
Minik: A Tool for Maintaining Proper Java Code

Structure

�

Jacek Chrz�szcz2, Tomasz Stachowicz1,
Andrzej G�sienica-Samek1, and Aleksy Schubert2,3

1 Comarch SA, Warsaw, Poland
2 Institute of Informatics
Warsaw University, Poland

3SoS Group NIII,
Faculty of Science, University of Nijmegen, Netherlands

Abstract. Maintaining discipline of code in an evolving software project is
known to be di�cult. We present Minik, an automatic tool written in Java
and for Java, that assists technical managers to enforce high and medium level
design decisions on programmers. The tool supports hierarchical encapsulation of
software components and helps to maintain order in dependencies between parts
of the project’s source code and to control calls to external libraries.
Minik was created to support the development of Ocean GenRap Report Generator,
a complex Java project of over 350KLOC, developed in Comarch Research
Center. With time, it became an invaluable help for technical managers as well as
for new programmers who could quickly learn the structure of the code base.

1 Introduction

Development of large software projects often escapes traditional waterfall software
creation methodology. This concerns in particular systems of big complexity, such
as compilers, database engines or modern spreadsheets. Agile approach to software
creation process seems much better suited to this kind of software, which is by nature
in constant development, improving (hopefully) with each release in terms of enhanced
functionality and stability. However, this kind of iterative development style may easily
lead to overly complicated code, where almost every part of code depends on every
other. Such structure is very di�cult to maintain and develop [21], so it is crucial to
create methodologies and tools supporting project managers in their task of limiting the
code complexity without precluding integration of new features and improvements.

Mainstream programming languages, such as Java, o�er some support for hierarchical
code organization, but the support is limited. While encapsulation on the level of
one file (class) or one directory (package) is supported by the language, higher level
encapsulation is left to the programmer. In particular, even if files are placed in a
hierarchical directory structure, from the Java programming language point of view the
package structure is flat. As far as e.g. method visibility is concerned, two classes
� This work was partly supported by KBN grant 3 T11C 002 27 and Sixth Framework

Programme MEIF-CT-2005-024306 SOJOURN.

354 Jacek Chrz°szcz, Tomasz Stachowicz, Andrzej G°sienica-Samek, Aleksy Schubert

may either be from the same package or from di�erent ones, regardless if they are
just in sibling directories or far away apart in the directory structure. Consequently, a
modification of a method annotated as public, may potentially require the knowledge
needed to modify any part of the program.

Moreover, the flexibility of these design standards and programming language
grouping constructs like packages make it easy to introduce circular dependencies.
The experience in software development shows that circular dependencies cause
problems [9,17,23,26] so the acyclic coding pattern occurs often in project design
guidelines [7,16,18]. Cyclic dependencies are regarded as a strong factor in measures of
code complexity [27] especially when maintainability of code is of the main interest [15].
Moreover, the presentation of code dependencies in form of a DAG (directed acyclic
graph) has already been used in the context of support for maintainability [2] and easy
extensibility [19].

In this paper we present Minik, the code management tool, primarily created to
support orderly development of the Ocean GenRap Report Generator [10] by the
Comarch Research Center. Minik supports a true hierarchical encapsulation and enforces
a transparent and simple acyclic dependency structure. In a project managed using
Minik, dependencies on distant packages are declared in a separate .minik management
file of each component. The tool makes sure that all dependencies are declared and that
they form an acyclic structure. Programmers are required to run Minik at every build,
so the dependency descriptions are always up-to-date. Moreover, a modification of the
.minik file, requires the consent of the technical manager. Experience shows that these
changes tend to happen less and less frequently. Minik is also useful in enforcing
certain design patterns, e.g. Facade or Bridge [11], which can be recorded in the .minik
files and hence become harder to break by programmers.

Another important aspect of Minik is the possibility to constrain the usage of
external dependencies inside the project. Minik can immediately enforce the manager’s
decisions that e.g. JDBC classes can only be used in the DAO implementation or that
the class java.lang.Thread can only be used in the main package of the application and
not inside components. Any programmer trying to break this policy, either by haste or
unawareness, will immediately be warned by Minik and forced to correct the mistake.

