
Automatic software validation process

Maciej Dorsz1, Mariusz Wasielewski2

1 Poznan University of Technology,
60-965 PoznaĔ, Poland

Maciej.Dorsz@cs.put.poznan.pl
2 Projekty Bankowe Polsoft Sp. z o.o,

60-965 PoznaĔ, Poland
Mariusz.Wasielewski@pbpolsoft.com.pl

Abstract. This article presents the Automatic Software Validation tool (ASV),
which is deployed in one of the Polish software companies. This system helps
to automatically test web applications, create its simulations, which are helpful
during end-user training, and then test those simulations. The tool was invented
to speed the process of testing one of the company’s applications working in
more than 12 Polish financial institutions. The clients’ system settings and da-
tabase schemas are different, therefore while introducing a new system func-
tionality it is not enough to test one system version, but repeat tests for all 12
different parameters settings. Manual testing is very time-consuming and ex-
pensive. Every night ASV tool, basing on CVS, ANT and HttpUnit, fully auto-
matically prepares the current system version, deploys it twelve times on Tom-
cat server with different parameters settings, executes tests, creates application
simulations, tests those simulations and sends a summary report.

1 Introduction

Rapid and almost aggressive software development, as can be noticed in the recent
years, calls for radical testing effort [1]. Inadequate software testing costs the econ-
omy of United States about 59 billion dollars every year. It has been estimated that
possible improvements in software testing infrastructure could reduce that cost at
about 22 billions [12]. Models and standards related to software development such as
CMMI, eXtreme Programming, ISO 9001:2000, RUP place great attention to careful
validation of the final product [2,3,4,8]. This article presents the way of putting soft-
ware testing infrastructure improvements into practice.

About two years ago one of the Polish software company applications was de-
ployed in more than 12 financial institutions. In this article it will be named:
AMLPortal (Anti Money Laundering Portal). Although application source codes are
the same for all customers, unfortunately, all of the customers have got different pa-
rameters settings. Those parameters customizes presentation and business tires ac-
cording to individual customer’s requirements. Moreover, there are some differences
in database schemas. The team developing this product prepared Ant script to gener-
ate a ready for deployment application [1]. AMLPortal is written in Java, therefore

Automatic software validation process 1892 Maciej Dorsz, Mariusz Wasielewski

Ant script simply generates .war file. Then, CruiseControl was installed to take care
of storing in CVS repository only versions which can be compiled [5,6]. With time,
the problem of software validation process appeared.

AMLPortal is used to search for amount, suspected and related banking transac-
tions. One of its functionality is manual transaction adding to the AMLPortal data-
base. The transaction form has about 45 different fields, such as: transaction number,
date, owner data, beneficiary data, addresses, bank account numbers, remarks etc.
Almost each of the customers uses unique form to add a bank transaction manually.
The form can have additional fields, which may be used by one or some of the cus-
tomers. Moreover, the clients uses different data validation. Therefore, not fulfilled
beneficiary address for some clients is correct, for some it is shown as a warning, and
for the others it is marked as an error. The example is presented in Figure 1.

Fig. 1. The example of different presentations and data validations

The difficulty of testing the AMLPortal application will be shown on the example.
Let’s consider the case that a computer scientist changed a form for manual bank
transactions adding. Because the system source codes, JSP pages, libraries, etc. are
the same for all customers, this person introduced the change only once. However to
carefully test it, one needs to test a new AMLPortal version 12 times, namely, for
each set of the client’s specific parameters settings. It is very time-consuming, expen-
sive, and monotonous. Therefore, an application for automatic software validation
was proposed.

190 Maciej Dorsz, Mariusz WasielewskiAutomatic software validation process 3

2 Automatic Software Validation

The Automatic Software Validation tool (ASV tool) builds a system version, deploys
it on the Tomcat server with client’s specific parameters, tests it, deploys the same
system version with parameters for next client, test it, etc. and finally send a report. In
Figure 2 the diagram outlining the process of automatic software validation is pre-
sented.

basing on Tomcat

basing on CVS

for each client

Stop

Compile version (CruiseControl)

Build version (Ant prepares .war)

Undeploy version

Prepare database schema*

Deploy version (.war file)

Execute HttpUnit tests

Run ATG tool (generate simulation)

Execute HttpUnit tests (for the simulation)

Start

Deploy parameters (client dependent)

Send results via e-mail

Fig. 2. The diagram outlining the process of automatic software validation

The diagram as well as an asterisk meaning are explained in detail in following
sections.

