
Aspect-oriented Response Injection:
an Alternative to Classical Mutation Testing

Bartosz Bogacki, Bartosz Walter

Institute of Computing Science, PoznaĔ University of Technology, Poland
{Bartosz Bogacki, Bartosz.Walter}@cs.put.poznan.pl

Abstract. Due to increasing importance of test cases in software development,
there is a need to verify and assure their quality. Mutation testing is an effective
technique of checking if tests react properly to changes by introducing altera-
tions to the original source code. A mutant which survives all test cases indi-
cates insufficient or inappropriate testing assertions. The most onerous disad-
vantage of this technique is considerable time required to generate, compile
mutants and then execute test cases against each of them. In the paper we pro-
pose an aspect-oriented approach to generation and execution of mutants, called
response injection, which excludes the need for separate compilation of every
mutant.

1 Introduction

Along with growing popularity of agile methodologies and open source movement,
unit testing has become one of the core practices in modern software engineering. It is
particularly important in eXtreme Programming [2], which explicitly diminishes the
importance of other artifacts than source code and tests cases. In XP unit test cases
not only verify if software meets functional requirements, but also enable refactoring,
alleviate comprehension and provide guidance on how the production code should be
used. Therefore, they contribute to many other important practices of XP.

Test-first coding [3] is an example of a practice which employs the test cases in an
infrequently used way. It reverses the traditional order of activities at software devel-
opment: the test cases get written prior to the production code and play the role of
formally expressed requirements. System to be implemented is then treated as mere
fulfillment of contracts imposed by tests. Poor quality tests effectively prevent such
system from being successfully completed. Quality is here interpreted as the ability to
discover possible flaws in the production code, which in turn requires the tests to
cover every single piece of the code. The resulting measure, test coverage, is one of
most important indicators assessing test quality. It reflects the percentage of source
code covered by test cases. Low coverage indicates that tests are unlikely to discover
changes or bugs introduced to the production code.

Mutation testing [4] is another technique introduced to verify the quality of the test
suite. Unlike the coverage metrics, which only determine the constructs that are exe-
cuted by tests, it figures out how test cases actually react to a faulty response from the
source code. It is based on the assumption that high quality test cases discover any al-

268 Bartosz Bogacki, Bartosz Walter2 Bartosz Bogacki, Bartosz Walter

teration within the source code which makes the code to behave even slightly differ-
ently. The erroneous response is most often generated through simple source code
modification. Hence, we use the term mutation and the faulty programs are called mu-
tants of the original. Mutant is killed by test cases when it causes them to fail.

Mutation testing is considered an effective method of detecting code uncovered by
test cases. Unfortunately, it has not been widely adopted by the software industry,
mainly due to its high computational complexity and resulting low performance.
Typically, every testing cycle includes multiple phases. First, the code needs to be
analyzed and mutants get created, so that each mutant contains a single modification.
Then every mutant is compiled and presented to all existing test cases, which them-
selves are not mutated. The time spent on processing a single mutant is a sum of all
these factors, and then is multiplied by the number of mutants, which in total is quite
complex. Therefore, mutation testing is still practically inapplicable for medium or
large scale systems that comprise large number of tests.

In the paper we present response injection [15] – a novel approach to mutation test-
ing, which employs aspect-oriented programming (AOP) [1, 8] to produce and exe-
cute mutants. It addresses mainly the complexity, which is the most onerous disad-
vantage of traditional mutation testing. Use of aspects removes the need for multiple
compilations, which significantly reduces time required for testing.

In the section 2 of the paper we briefly summarize the status of research on muta-
tion testing and present two existing frameworks: Jester and MuJava. Section 3 de-
scribes the concept of aspect-oriented mutations, presents its architecture and an ex-
ample of use. Results of early evaluation are given in section 4. Finally, in section 5
we provide conclusions and directions for further research.

