
Enhancing Use Cases with Screen Designs?

Łukasz Olek, Jerzy Nawrocki, Mirosław Ochodek

Poznań University of Technology, Institute of Computing Science,
ul. Piotrowo 3A, 60-965 Poznań, Poland

{Lukasz.Olek, Miroslaw.Ochodek}@cs.put.poznan.pl

Abstract. This paper presents a language called ScreenSpec that can
be used to specify screens at requirements elicitation phase. ScreenSpec
was successfully applied in 8 real projects. It is very effective: average
time needed to specify a screen is 2 minutes, and takes an hour to become
proficient in using it. Visual representation generated from ScreenSpec
can be attached to requirements specification (e.g. as adornments to use
cases).

Keywords: Use cases, GUI Design, Prototyping, ScreenSpec

1 Introduction

Use cases are the most popular way of specifying functional requirements. A
survey published in IEEE Software in 2003 [12] shows that over 50% of software
projects elicit requirements as use cases. Use case is a good way of describing
interaction between a user and a system at a high level, so maybe now the
number can be even higher. At the same time many practitioners (in about
40% of projects [12]) draw user interfaces to visualise better how the future
system will behave. This is wise, since showing user interface designs (e.g. proto-
types [14,17,8,18], storyboards [10]) together with use cases helps to detect more
problems with requirements ([13]1). Unfortunately, user interface details would
clutter use-case description and should be kept apart from the steps ([6,7]), but
they can be attached to use cases as adornments [6].

Much have been said about writing use cases [6,7,16,11,9] (e.g. how to divide
them into main scenario and extensions, what type of language to use), however
it is not clear how to specify UI details as adornments. Practitioners seem to
either draw screens in graphical editors and attach graphical files to use cases, or
just describe it using a natural language. Both approaches have advantages and
disadvantages. The graphical approach is easier to analyse by humans, however
more difficult to prepare and maintain. On the other hand, the textual approach
is much easier to prepare, but not so easy to perceive.

The goal of this paper is to propose a simple formalism called ScreenSpec to
specify user interface details. It has both advantages of the approaches mentioned
? This research has been financially supported by the Polish Ministry of Science and
Higher Education grant N516 001 31/0269.

1 See experiment conclusions in section: “Mockup helps to unveil usability problems”.

2 Ł. Olek, J. Nawrocki, M. Ochodek

earlier: it is inexpensive to prepare and maintain, and can be automatically
converted to a graphical form (attached to use cases as adornments can stimulate
readers visually). Currently the language is limited to describe user interfaces of
web applications.

It is easy to propose a new formalism, but it is much more difficult to prove
that it is useful. ScreenSpec has been successfully used in 8 real projects. An
investigation was carried out to find out how much effort is needed to use Screen-
Spec, and how much time does it take to learn how to use it.

The plan of this paper is following. Section 2. describes some approaches to
UI specification that are popular in software engineering. Section 3. describes
the ScreenSpec language. Section 4. describes case studies that were conducted
to check whether ScreenSpec is complete enough and flexible to specify real ap-
plications and how much effort does it take to specify screens at requirements
elicitation phase. Section 5. describes a way to generate graphical files repre-
senting particular screens from ScreenSpec. Section 6. presents how the visual
representation of screens can be embedded in requirements documents: as adorn-
ments, or as a mockup. The whole paper is concluded in Section 7.

2 Related Work

There are many outstanding technologies and formalisms used to describe user
interface. One of them is XUL[2] (XML User Interface Language) from the
Mozilla Foundation. This is an interesting language used to describe platform-
independent user interface. It has many interesting features, e.g. separation of
presentation from application logic, easy customisation, localisation or brand-
ing. However this language seems to be too much implementation-oriented, to
be used at requirements elicitation phase. There are two important impediments
to use XUL for this purpose. Firstly, one has to know component type before it
can be specified (e.g. <textbox id="username"/>).Therefore it is not possible
to start from specifying the structure of information connected with particular
screen, and then add details about control types (see Section 3.3). Secondly,
labels for components have to be defined explicitly. This means that for each
component two declarations are required: one for a label, and second one for
a control. However it would be interesting to generate (or round-trip-generate)
XUL from ScreenSpec. Produced XUL could be easily used for implementation.