The adoption of Minik by GenRap programmers turned out to be very smooth.
After an initial reluctance, a natural people’s reaction to any limitation, the programmers
started treating the Minik discipline as part of the limitations of the programming
environment, like e.g. Java type system. Moreover, since .minik files constitute only a
fraction of the whole code (less than 1%), they proved to form a very good guide for
programmers which were new to the GenRap project.

Minik implements the core functionality of the Kotek methodology. The latter,
presented in [12], is an advanced module system combined with a build tool, that
extends Minik with precise inter-component contract specifications, parametrisation of
large code fragments with respect to some interface (e.g. widget library) and conditional
compilation, depending e.g. on a hardware platform.

The present paper is organized as follows. In the next section we describe basic
features of Minik and limitations that it puts on the project structure in order to
maintain clarity. In the presentation we use a simple example of a toy project MiniEdit,

Minik: A Tool for Maintaining Proper Java Code Structure 355

whose structure is a (substantial) simplification of the structure of GenRap. Then we
present and explain the syntax of the .minik files and describe the impact of Minik on
the development of the GenRap project.

2 The structure of software projects

The complexity of contemporary software structure has led to several approaches aiming
to conceptually simplify dependency diagrams of software. Most approaches rely on
providing the developers means to present the code interdependencies and coupling them
with source code quality metrics. Examples of systems in this category are [5,6,13,22,24].
The systems give guidance to good source code structure, but do not enforce or enforce
in a weak manner the structural rules which are appropriate for the project at hand.

Another approach is represented by MJ [3], a rich system of modules for Java. In
this case, the software modules are the grouping entities which forbid accesses which
are not explicitly declared in module descriptions. This mechanism, however, does not
impose any structural restrictions on the way the dependencies are organized.

Yet another approach to structuring the source code consists in the use of a type
system which controls the read or write access to particular pieces of the code. In this
case, a separation between di�erent code pieces is governed by local annotations in the
source code (or in the comments in the source code) that specify which classes are
intended to be used as a single module. Examples of systems in this group are [4,8,28].
These systems allow to describe detailed data dependencies up to the level of fields in
objects.

2.1 Software project structure enforced by Minik

We describe here the structure of projects that is enforced by our tool and methodology.
We focus on greater units of source code, called modules or components. Conceptually,
the basic ones should contain several classes or packages, the complex ones consist
of several sub-components (and possibly a few additional classes). To introduce the
notions addressed by Minik, we use a simple example of a hypothetical editor MiniEdit,
whose structure is a considerable simplification of the structure of the GenRap project.

The strength of Minik results from the structure of possible interdependencies
between components that describe the way the source code is organised. We consider
two perspectives of code organisation. The first one, vertical, corresponds to the
hierarchical division of the project into components, components into sub-components
and so forth. The second one, horizontal, describes functional dependencies between
fragments of code. Other Java module systems did not consider explicitly these code
organisation facets [1, 3, 14].

2.2 Vertical structure

The hierarchical structure of the project that is enforced by Minik corresponds well
to good organisational patterns in which hierarchical connections allow to avoid
communication blow-up between di�erent organisational units. This kind of code

356 Jacek Chrz°szcz, Tomasz Stachowicz, Andrzej G°sienica-Samek, Aleksy Schubert

Fig. 1. The vertical structure of the MiniEdit project.

management support is often present in programming languages. The Java package
system, in which packages correspond literally to the directory tree of the development
site, is the most notable example of it. In our example (Fig. 1) the MiniEdit application
(represented by the topmost component app) is divided into four components of which
two have sub-components. Minik strengthens the Java package system by enforcing a
true hierarchical encapsulation: it is forbidden to refer to the insides of a component
without its permission. We discuss it further at the end of the next section.