2 Overview of mutation techniques

Mutation testing, introduced in 1977 by Hamlet [4], has been developing for years as
an academic research topic rather than an industry method of testing the tests. There
are two main directions of works: one related to the scope and nature of changes, spe-
cifically the mutation operators and their variations, and the other one focused on per-
formance improvement. The former one has been driven by the shift in the dominant
paradigm of programming from structural to object-oriented. The efforts related to
performance adhered to three basic rules: do faster, do smarter and do fewer. The first
one targets at faster generating and executing mutants, the second one applies tech-
niques of reusing the already acquired information in processing subsequent mutants,
and the latter attempts to limit the number of mutants without loosing information. In
order to preserve mutant's properties, Offutt [13] identified three conditions that it
must satisfy:

1. The reachability condition is that the mutated statement must be reached by a call
fro the test case;

2. The necessity condition is that once the mutated statement is executed, the test
case must cause the mutant program to behave erroneously; the fault that is being
modeled must result in a failure in the program's behavior;

Aspect-oriented Response Injection: an Alternative to Classical Mutation Testing 269Aspect-oriented response injection: an alternative to classical mutation testing 3

3. The sufficiency condition states that the incorrect state must propagate to the call-
ing test case and result in a failure.
A high quality mutant is expected to satisfy all these conditions. However, tradi-

tional mutation testing techniques often fail in achieving this goal.

2.1 Jester

Jester [6] is an open source, free mutation testing framework for Java developed and
maintained by Ivan Moore. It became widely known in 2001, after the paper on Jester
was presented on XP’2001 conference [12]. A testing cycle in Jester comprises thre
phases: introducing a change to a source file, recompiling that file and running all
tests. The mutation operators available in Jester are defined by user, but their capabili-
ties are limited to plain text replacement. Examples include modifying literals, chang-
ing “true” to “false” and vice-versa, altering conditionals by replacing “if (“ with “if
(true ||” or “if(false &&”, etc. The important disadvantage of Jester is that it performs
no code analysis, which means it may easily produce equivalent or even invalid mu-
tants. It results in lots of errors which require manual analysis and recovery. The criti-
cal issue concerning Jester is its poor performance, mainly due to necessity of compil-
ing the source code after each mutation is created.

Although Jester may be a an acceptable opportunity for small programs, its appli-
cability to larger projects is limited.

2.2 MuJava

MuJava is another mutation testing framework for Java. It has been developed by Ma,
Offutt and Kwon [11] in response to Jester's basic deficiency: performance. MuJava
utilizes two different methods to mutate programs: MSG for altering code behavior
and bytecode instrumentation for changing program structure. It also employs a wide
range of mutation operators, which allows for performing diverse mutations at differ-
ent levels of code composition.

MSG method [14] is based on metamutants, derived from the program under test.
They abstract the pieces of prospective code to be mutated, so that it can be instanti-
ated with concrete values during execution. Every instance of metamutant is an ordi-
nary mutant, which introduces a single fault. Because metamutants are compiled only
once, they significantly improve the testing performance.

Bytecode manipulation is performed in MuJava with a BCEL, a specialized Java
library which facilitates creation and instrumentation of the bytecode inside Java VM.
It is employed to modify the structure of the tested bytecode, e.g. to add a field or a
method to a class, to implement an interface in a class or to change inheritance hierar-
chy.

Both mutating techniques operate at low level, which removes the need for altering
source code. The gain in performance of mutant generation and execution comes pri-
marily from removal of the recurring compilation phase. Experiments determined the
speedup of entire testing process to 5.1, while only in mutant generation phase it is
even 9.3 times faster than with Jester [11]. However, we found no experiments com-
paring directly MuJava and Jester's performance.

270 Bartosz Bogacki, Bartosz Walter4 Bartosz Bogacki, Bartosz Walter

3 Mutants generator

3.1 Concept of response injection

In traditional model of mutation testing, mutants are generated by small source code
modifications, which preserve program's syntactic correctness. Modifications are in-
troduced separately to ensure their effects do not compensate. A mutation can be rec-
ognized if it affects the method behavior verified by test cases. The behavior can be
tested either directly, by examination of return value or exception thrown, or indi-
rectly, if it changes the internal state of object. This leads to the conclusion that mu-
tants are discovered in one of two ways: either by direct verification of method call
result, or by examination of object attributes. To depict the above, let us consider the
exemplary source code presented in Figure 1 and its test case in Figure 2.

public class Foo {
 public int bar(int a)
 throws IllegalArgumentException {
 if ((a > 5) || (a < 1)) {
 throw new IllegalArgumentException();
 }
 int c = a;
 for (int i = 0; i < a; i++) {
 c *= 10;
 }
 return c;
 }
}