There are other technologies that are getting more and more popular nowa-
days, like for instance, MDSD (Model Driven Software Development) approaches,
that provide an ability to generate a whole application from a set of models (e.g.
WebML[3], UWE/ArgoUWE[5]). Unfortunately this approach still seems to re-
quire too much effort, to be successfully used at the requirements elicitation
phase. There are companies using such approach, that Poznań University of
Technology cooperates with. According to their experience it takes at least sev-
eral hours to describe a single use case with MDSD models. It is definitely to
long to be used at requirements elicitation phase, so they use generic text editors
to specify use cases and screens.

Enhancing Use Cases with Screen Designs 3

3 ScreenSpec - Language for Screen Specification

The goal of the ScreenSpec language is to allow analyst to specify the structure
of user interface very efficiently. Since this approach is supposed to be used at
early stages of requirements elicitation phase, it would be wise to focus on the
structure of screens and information exchanged between a user and a system,
rather then on such attributes like colours, fonts, layout of components. This is
called a lo-fidelity approach([19,15]) and is used in ScreenSpec.

It is best to explain how ScreenSpec specification looks like on a simple
example. Let us imagine an Internet shop with a view of all categories (see Fig.
1). It contains a list of categories (each of them is represented by a link with its
name) and lists of subcategories. There are also some links to other shopping-
views (by brand, by store, etc).

SCREEN Shop_By_Category:
 Categories(LIST):

Name(LINK)
Subcategories(LIST):

Name(LINK)
Shop_by_Brand(LINK)
Shop_by_Store(LINK)

Fig. 1. A screen showing a list of categories (screenshot taken from shop-
ping.yahoo.com), and its corresponding specification in ScreenSpec.

3.1 Language Definition

Screens Each screen is specified with a set of lines that describe its structure.
The definition starts with keyword SCREEN followed by screen’s identifier (each
screen must have an unique ID). The following lines are indented and describe
components, that belong to the screen:

SCREEN Screen_ID:
Component_definition_1
Component_definition_2
...

Where Component_definition_n is a definition of a basic component or a group.

Basic components Basic components are mainly simple widgets taken from
the HTML language. They are specified using the following syntax:

4 Ł. Olek, J. Nawrocki, M. Ochodek

Component_ID[(CONTROL_TYPE)]

where:
– Component_ID is a string that identifies the component, e.g. Login_name,

Password, Author. It has to be unique in the scope of the screen or parent
group.

– CONTROL_TYPE is one of: BUTTON, LINK, IMAGE, STATIC_TEXT,DYNAMIC_TEXT,
EDIT_BOX, COMBO_BOX, RADIO_BUTTON, LIST_BOX, CHECK_BOX, CUSTOM. This
parameter is optional (EDIT_BOX by default) and can be defined by an analyst
later (see Section 3.3).

Three controls do not come from a standard set of HTML controls, thus re-
quire additional comment: (1)STATIC_TEXT is used to display a text that will be
the same on each screen instance (e.g. a comment or instructions) (2)DYNAMIC_TEXT
is a block of text generated dynamically by the system (e.g. a total value of an
invoice) and (3)CUSTOM is used to represent non-standard components (e.g. date
picker).

Groups Groups of components are containers for widgets, usually providing
additional features. They are defined using the following syntax:
Group_ID[(GROUP_TYPE)]:

Component_definition_1
Component_definition_2
...

where:
– Group_ID is a string that identifies the group.
– Component_definition_n - is a definition of a basic component or another

group of components
– GROUP_TYPE - determines the type of the group:

• SIMPLE or omitted - such group is just used to introduce structure to
the screen, but it does not provide any additional semantics to its com-
ponents

• LIST - its components are repeated in a list, all child components form
a single list item

• TABLE - its components are repeated in rows, as a table (similar to LIST,
but different layout)

• TREE - similar to list, but its items can also contain another lists of the
same structure (e.g. used to create tree of categories, or site map tree).