2.3 Horizontal structure

By horizontal structure of the project we mean functional dependencies between
components of our project. We say that an entity (class/package/component) M depends
on another entity N when the source code in M refers a class, a method or a value in
N. Figure 2 presents the graph of dependencies between main components of the
MiniEdit application. In order to obtain a system with low maintenance cost, we impose
several restrictions on the structure of possible references between components.

The first restriction is based on the assumption that functional dependencies between
components should form a DAG. The experience in software development shows that
circular dependencies cause problems, especially when maintainability of the code is of
the main interest.

Of course, cyclic dependencies are not problematic when they occur in a fragment
of code whose size is small enough to be easily grasped by a programmer. Therefore
Minik does not prevent dependency cycles between classes belonging to one component,
but only the big cycles, i.e. involving classes in several components.

Dependencies and encapsulation The second restriction concerns the vertical structure
that we introduced earlier. It is based on a natural principle that one should not
manipulate the internals of another component, unless explicitly authorised. In our
example the document.minik file declares the dom sub-component as exported (see
Fig. 5 and its description in Sect. 3), but not the implement sub-component (marked
gray in Fig. 1). Consequently, the code in e.g. ui may use the (public) classes defined
in app.document.dom, but not those defined in app.document.implement.

Minik: A Tool for Maintaining Proper Java Code Structure 357

Fig. 2. The horizontal structure of the middle layer of MiniEdit.

3 Syntax and example

The usage of Minik is directed by .minik files, which are placed in most directories of
the project source tree. The syntax of those files is very straightforward (see Fig. 3). We
explain it here, using our MiniEdit example, whose structure is depicted in Fig. 1 and 2.

The contents of a .minik file consists of four parts. The first one, starting with the
keyword use, specifies the dependencies of the the given component. In Fig. 4, one can
see the contents of the main .minik file of the MiniEdit application, app.minik, so its
first line specifies external dependencies of the whole project: the Java standard library
and an (imaginary) library to produce PDF documents. For internal components, such
as ui (Fig. 6), one specifies dependencies on (parts of) external components of the
whole projects (like java lang, java ui) and other components of the project (document,
io, export).

The second section contains definitions of restricted components. They are used to
control which parts of external dependencies are used where in the project source. In
general, from the dependency control point of view, a component is simply a name
attached to a list of class names. Consequently, a definition of a restricted component
consists just in creating a new name for the list of classes obtained by restricting the
list attached to the original component. One can use the following optional restriction
operations:

– positive restriction – keyword allow – from the list of class names of the original
component, we select only those which match at least one of the given class patterns,

– negative restriction – keyword deny – from the list of class names, we subtract
those which match one of the given class patterns.

Of course if both restrictions are omitted the new component is just a renaming of the
original one.

In case of app.minik, we name various parts of standard library and the PDF
writer in order to precisely say, in the next section of app.minik, which classes can be
used in which components. The third section describes how sub-components of the
given component depend on one another, on external components and on restricted
components. For example, it is easy to see that the ui component depends on all other
sub-components of app and that it is the only one allowed to manipulate reflection,
threads and other java lang classes not included in java core. Besides, only export can
access classes of pdfwriter, and only those defined in the topmost package, not internal
ones. A special name this can be used as the target of the last build clause (see e.g.
Fig 5) to indicate what dependencies are allowed in classes from the current directory.

358 Jacek Chrz°szcz, Tomasz Stachowicz, Andrzej G°sienica-Samek, Aleksy Schubert

Since the name of a sub-component c1 can only be used as a dependency of the
another sub-component c2 after the corresponding build c1 clause, the structure of
dependencies cannot contain cycles.

The last part of the .minik file lists the names of the sub-components to be exported.
This is where hierarchical encapsulation is implemented: other components can only
refer to those parts of the current component which it explicitly lists as exported.

In case of the topmost .minik file of the application, the return clause only indicates
the component containing the class with the main method.