Fig. 1. Exemplary source code under test

public void testBar () {
 assertEquals (3000, new Foo().bar(3));
 try {
 new Foo().bar(6);
 fail ("Exception not thrown for value: 6");
 } catch (IllegalArgumentException e) {}
 try {
 new Foo ().bar(0);
 fail ("Exception not thrown for value: 0");
 } catch (IllegalArgumentException e) {}
}

Fig. 2. Exemplary JUnit test method for method bar() in class Foo

For the above source code (Figure 1) the test (Figure 2) will fail (kill mutant) if the
return value of the call to the method Foo.bar() with parameter a equal to 3 will

Aspect-oriented Response Injection: an Alternative to Classical Mutation Testing 271Aspect-oriented response injection: an alternative to classical mutation testing 5

be different than 3000 or an unexpected exception will occur, or if parameter a equal
to 0 or 6 will not make the method to throw an expected exception. However, no mu-
tation will be found if it does not affect the method outcome, for example if the condi-
tion if((a>5)||(a<1)) would be replaced with
if((a>5)||(a<1)||(a<10)).

To create mutants sufficiently fast we need a method to non-invasively modify be-
havior of selected methods (one at a time), so that it poses a mutated effect on its call-
ers without need for re-compilation at every change. This led us to selection of aspect-
oriented programming (AOP) [8, 10].

AOP was originally invented as a response to an inability of object-orientated
paradigm in providing encapsulation of features crosscutting unrelated parts of the
developed system. Aspects allow for grouping such features and applying them to se-
lected joinpoints – well defined points in program execution. Joinpoints with specifi-
cally defined criteria, called pointcuts, once captured, execute associated pieces of
code (called advices) or change the program structure.

In the example (see Figure 2) all calls to Foo.bar() could be captured on the fly
and their actual results (return value and/or exceptions) were mutated as if the modifi-
cation had been introduced directly in the source code. We called this idea response
injection, because the mock method response is injected instead of the actual object.
Exemplary AspectJ implementation is shown in Figure 3.

public aspect FooMutant {
 int around():
 // capture a call to method bar()
 // defined outside this aspect
 call(public int bar(int))
 && !within (*..*Mutant) {
 // and return a mutated value instead
 return Integer.MAX_VALUE;
 }
}

Fig. 3. Exemplary aspect mutating behavior of method bar()

3.2 Architecture

The proposed system is composed of two collaborating aspects: MutantGenerator and
MutantExecutor.

The first one captures the original flow of the code executed by a test case and is
responsible for mutating the results of the tests method. It takes over the control at
every method call and has a choice of replacing its execution with own code or pro-
ceeding with the existing one. In order to better mimic the normal program flow, the
aspect executes each test case twice. During the first pass it captures the information
from the original program flow and generates mutants. During the second pass, it runs
the test once per each mutant and looks if the mutant is killed. Figure 4 depicts the
original program flow with sequence diagram.

272 Bartosz Bogacki, Bartosz Walter6 Bartosz Bogacki, Bartosz Walter

FooTest Foo

testBar()
bar(3)

3000

bar(6)

IllegalArgumentException

bar(0)

IllegalArgumentException

Fig. 4. Sequence diagram for original program flow

As a comparison to the original flow, Figure 5 presents the program flow with Mu-
tantGenerator aspect.

FooTest Foo

testBar()
bar(3)

3000

bar(6)

IllegalArgumentException

bar(0)

IllegalArgumentException

MutantGenerator

bar(3)

generateMutants()
3000

bar(6)

IllegalArgumentException

bar(0)

IllegalArgumentException

testBar()
bar(3)

-2147483648 getMutant()

2nd pass

1st pass

Fig. 5. Sequence diagram for modified program flow employing MutantGenerator

Aspect-oriented Response Injection: an Alternative to Classical Mutation Testing 273Aspect-oriented response injection: an alternative to classical mutation testing 7

Each test case must be executed a number of times, once for each mutant. This
leads to introduction of another aspect, MutantExecutor, that wraps the test code
execution. Its responsibility is to handle each call to the testing method in test case
and wrap it with subsequent executions of mutants generated by MutantGenera-
tor. MutantExecutor plays the role of meta-mutant, which includes all mutants for a
given method, but requires only a single compiling. It also intercepts any exceptions,
assures that they do not propagate to the JUnit TestRunner and instead presents results
of the test case execution. Figure 5 presents the sequence diagram for the testing rou-
tine with both MutantGenerator and MutantExecutor.