3.2 ScreenSpec Advanced Elements
Static values are used to specify, that the component will have the same values
on each screen. For example, when we have a combo box that allows to choose
sex of user, it would always have two values: “Male” and “Female”. We can express
such case in ScreenSpec using the following structure:
Component_ID(...):Value_1|Value_2|...

e.g. Sex(COMBO_BOX):Male|Female

Enhancing Use Cases with Screen Designs 5

Template mechanism can be used to build more complex screens. Two ele-
ments are needed to do this: a template definition and a reference to the template
in the particular screen. This can be done using the following structure (shown
in the example):

TEMPLATE Main:
Header:

Sign_in(LINK)
Register(LINK)

...
Contents(CUSTOM)
...

SCREEN All_categories(Main):
...

Each template is defined with keyword TEMPLATE followed by a template name.
The structure of template is the same as the structure of a screen. The main dif-
ference is that it requires putting the additional component Contents(CUSTOM)
- which is a placeholder for the specific screen which will use the template. When
screen is supposed to use a particular template, we need to mention the name
of the template in parenthesis, e.g. SCREEN All_Categories(Main).

Include common screen elements When there are the same controls (func-
tional blocks) used in more screens it would be wise to declare them once and
then make references. We can do this by using INCLUDE keyword:

SCREEN Search_box:
...

SCREEN Search_results:
INCLUDE Search_box
Results(LIST):

...

Select clause It is common that a screen has different variants depending on
situation. For example, a screen can display a list of all accepted papers or a
message that no papers are accepted yet. When one of several variants can be
used, it is specified by a select clause:

SELECT:
Component_definition_1
Component_definition_2

This means that either Component_definition_1 or Component_definition_2
will be displayed on a real screen. More than two variants are possible (additional
lines should be added within the SELECT clause). Components, that are specified
here can be both simple components, or groups.

6 Ł. Olek, J. Nawrocki, M. Ochodek

3.3 Iterative Approach to Screen Specification

ScreenSpec is designed to be used by an analyst at requirements elicitation phase.
This phase is exploratory, which means that change-involving decisions are made
frequently. It would be important to provide incremental approach to the screen
specification process. It would be great if analyst could just roughly describe
screen at the beginning (only the structure of information), and add more details
later (when a customer confirms it is correct). Therefore ScreenSpec has 3 levels
of details:

L1 Component names - need to be specified at the beginning.
L2 Types of controls and groups - specifies types of information connected with

each screen.
L3 Static values and templates.

These levels can be mixed throughout the specification process: some frag-
ments of screens can be written at one level of details, whereas other ones at
another level.

4 Experience with ScreenSpec

4.1 Specifying Screens for the Real Projects – Case Studies

Analysts usually use word processors and sheets of papers to author require-
ments. Keeping it in mind, it seems that introducing formalised requirements
models can be risky. It may happen that some of the developed-system features
might be too difficult to describe.

To make sure that the ScreenSpec formalism is complete and flexible enough
to be used for describing real systems, eight case studies were conducted. They
included a large variety of projects. Some of them were internally-complex (large
number of sub-function2 requirements), with a small amount of interaction with
a user (e.g. Project A, Project C). Others were interaction-oriented, with a great
number of use cases and screens (e.g. Project D, Project G). First 6 projects were
selected from the Software Development Studio course at Poznań University of
Technology. These projects were developed for external customers by students of
the Master of Science in Software Engineering. Students were successfully using
ScreenSpec approach to specify screens. They also raised some minor suggestions
for ScreenSpec language, and small simplifications were introduced afterwords.
Then screens for two commercial projects were also written using ScreenSpec
language. In both cases all screens were successfully specified.

It seems that number of lines of code (LOC) per screen may differ depending
on the screen complexity. In analysed projects average LOC per Screen varies
from 3.0 to 14.5 (see table 1).
2 After Cockburn[7]: a sub-function requirement is a requirement that is below the
main level of interest to the user, i.e. “logging in”, “locate a device in a DB”.

Enhancing Use Cases with Screen Designs 7

Table 1. Eight projects selected for the case study

Bu
sin

es
s

0 4 2 4 14.5 58
3 13 2 5 9.4 47
0 5 0 4 3 12
0 16 0 27 4.7 128
0 4 0 7 3.9 27
1 3 2 3 13 39
0 44 39 92 9.5 917
2 12 0 7 5.1 36

Project
Number of Use Cases

Screens
ScreenSpec Screens

Us
er

Su
b-

fu
nc
tio

na
l

Average
LOC/Screen Total LOC

Project A
Project B
Project C
Project D
Project E
Project F
Project G
Project H

4.2 ScreenSpec Efficiency Analysis

Although an average amount of code required to specify a screen with ScreenSpec
seems to be rather small, two important questions arise:

– Q1: how much effort is required to specify3 a screen?
– Q2: how much time is required to learn how to use ScreenSpec?