<minik> ::= <use><define> .. <define><build> .. <build><return>
<use> ::= use <ident> .. <ident>
<define> ::= define <ident> = <ident> [allow {<package>, .., <package>}]

[deny {<package>, .., <package>}]
<package> ::= <ident>.<package> | <ident> | � | ��
<build> ::= build <thident> : <ident> .. <ident>
<return> ::= return <thident> .. <thident>
<thident> ::= this | <ident>

Fig. 3. Syntax of .minik files.
use java pdfwriter

define java core =
java allow { java.lang.� }

deny { java.lang.Class, java.lang.ClassLoader, java.lang.Compiler,
java.lang.Process, java.lang.Runtime, java.lang.Thread }

define java lang = java allow { java.lang.� }
define java io = java allow { java.io.�, java.nio.�� }
define java xml = java allow { javax.xml.��, org.xml.��, org.w3c.dom.�� }
define java ui = java allow { java.awt.��, javax.swing.��, javax.print.�� }

define pdf = pdfwriter allow { com.pdfwriter.� }

build document : java core
build io : document java core java io java xml
build export : document pdf java core java io
build ui : document io export java lang java ui

return ui

Fig. 4. The file app.minik of MiniEdit.

use java core

build dom : java core
build implement : dom java core
build this : dom implement java core

return dom this

Fig. 5. The file document.minik of MiniEdit.

Every directory of the project can have its own .minik file. If it is missing, all
classes in the directory and its subdirectories are treated as one basic component.

Minik: A Tool for Maintaining Proper Java Code Structure 359

use document io export java lang java ui

build editor : document java lang java ui
build this : editor document io export java lang java ui

return this

Fig. 6. The file ui.minik of MiniEdit.

Its exported classes are those declared as public. In MiniEdit the document and ui
components have their own .minik files. The document.minik file is given in Fig. 5. It
specifies the Facade design pattern: the dom sub-component defines the interface,
i.e. the data object model together with the names of the operations that can be
performed on the document. Next, the implement sub-component contains the actual
implementation of the data structure representing the edited document. It may use the
dom sub-component, for example to say that some classes of implement are instances of
interfaces defined in dom. The classes in the document directory relate the specification
and implementation, for example by providing factory functions returning an object
created by a class from implement, satisfying an interface specified in dom. The last
line says that only the classes exported by the dom component and classes in the
document directory can be used outside document.

The file ui.minik, presented in Fig 6 is similar to document.minik, but the interface
part is not placed in a separate sub-component.

It is worth noting how the use of the external component pdfwriter can be traced in
the project using the .minik files. Indeed, app.minik tells us to look only in the export
component and nowhere else.

How Minik works. The most important part of Minik is the recursive function minik fun
operating on an environment which maps component names to sets of Java class names.

The initial environment describes the external dependencies of the project and is
created from the arguments supplied by the user in the invocation of Minik. One of the
arguments is the directory containing .jar files of the dependencies. By default, for each
dependency M, the file M.jar should be placed in this directory, apart from the java
component, which is found in the standard location of the Java installation. For our
example, the only external dependency file is pdfwriter.jar.

The initial environment passed to the first invocation of minik fun is created by
scanning the .jar files of dependencies.

The function minik fun takes an environment E and a directory name D, and returns
the set of names of classes exported by the component located in the directory D.

If the .minik file is missing in the directory D, the function just checks the legality
of the dependencies of all classes in D and its sub-directories: it is verified that all
referenced class names are in the range of the environment E. The returned set of
classes includes all public classes of D and its sub-directories.