2.1 Version compilation

CruiseControl periodically compiles the head version stored in CVS repository. If the
compilation process fails, the application development team is obliged to repair the
system version or rollback introduced changes. Therefore, in the end of the day, the
head version can always be compiled.

Automatic software validation process 1914 Maciej Dorsz, Mariusz Wasielewski

2.2 Building the version

AML Portal is a web application written in Java. ASV tool uses Ant script to generate
the current system version. Ant script, on the basis on the head version stored in
CVS, prepares .war file.

2.3 Undeploying version

On the Tomcat server, the undeployment process is easy. It is enough, to stop the
server, delete content of WEB-INF directory as well as the content of WORK direc-
tory.

2.4 Preparing database schema

This stage is marked in Figure 1 with an asterisk, because currently is not fully auto-
matic. Application development team has a mirror of each client database schema, for
example bank1_head database schema resembles the database schema for the head
version of the application for client bank1. Therefore, there are 12 database schemas.
A computer scientist willing to change the database schema is obliged to inform a
person responsible for database to update all head database schemas.

Therefore ASV tool works only with correct database schemas. Moreover, the da-
tabase schemas names are all time the same, for example bank1_head, bank2_head
etc. ASV runs SQL commands to prepare a given schema for tests.

2.5 Deploying version

ASV tool unpacks .war file and copies it to Tomcat WEB-INF directory. If ASV
worked with more sophisticated application servers, the deployment procedure would
be more complex. However, regarding Tomcat server it is really simple.

2.6 Deploying parameters

Every client has individual system parameters. For example bank1 may have parame-
ter called is_beneficiary_address_recquired set to ‘1’ that means it is required. An-
other one, may have it set to ‘2’ what would mean that it will be marked as warning.
The others may have it set with value designating ‘not required’. For AML portal way
of storing parameters is quite sophisticated, for the sake of clarity, it will be assumed
that each client has a separate parameter file called: bank1_AMLPortal.parameters,
bank2_AMLPortal.parameters, etc. In such files are all parameters describing system
presentation and business login nuances, but also many other like database connec-
tion settings, mailer settings etc.

ASV tool simply copies the right parameters file to Tomcat WEB-INF/etc direc-
tory. Then ASV tool starts Tomcat server.

192 Maciej Dorsz, Mariusz WasielewskiAutomatic software validation process 5

2.7 Executing HttpUnit tests

There is only one set of HTTP tests for AMLPortal application [7]. It means that
automatic tests do not check client’s specific functionality. They are general and
focus on system functions which are used by all customers. Therefore, the option
prepared and visible only for one client is not tested in this way. However, the main
AMLPortal functionality concerns bank transactions management: inserting it into
system, searching for amount, suspicious and related transactions, and exporting the
founded transaction to an external institution, called: The General Inspector of Finan-
cial Information [10].

In order to make HttpUnit tests general the test which adds banking transaction has
to add a bank transaction with filled in field beneficiary address. Then regardless of
the parameter is_beneficiary_address_recquired value the bank transaction can be
added properly.

2.8 Use ATG tool to generate AMLPortal simulation

AMLPortal was deployed in 12 institutions. It had meant many end-user training. In
order to support that process Automatic Training Generation (ATG) tool was in-
vented [4,5]. ATG on the basis on HttpUnit tests saves subsequent .html pages.
HttpUnit uses WebConversation object to obtain connection with web page. Then it
can set and get html form elements’ values, clicks buttons and links. This tool bases
on html protocol.

Then it changes their content by adding JavaScript. Finally, Automatic Training
Generation tool prepares the simulation of a real application. The simulation is a set
of .html pages powered with JavaScript. The end-user may “start” simulation and use
it almost as a real system. Because the simulation is a set of static pages, the end-user
does not need network connection, running database with an AMLPortal schema and
application server.

Automatic Software Validation tool runs Automatic Training Generation tool to
prepare AMLPortal simulation.

In case when generation simulations are not needed, processing concerning ATG
should be excluded from application testing.