For the prototype implementation we used AspectJ [1, 8, 10] compiler to build
code and tests, and JUnit [7] as a testing library.

FooTestMutantExecutor

testBar()

MutantGenerator

testBar()

testBar()

hasMoreMutants()

true

hasMoreMutants()

false

Fig. 6. Sequence diagram for modified program flow employing both MutantGenerator and
MutantExecutor

3.3 Mutation example

Currently the prototype uses only simple mutation operators, dealing with changing
primitive types and String objects, yet they seem sufficient to present the idea. For
example for int variable of value result the mutations include: -result, re-
sult+n, result–n, Integer.MIN_VALUE, Integer.MAX_VALUE,
and 0, where n is a random integer. The only mutation we currently apply to objects
is null value. In future, we plan to introduce more sophisticated mutants for objects
(which could benefit from an on-fly object creation with dynamic proxy).

Considering our exemplary code, for Foo.bar(3) call, we end up with the fol-
lowing mutants: –3, 3 + n, 3 – n, –2147483647, 2147483647, 0. All such mutants get
killed by the test case.

274 Bartosz Bogacki, Bartosz Walter8 Bartosz Bogacki, Bartosz Walter

4 Early evaluation results

In order to evaluate the proposed solution, we conducted an experiment with the pro-
totype tool. As an object of experiment we selected Commons Lang v2.1 [5] from the
Apache Jakarta Project. Commons Lang features a very good code coverage: it in-
cludes over 1250 tests, with 90.9% of conditionals coverage and 91% of statements
coverage. The size of the code measured in NCLOCs (non-commented lines of code)
exceeded 13K.

To setup a context for our evaluation we decided to compare the results with
Jester‘s. We selected Jester due to its popularity in eXtreme Programming commu-
nity. However, Jester deficiencies prevented it from objective and unbiased evalua-
tion. A mutation that violates the code syntactic correctness makes Jester hang, which
requires manual fixing. To avoid that the code needs to be carefully tagged, which af-
fects the measurement. Therefore, the experiment was meant to show a tendency, not
exact results.

Experiment was performed on a PC with Intel Pentium 1.7GHz Centrino with 1GB
of RAM, running Windows XP Professional and Java VM 1.4.2_08.

4.1 Performance

Execution time was measured for Commons Lang test cases. As we were unable to
execute Jester for entire project due to the abovementioned facts, we decided to limit
the experiment to a few selected test suites only. Figure 7 presents the results.

TestSuite Jester
Response
Injection LOC NCLOC Tests # Speedup

MathTestSuite 1532 sec. 50 sec. 4908 1988 163 30.6
BuilderTestSuite 782 sec. 49 sec. 6836 2310 247 16
EnumTestSuite (enum) 82 sec. 41 sec. 921 222 63 2
EnumTestSuite (enums) 85 sec. 45 sec. 916 225 64 1.9
ExceptionTestSuite 278 sec. 39 sec. 1912 765 62 7.1
MutableTestSuite 58 sec. 38 sec. 1376 378 49 1.5
TimeTestSuite 2250 sec. 69 sec. 3456 1652 40 32.6
AllLangTestSuite *no data* 76 sec. 39175 13838 1245 approx.1776

Fig. 7. Summary of generation, compilation and execution times for selected test suites of
Apache Jakarta Commons Lang project

Reducing the scope of the experiment does not significantly affect compilation
time for our prototype, because it still requires compiling entire project with AspectJ.
This introduces a constant timing factor, which is independent from size of the tested
package, while Jester requires a repeated compilation of every mutant.

The results obtained from Jester and the aspect tool cannot be directly compared.;
however, the results allow for drawing some conclusions. Despite of inaccuracies in
measurement, the aspect-oriented response injection tool appeared considerably faster
for all packages that could be compared with Jester. The gain appears higher for lar-
ger testing suites, which could suggest that it could be exploited in production envi-
ronment.

Aspect-oriented Response Injection: an Alternative to Classical Mutation Testing 275Aspect-oriented response injection: an alternative to classical mutation testing 9

4.2 Quality

Effective mutation testing benefits not only from performance gain. The other factor
is mutants quality, interpreted as their ability to discover bugs with minimal effort.