If .minik is present in D, minik fun operates in four steps, corresponding to
sections of .minik. The first step consists in checking that dependency names listed
in the use clause are valid, i.e. they are in the domain of the environment. In the
second step the define clauses are processed: the environment E is extended with
restricted components. In the third step, for each clause build c : d1 . . . dn, the function

360 Jacek Chrz°szcz, Tomasz Stachowicz, Andrzej G°sienica-Samek, Aleksy Schubert

minik fun is called recursively with the environment E|d1...dn (i.e. E restricted to
the dependencies allowed for the sub-component c) and directory name D/c, which
checks correctness of the dependency structure of the sub-component c and returns
the set of classes Cc exported by c. The mapping c �� Cc is then added to E for
the processing of subsequent sub-components. If the last build clause is of the form
build this : d1 . . . dm, the legality of dependencies of classes in D is checked: all
referenced class names must be members of the components d1 . . . dm. The last step is
the processing of the return c1 . . . ck clause. It is checked that c1 . . . ck are components
built in step 3 (and not external or restricted components) and the set of all classes
exported by components c1 . . . ck is returned as the result of minik fun.

4 GenRap: The Minik experience

Ocean GenRap [10] is a complex application of over 350 thousand lines of code, written
mostly in Java. It is a report generator for database applications, allowing for intuitive
and easy edition of reports with constant data view, enabling data analysis directly in
the edited document. It has a graphical user interface, similar to modern text editors or
spreadsheets, and a novel live context association mechanism, allowing the user to
move fragments of reports between documents. GenRap has the possibility to connect
to a number of database engines and export the generated report to popular formats,
including pdf and html. It is available as part of the CDN OPT!MA system [20] since
mid 2005 and as a standalone application since January 2006.

The development of GenRap started in 2003. Since then, it has been actively
developed by a dozen of enthusiastic programmers, following an agile development
methodology. There is no precise long term development plan, only the product vision
from which the detailed plan for a following couple of months is derived. The vision
itself is modified as new features are implemented and users give their feedback. Such
cycles usually take two to three months. During that time two processes are done in
parallel: implementation of new features and maintenance, consisting in bug-fixing and
code refactoring.

From the historical perspective, the need for a tool helping to manage the code
became clear after a few months of intensive coding, when the code reached 40 thousand
lines. In order to be maintainable the project needed a strict regime in encapsulating
and separating components. A simple bash script to separately compile components in
restricted environments was used at first. If the code contained a disallowed dependency
the compilation just stopped with an error.

Later, it was decided that this policy was too strict. For productivity reasons, a
developer should be able to build the project with bad dependencies, but a patch
supplied to the central repository should always ensure a correct dependency structure.

Minik was implemented with this idea in mind. The tool automatically checks the
structure of the code without completely preventing defective builds. Apart from that,
other correctness tests were incorporated to Minik, which are beyond the scope of this
paper.

As experience shows, the .minik files constitute between 0.5% and 1% of the
whole code (see Fig. 7). It turns out that they are modified more-less in one out of 10

Minik: A Tool for Maintaining Proper Java Code Structure 361

Patches Source Code
Month P PM PM/P PLOC NM LM NJ LJ NM/NJ LM/LJ
2004-10 67 2 2.98% 5 970 65 1065 1106 124 283 5.87% 0.85%
2004-11 136 15 11.02% 35 871 66 1158 1120 146 076 5.89% 0.79%
2004-12 78 8 10.25% 57 856 70 1216 1219 159 238 5.74% 0.76%
2005-01 53 14 26.41% 70 518 75 1282 1246 178 340 6.01% 0.71%
2005-02 65 17 26.15% 73 442 79 1388 1330 187 130 5.93% 0.74%
2005-03 89 13 14.60% 38 898 100 1734 1372 199 035 7.28% 0.87%
2005-04 33 6 18.18% 15 013 106 1871 1459 220 518 7.26% 0.84%
2005-05 66 13 19.69% 43 454 113 1960 1512 227 104 7.47% 0.86%
2005-06 105 12 11.42% 22 368 125 2200 1612 244 235 7.75% 0.90%
2005-07 85 5 5.88% 89 641 126 2245 1638 249 815 7.69% 0.89%
2005-08 114 5 4.38% 10 940 127 2260 1653 251 459 7.68% 0.89%
2005-09 89 1 1.12% 7 699 129 2292 1662 254 513 7.76% 0.90%
2005-10 130 10 7.69% 51 236 129 2292 1676 257 662 7.69% 0.88%
2005-11 191 19 9.94% 42 754 137 2431 1746 278 380 7.84% 0.87%
2005-12 190 12 6.31% 44 669 158 2683 1864 311 194 8.47% 0.86%
2006-01 130 2 1.53% 14 965 164 2758 1921 327 098 8.53% 0.84%
2006-02 119 9 7.56% 44 640 164 2761 1939 332 677 8.45% 0.82%
2006-03 115 12 10.43% 49 366 164 2768 1923 326 754 8.52% 0.84%
2006-04 20 4 20.00% 38 420 168 2864 2002 345 471 8.39% 0.82%
Total 1875 179 9.54% 757 720