The second question is also important because practitioners tend to choose
solutions, which provide business value and are inexpensive to introduce. If an
extensive training is required in order to use ScreenSpec efficiently, there might
be a serious threat, that the language will not be attractive to the potential
users.

In order to answer these questions, a controlled case study was conducted4.
Eight participants were asked to specify sequence of 12 screens coming from the
real application (provided as the series of application screenshots). The time re-
quired for coding each of the screens was precisely measured (up to the seconds).
The code was written manually on sheets of paper. Participants were also asked
to copy a sample screen specification, in order to examine their writing speed.
Before they started to specify screens, they had been also introduced to the
ScreenSpec during the 15-minute lecture, and each of them was also provided
with a page containing the ScreenSpec specification in a nutshell. All materials
provided to participants are published at [1].
3 The term "specifying" is understood here as the process of transcribing the vision
of the screen into the ScreenSpec code.

4 The case study is labeled here as a controlled, because the methodology was similar
to that used in case of controlled experiments, however the nature of questions being
investigated refers rather to the "common sense", then to some obtainable values
(e.g. compare average learning time, to the one which is acceptable for the industry).

8 Ł. Olek, J. Nawrocki, M. Ochodek

Descriptive analysis and data clearing. During the completion of each task
(single screen specification) two values were measured:

– time required to finish the task
– lines of code developed to specify the screen

Screens specifications, developed by participants, differed in respect to their
size, because they were specified only on the basis of the screenshots, which
were be perceived slightly differently by different people. What is more, some
of the ScreenSpec structures might be used optionally. The detailed results of
the case study is presented in table 2. Before proceeding to the further analysis

Table 2. Effort and lines of code for each participant and task (sample screen
refers to the task measuring participants writing speed)

Time [min]
Participant 1 2 3 5 6 7 8 9 11 12

P1 0.9 4.3 2.0 2.0 6.2 2.3 4.7 7.7 3.3 5.5 6.3
P2 1.6 2.8 2.0 3.6 3.6 1.2 2.0 4.1 3.1 3.1 4.2
P3 1.2 1.8 2.0 3.0 4.6 1.5 2.4 6.2 4.8 3.9 4.4
P4 1.3 1.7 1.4 5.7 2.5 1.8 1.9 3.3 3.5 4.7 3.9
P5 1.0 2.4 2.2 1.0 2.5 1.4 1.8 3.6 4.3 3.0 4.2
P6 1.0 2.5 1.6 1.5 3.7 1.3 1.4 4.1 3.0 3.3 3.8
P7 1.0 1.9 1.5 1.6 2.0 1.1 1.3 2.3 1.8 3.2 3.5
P8 1.6 5.4 4.2 3.2 5.8 3.7 2.5 4.7 5.6 4.0 6.7

1.2 2.9 2.1 2.7 3.9 1.8 2.3 4.5 3.7 3.8 4.6
SD 0.3 1.3 0.9 1.5 1.6 0.9 1.1 1.7 1.2 0.9 1.2

1 2 3 5 6 7 8 9 11 12
P1 8 14 6 8 17 7 20 35 20 25 32
P2 8 9 7 9 12 6 8 21 16 18 19
P3 8 8 6 9 10 6 7 22 16 18 25
P4 8 7 6 9 10 6 7 15 17 20 19
P5 8 11 8 8 11 6 8 16 16 15 23
P6 8 9 7 8 9 7 8 17 14 17 23
P7 8 10 7 9 10 6 7 17 15 21 21
P8 8 5 7 7 10 6 7 14 16 13 18

8.0 9.1 6.8 8.4 11.1 6.3 9.0 19.6 16.3 18.4 22.5
SD 0.0 2.7 0.7 0.7 2.5 0.5 4.5 6.8 1.8 3.7 4.5

Sample
Screen

Mean

Lines of code - LOC
Participant Sample

Screen

Mean

results for all tasks were carefully analysed in order to find potential outliers.
The task was marked as a suspicious if the variability in lines of code provided
by participants was high (or there were outlying observations). According to the
box plots presented in figure 2 tasks 1, 4, 5, 7, 8, 9, 10, 11, 12 were chosen for
further investigation in order to find out the reasons for the LOC variability. It

Enhancing Use Cases with Screen Designs 9

turned out that tasks 4 and 8 were ambiguous, because in both cases there were
two possible interpretations of the screens semantic. What is more, the amount
of code required to specify each of two versions differed significantly. Therefore
those tasks were excluded from the further analysis.