Adherence to Offutt's conditions is one of quality measures. Noticeably, the re-
sponse injection approach fulfills all of them. Reachability is ensured by the mutants
generation process: mutated statement is always reachable for a test case, because it
was injected in response to a call to the statement in test code. Similarly, the necessity
condition is preserved as well: the mutated code actually behaves incorrectly, because
its response is altered. Sufficiency condition, which requires that a fault is propagated
up to the test case, is satisfied by mutating directly the actual method called by the test
case.

To assess the quality of generated mutants we analyzed classes from
org.apache.jakarta.commons.math package. Jester produced 1136 mutants for that
package, and 189 of them survived the testing phase. We reviewed them manually in
order to assess their applicability in test code improvement. In most cases they have
not been killed because they did not meet some of the Offutt's conditions (reachabil-
ity, necessity or sufficiency).

For the same code base the aspect-oriented tool generated 1978 mutated responses.
Test cases indicated that only 3 injected responses did not make any test case to fail.
All of them required more strict assertions to be introduced to the test cases, but did
not violate any of the conditions.

5 Conclusions

The results of initial evaluation of the presented tool show that use of aspects in muta-
tion testing appears a promising opportunity. The prototype we built generates the
mutants much faster than popular Jester, while preserving three required properties:
reachability, necessity and sufficiency. The main functional difference is that it trav-
erses the existing test cases to learn the code usage, and then evaluates if the tests are
exhaustive enough. Jester, on the other hand, mutates the code independently from
test cases, which allows it for assessing the code coverage. That is the reason why the
quality of mutants generated by the prototype cannot be directly compared to the
Jester's. However, it appears to produce mutants of higher quality by avoiding the re-
dundant equivalent mutants. It also, unlike Jester, performs mutation in strict accor-
dance with the test coverage.

Use of aspects preserves the production source code intact and also allows for
various mutation operators, changing both behavior and structure of the code under
test.

Further directions of research and development include support for objects, imple-
mentation of other mutation operators and a larger scale evaluation.

276 Bartosz Bogacki, Bartosz Walter10 Bartosz Bogacki, Bartosz Walter

Acknowledgements

The work has been supported by the Rector of PoznaĔ University of Technology as a
research grant BW/91-429.

References

 1. AspectJ Project HomePage, http://www.eclipse.org/aspectj/ (visited in January 2006)
 2. Beck K.: Extreme Programming Explained. Embrace change. Addison-Wesley, 2000.
 3. Beck K.: Test-Driven Develoment. By Example. Addison-Wesley, 2003.
 4. Hamlet R.G.: Testing programs with the aid of compiler. IEEE Transactions on Software

Engineering, Vol. 3(4), July 1978, pp.279-290
 5. Jakarta Commons Lang Project, http://jakarta.apache.org/commons/lang/
 6. Jester HomePage, http://jester.sourceforge.net/ (visited in January 2006)
 7. JUnit HomePage, http://www.junit.org (visited in January 2006)
 8. Kiczales G., Lamping J. et al.: Aspect Oriented Programming. In: Proceedings of ECOOP

1997, Lecture Notes in Computer Science 1241, Springer Verlag, pp. 220-242.
 9. Kim S., Clark J., McDermid J.: Assessing test set adequacy for object oriented programs us-

ing class mutation. In: Proceedings of Symposium on Software Technology (SoST'99),
pages 72-83, Sept. 1999.

10. Laddad R.: AspectJ in Action. Manning Publications, 2003
11. Ma Y., Offutt J., Kwon Y. R.: MuJava. An automated Class Mutation System. In: Software

Testing, Verification and Reliability. June 2005. Vol. 15(2), pp. 97-133.
12. Moore, I.: Jester a Junit test tester. In: Proceedings of the 2nd International Conference on

Extreme Programming and Flexible Processes in Software Engineering, XP2001. Springer
2001.

13. Offutt A. J.: A Practical System for Mutation Testing: Help for the Common Programmer.
Test Conference, 1994. Proceedings., International.

14. Untch R., Offutt A. J., Harrold M. J.: Mutation analysis using program schemata. In: Pro-
ceedings of the 1993 International Symposium on Software Testing, and Analysis, pages
139-148, Cambridge MA, June 1993

15. Bogacki B., Walter B.: Evaluation of test code quality with aspect-oriented mutations. In:
Abrahamsson P., Marchesi M., Succi G.: Proceedings of 7th International Conference in
Extreme Programming and Agile Processes in Software Engineering, Oulu (Finland), June
2006, Lecture Notes in Computer Science 4044, Springer Verlag, pp.202-204.