2.9 Executing HttpUnit tests for the simulation

Next, the same tests as were used for testing the real application are used to test gen-
erated simulation. Because the simulation visual side resembles the original applica-
tion, and was created by saving .html files, the fields, links, and button names and
their arrangement are the same. In order to test the static simulation pages, they are
deployed on application server. Therefore in practice, HttpUnit is testing a web appli-
cation, which, in fact, is a set of static pages.

Automatic software validation process 1936 Maciej Dorsz, Mariusz Wasielewski

2.10 Sending results

After repeating steps from 2.3 to 2.9 twelve times, ASV tool prepares a report and
sends it via email. A report structure is shown in Figure 2.

-----start: 2006.02.03----
Bank1: passed
Bank2: passed
Bank3: failed
Bank4: passed
Bank5: failed
Bank6: passed
(…)

Bank3: Executing HTTPUnit tests : AddingTransactionTest

<exceptions part>

Bank5: Deploying parameters:

FileNotFoundException (file: Bank5.parameters)

-----end: 2006.02.03----

Fig. 2. The report structure

3 ASV in practice

The Automatic Software Validations tool can be used for the testing of one system
version with only one parameters setting. However, it is really profitable for testing a
versions with a few sets of parameters.

Table 1. Some of the ASV tool properties

Property name Value Comment
server_path
war_path
properties_path
simulations_path
start_time
clients_list
CVSROOT

C:\tomcat
D:\AMLPortal\war
D:\AMLPortal\properties
D:\AMLPortal\simulations
02:00
bank1, bank2…
:pserver:cod@10.5.5.10:
 /amlportal

Tomcat installation path
generated AMLPortal .war path
path to clients properties files
path to generated simulations
ASV starts at 2:00 a.m.
list of clients
cvs repository path

(…)

ASV tool is deployed in one of the Polish companies, whether it will be an Open
Source application has not been decided yet. It would be not difficult to adapt ASV to
another environments. To use it one needs CVS repository, Ant script to compile and

194 Maciej Dorsz, Mariusz WasielewskiAutomatic software validation process 7

generate versions and HttpUnit tests. It is not necessary to use CruiseControl, also
simulation generation with ATG tool may be used on demand. ASV tool properties
are placed in properties file, some of them are shown in Table 1.

4 Summary

This article presents Automatic Software Validation tool, which allows one to auto-
matically test the application head version with many different parameters settings.
Basing on CVS repository, Ant and HttpUnit this tool can automatically prepare sys-
tem version, then for each client deploy it, execute tests, create an application simula-
tions and even tests those simulations. Finally, ASV sends a report.

The next development phase for ASV tool means the development of GUI side as
well as integrating it with CruieControl reports. Automatic preparation of database
schemas would be really helpful. Moreover, statistics about automatic testing and its
results should be gathered.

References

 1. Ant, http://ant.apache.org
 2. Beck, K., Extreme Programming Explained. Embrace Change. Addison-Wesley, Boston,

(2000)
 3. CCTA, Managing Successful Projects with PRINCE 2, The Stationary Office, London

(2002)
 4. CMMI Product Team, Capability Maturity Product Integrations (CMMI), v1.1, Staged

Representation, CMU/SEI-2002-TR-004, Software Engineering Institute, Pittsburgh PA,
December (2001)1. Jefferies, R., eXtreme Testing: Why aggressive software development
calls for radical testing effort, STQE Magazine, March/April (1999)

 5. Concurrent Versions System, http://www.nongnu.org/cvs
 6. CruiseControl, http://cruisecontrol.sourceforge.net/
 7. HttpUnit, http://HttpUnit.sourceforge.net/
 8. International Organization for Standardization, Quality Management Systems – Guidelines

for performance improvements, ISO 9004:2000, ISO publication, December (2000)
 9. Maciej Dorsz, Jerzy Nawrocki, Anna Demuth: ATG 2.0: the platform for automatic genera-

tion of training simulations, Software Engineering: Evolutions and Emergining Technolo-
gies, IOS Press, Krzysztof ZieliĔski, Tomasz Szmuc (ed.) (2005)

10. Ministry of Finance, Poland, http://www.mf.gov.pl
11. Rational Software Corporation, Using Rational Robot (2001)
12. RTI, National Institute of Standards and Technology, The Economic Impacts of Inadequate

Infrastructure for Software Testing, Final Report, May (2002)