1 2 3 4 5 6 7 8 9 10 11 12

1,6

2,4
3,2
4

4,8

5,6
6,4
7,2
8

1 2 3 4 5 6 7 8 9 10 11 12

0

4

8

12

16

20

24

28

32

36

a) b)

Siz
e [

LO
C]

Task (screen) Task (screen)

Tim
e [

mi
n]

Fig. 2. Effort and size of code (LOC) variability for each task, a) box plot presents
effort variability for each task, b) box plot presents lines of code variability for
each task

Productivity analysis. Based on the effort and code size measured for each
task performed by each participant, a productivity factor can be derived. It will
be defined here as a time required to produce a single line of code. It might be
calculated using equation 1.

PROD =
Effort

Size
(1)

Where:

– PROD - is a productivity factor understood as a number of minutes required
to develop a single line of code

– Effort - is an effort required to complete the task (measured in minutes)
– Size - is the size of code developed to specify the screen (measured in LOC)

Effort measured during the case study consists of two components: (1)time re-
quired for thinking and (2)writing down the screen. It would be difficult to
precisely measure both of them, however knowing the writing speed of each
participant (see equation 2) it is possible to calculate the approximate effort

10 Ł. Olek, J. Nawrocki, M. Ochodek

spent only on thinking. It can be further used to estimate cognitive productivity
factor (see equation 3), which can be understood as a productivity of thinking
while coding the screen. It is independent from the tool (effort needed mentally
produce the screen-specification code).

Vwriting =
Sizesample

Effortsample
(2)

Where:

– Vwriting - is a writing speed (measured in LOC per minutes)
– Effortsample - is an effort required to copy the code for the sample screen

(measured in minutes)
– Sizesample - is the size of the code for the sample screen – 8 LOC

PRODcognitive =
Effort− (Size/Vwriting)

Size
(3)

Where:

– PRODcognitive - is an estimation of cognitive productivity factor understood
as a number of minutes spend on thinking in order to produce a single line
of code

– Effort - is an effort required to complete the task (measured in minutes)
– Size - is the size of code to specify the screen (measured in LOC)
– Vwriting - is a writing speed (measured in LOC per minutes)

Cognitive and standard productivity factors were calculated for each task
performed by participants. The chart presenting mean values for each task is
presented in figure 3.

1 2 3 5 6 7 9 10 11 12
0.00
0.05

0.10
0.15
0.20

0.25
0.30
0.35

0.40

Mean
productivity
factor
Mean cognitive
productivity
factor

Task (screen)

Pro
du
cti
vit
y [
mi
n/L

OC
]

Fig. 3.Mean (cognitive and standard) productivity factors for each task (screen)

Enhancing Use Cases with Screen Designs 11

Q1: how much effort is required to specify a screen? If the mean pro-
ductivities from the first and the last task are compared, it would mean that
average beginner produces around 2.81 LOC / minute while person with some
experience 4.7 LOC / minute (this of course may very depending on the screen
complexity). That means that total effort of specifying all of the screens for the
largest project included in the case studies – Project G (92 screens with total of
917 LOC of screen specifications) would vary from 3.2 to 5.4 hours depending
on analyst skill. What is more, an average screen size is around 8 LOC (average
from table 1), which could be specified in less then 2 minutes (for experienced
analyst, and less then 3 minutes for beginner). Therefore it seems that the Spec-
Screen notation might be used directly during the meetings with customer. It
is also worth to mention that if there was an efficient editor available (with
high usability), the productivity factor for potential user, would be closer to the
cognitive one. This means that a 8 LOC screen would be specified in about 30
seconds.