P = Total no of patches PM = No of patches touching .minik
PLOC = Total no of lines of code patched
NM = No of .minik files LM = LOC of .minik
NJ = No of .java files LJ = LOC of .java

Fig. 7. GenRap development statistics.

commits. Thanks to the good structure, the project enjoys a stable growth in lines
of code per month and the project managers are not afraid to improve any of its
components. Indeed, since it is easy to see what depends on a given fragment of code,
it is possible to foresee the impact of a planned refactoring on the rest of the code base.

Currently the GenRap code is divided into around 170 hierarchic components,
described by as little as 2800 lines of .minik files. Almost all of these files are smaller
than 50 lines, the average being about 17. Their structure is also very simple so they
are very easy to understand.

Using Minik in the project has also a positive psychological impact on the
programming team’s integrity. The programmers do not feel intimidated by a manager
pointing out their structure errors. Instead, they just treat limitations imposed by Minik
as part of the limitations of the working environment: the language, the compiler,
design patterns and Minik.

The tool itself is written in Java, it has about 3000 lines and uses a custom
class file parser. To increase its integration with the working environment an Eclipse
plugin for Minik has been developed. It is rather basic, but nevertheless it is possible
to automatically start the verification process and easily access the files with bad
dependencies.

362 Jacek Chrz°szcz, Tomasz Stachowicz, Andrzej G°sienica-Samek, Aleksy Schubert

5 Conclusions

The need to synchronize architecture documents with the actual source code is a very
important aspect of modeling. Many tools supporting UML technology, e.g IBM
Rational Software Architect [25] or Microsoft Visual Studio [29], have included utilities
to synchronize source code changes with the evolution of the visual model, which is
called round-trip engineering. However, the tools based on UML emphasise early
project development stages. In particular, they provide clustering and encapsulation
mechanisms in the design stage of software production but these architectural decisions
are weakly enforced in the coding and maintenance stages. Moreover, they do not
encourage comprehensive arrangement of construction blocks and so complicated
diagrams are commonly encountered.

In this paper, we have presented Minik, a light-weight tool to maintain proper
structure of Java projects, realized in Comarch Research Center as a development
utility for the Ocean GenRap Report Generator. Minik supports the technical managers
in enforcing acyclic structure of inter-component dependencies and helps programmers
understand and maintain the structure of the project. It supports true hierarchical
encapsulation of software components, helps tracking where external dependencies are
used in the code and permits to foresee the impact of planned refactoring.

Thanks to Minik and its consistent use in project management, the development pace
of GenRap is steady for over two years without increasing the programmers team. It turns
out that the structure of the code grows as fast as its size and therefore the development
does not lead to bloated code which is often a nightmare in large software projects.

References

1. Davide Ancona and Elena Zucca. True Modules for Java-like Languages. In ECOOP ’01:
Proceedings of the 15th European Conference on Object-Oriented Programming, pages
354–380, London, UK, 2001. Springer-Verlag.

2. Liz Burd and Stephen Rank. Using Automated Source Code Analysis for Software Evolution.
In 1st IEEE International Workshop on Source Code Analysis and Manipulation (SCAM
2001), 10 November 2001, Florence, Italy, pages 206–212, 2001.

3. John Corwin, David F. Bacon, David Grove, and Chet Murthy. MJ: A Rational Module
System for Java and its Applications. In Object-Oriented Programming, Systems, Langauges
& Applications, 2003.

4. Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation and the disjointness of
type and e�ect. In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 292–310, New
York, NY, USA, 2002. ACM Press.

5. Mike Clark. Jdepend. http://www.clarkware.com/software/JDepend.html.
6. Compuware. JavaCentral. http://frontline.compuware.com/javacentral/tools/26222.asp.
7. Compuware. Optimaladvisor supersedes the Package Structure Analysis Tool. Technical

report, JavaCentral, 2005.
8. W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of Object

Technology (JOT), 4(8):5–32, October 2005.
9. Martin Fowler. Reducing Coupling. IEEE Software, July/August 2001.

10. Ocean GenRap report generator. Comarch Research Center. http://ocean.comarch.pl/genrap/.

Minik: A Tool for Maintaining Proper Java Code Structure 363

11. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
od Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series.
Addison-Wesley, New York, NY, 1995.

12. Andrzej G�sienica-Samek, Tomasz Stachowicz, Jacek Chrz�szcz, and Aleksy Schubert.
KOTEK: Clustering of The Enterprise Code. In Krzysztof Zieli�ski and Tomasz Szmuc,
editors, Software Engineering: Evolution and Emerging Technologies, volume 130, pages
412–417. IOS Press, 2005.

13. Alex Iskold, Daniel Kogan, and Goran Begic. Structural analysis for java.
http://www.alphaworks.ibm.com/tech/sa4j.

14. Yuuji Ichisugi and Akira Tanaka. Di�erence-Based Modules: A Class-Independent Module
Mechanism. In ECOOP ’02: Proceedings of the 16th European Conference on Object-Oriented
Programming, pages 62–88, London, UK, 2002. Springer-Verlag.

15. Stefan Jungmayr. Testability Measurment and Software Dependencies. In Software
Measurement and Estimation, Proceedings of the 12th International Workshop on Software
Measurement (IWSM2002). Shaker Verlag, 2002. ISBN 3-8322-0765-1.

16. Kirk Knoernschild. Acyclic Dependencies Principle. Technical report, Object Mentor, Inc.,
2001.

17. J. Lakos. Large-scale C++ software design. Addison-Wesley, 1996.
18. Robert C. Martin. Agile Software Development, Principles, Patterns, and Practices. Prentice

Hall, 2002.
19. D. Notkin and W. G. Griswold. Extension and software development. In ICSE ’88:

Proceedings of the 10th international conference on Software engineering, pages 274–283,
Los Alamitos, CA, USA, 1988. IEEE Computer Society Press.

20. CDN OPT!MA. Comarch. http://www.comarch.pl/cdn/Products/.
21. A. Podgurski and L. A. Clarke. A Formal Model of Program Dependencies and Its

Implications for Software Testing, Debugging, and Maintenance. IEEE Transactions on
Software Engineering, 16(9):965–979, 1990.

22. Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using dependency models to
manage complex software architecture. In OOPSLA ’05: Proceedings of the 20th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applications,
pages 167–176, New York, NY, USA, 2005. ACM Press.

23. Barry Searle and Ellen McKay. Circular Project Dependencies in WebSphere Studio.
developerWorks, IBM, 2003.

24. Chris Smith. Japan. http://japan.sourceforge.net/.
25. Ibm Rational Software Architect. http://www-306.ibm.com/software/awdtools/architect/

swarchitect/.
26. J. Soukup. Taming C++. Addison-Wesley, 1994.
27. Lassi A. Tuura and Lucas Taylor. Ignominy: a tool for software dependency and metricanalysis

with examples from large HEP packages. In Proceedings of Computing in High Energy and
Nuclear Physics, 2001, 2001.

28. Jan Vitek and Boris Bokowski. Confined types. In OOPSLA ’99: Proceedings of the
14th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 82–96, New York, NY, USA, 1999. ACM Press.

29. Microsoft Visual Studio 2005. http://msdn.microsoft.com/vstudio/.

