is minimal according to (4.1) defini-
tion of assessment function for the software product.

5 Conclusions and related works

The paper formalizes and refines ISO standards relating to processes of quality
evaluation and assessment [5]. It systematizes notions used for quality specification.
The notions are elements of SQMREA model [6]. The developed SQMREA model is
general. It enables for instantiations of different kind of quality models, not only those
proposed by ISO. For example, it is possible instantiate the quality model for high de-
pendable systems, which concentrates on such characteristics as: safety, security, us-
ability, availability, and reliability [10]. In general, other existing quality models use
different notions, but they share the same structural elements (characteristics, sub-
characteristics and metrics).

The SQMREA model is our original contribution, while the model of evaluation
process is a refined and formalized version of the evaluation process, presented in the
series 14598 of ISO/IEC standardization documents. The new elements include defi-
nition of roles, specification of artifacts, an assignment of artifacts to roles and activi-
ties, performed by roles.

The paper also presents SPoQE methodology for software quality product evalu-
ation and assessment. The methodology is defined in terms of SPEM notation [9], i.e.
roles performing some activities on a given set of artifacts. The SPoQE methodology
is independent from a software development methodology provided that the methodo-
logy distinguishes at least the following two processes, defined in [3]:

x system requirement analysis,
x software construction.

The activities of the proposed software product evaluation process conform to
those proposed in [4] with only one difference:

x measurement activity in [4] is proceeded with planning activity – we omit this ac-
tivity as it is part of a management process.

The presented quality evaluation process can be considered as an important part of
Quality Control process within SQA. It can also be considered within CMM (fourth
level) [6] as part of quality management. The SPoQE methodology concentrates on
product evaluation only, and does not take into account evaluation of development
process. The knowledge about the results of evaluation enables to carry out some cor-
rective actions, and in this way can positively influence the final quality of the soft-
ware product.

We have not found another approach to software product evaluation based on ISO
standard [4].

It is evident that application of proposed method of product evaluation is labour-
consuming. The cost-benefits analysis was not the subject of our interests. It can, and
should be concern of further investigations as it is obvious that some trade-off be-
tween evaluation effort and resulting quality of software product is expected.

An Approach to Software Quality Specification and Evaluation (SPoQE) 163

In further research we are going to:

x apply and validate SpoQE methodology for industrial projects,
x develop a tool supporting evaluation and assessment of a software product accord-

ing to SPoQE.

References

 1. ISO/IEC 9621-1:2000, Software engineering – Product quality - Part 1: Quality model
 2. ISO/IEC TR 9621-2:2002, Software engineering – Product quality - Part 2: External met-

rics
 3. ISO/IEC 12247:1995/Amd.1:2002, Information technology — Software life cycle processes
 4. ISO/IEC 14598-3:2000, Software engineering – Product evaluation – Part 3: Process for

developers
 5. ISO/IEC 25000:2005, Software engineering – Software Product Quality Requirements and

Evaluation (SQuaRE) – Guide for SQuaRE
 6. Dubielewicz I., Hnatkowska B., Huzar Z., Tuzinkiewicz L., Software Quality Metamodel

for Requirement, Evaluation and Assessment, ISIM’06 Conference, Prerov, 2006, Czech
Republic, Acta Mosis No. 105, pp. 115–122.

 7. Jalote P., CMM in Practice: Process for Executing Software Projects at Infosys, Boston,
Addison-Wesley, 2000

 8. Leffingwell D., Widrig D., Zarządzanie wymaganiami, (in Polish) WNT, 2003
 9. Software Process Engineering Metamodel Specification (SPEM), version 1.0, OMG 2002
10. SWEBOK, Guide to the Software Engineering Body of Knowledge, 2002
11. Unhelkar B., Process Quality Assurance for UML-Based Projects, Addison-Wesley, 2002