Q2: how much time is required to learn how to use ScreenSpec? By
looking at the productivity chart presented in figure 3, the learning process
can be investigated. The ratio between productivity factors calculated for the
ending and beginning task is 1.69. In addition it seems that after completing
8-10 tasks, learning process saturates. Therefore it seems that participating in
a single training session which includes a short lecture and ten practical tasks
(about an hour), should be enough to start using ScreenSpec effectively.

An interesting observation is regarding the task number 5, because the pro-
ductivity factor suddenly increased at this point (more time required to produce
one line of code). This issue was further investigated, and the finding was that
the screen for that task contained interactive controls, which appeared for the
first time in the training cycle (edit boxes, check boxes etc.). Thus an important
suggestion for a preparation of the training course would be to cover all of the
components available in the ScreenSpec language.

5 Visual Representation of Screens

ScreenSpec can be authored using a dedicated tool. This is a simple editor, that
detects each change, and automatically regenerates graphics files (PNG) that
can be attached to requirements documents. The generator uses simple rules to
transform ScreenSpec to visual representation:

1. For each component:
– EDIT_BOX, COMBO_BOX, LIST_BOX, CUSTOM - a label (equal Component ID)

is displayed on the left side of the control, the control’s value is taken
from the defined static value, or it is left empty. CUSTOM component
is displayed as the EDIT_BOX.

– BUTTON, LINK - displays a control with a caption equal to the defined
static value, or component ID.

12 Ł. Olek, J. Nawrocki, M. Ochodek

– STATIC_TEXT, DYNAMIC_TEXT - displays a piece of text equal the static
value or component ID.

– RADIO_BUTTON, CHECK_BOX - displays a control followed by a label (label’s
value equals the static value or component ID)

– IMAGE - displays a label on the left (equal to component ID) and an
empty image frame on the right.

2. For each group:
– SIMPLE - a header and a frame is created, all children components are

placed inside this frame.
– LIST - a header and a frame is created. In the frame 3 rows are displayed

(this visualises that a list can have more elements): two rows having the
child components, and the third one containing “...”

– TABLE - is similar to a LIST, however a new table column is created for
each child component. Its label is displayed in the table header rather
then on the left (near its control).

– TREE - is similar to a LIST, but for each row a nested and smaller list is
displayed.

Following example (figure 4) shows a visual representation of a simple screen
specified in ScreenSpec.

Fig. 4. An example of visual representation for a LIST group component.

6 ScreenSpec Meets Use Cases

Visual screens generated from ScreenSpec can be directly inserted into require-
ments specification in adornments section of particular use cases. Having up-to-
date graphic files allows to update the specification very easily, because many
modern text editors allow to link with external files, and update them each time
the document is opened (e.g. Microsoft Word, OpenOffice).

Enhancing Use Cases with Screen Designs 13

6.1 Mockup

Mockup is an interesting artefact created by connecting screens to particular
steps of use cases. It is rendered as a simple web application that can display
both: use cases and screens at the same time. Use case (displayed on the left
side) shows the interaction between an actor and a system (see figure 5). After
selecting particular step, an according screen is displayed (on the right side).
This artefact seems to be useful in practice, initial feedback from commercial
projects using mockups is very positive.

It is difficult to connect screens to use case steps in generic text editor, so a
dedicated tool called UC Workbench [4] was developed at Poznan University of
Technology.

Username
Password

UC5: Login to the system
Main Scenario:
1. Customer chooses login action .
2. Customer fills in login form .
3. System checks if data is correct and authorizes Customer .

Extensions:
3.A. Customer cannot be authorized
3.A.1. System prints warning info and ask Customer to

repeat authorization process .
2.A. There is no account for Customer.
2.A.1. Customer would like to add a new acount to the

Login
Cancel

Actors Business Processes Use Cases Business Objects

Fig. 5. An screenshot of Mockup - showing use case with corresponding screens
at the same time.

7 Conclusions

User interface designs are often attached to use cases as adornments, because it
helps to understand the requirements by IT laymen. However, it is not clear how
to specify UI details. This paper proposes a language called ScreenSpec, that can
be used for this purpose. ScreenSpec is a formalism that was thoroughly vali-
dated. It was used to describe UI in eight real software projects. ScreenSpec
allows to work incrementally on screen designs, starting with the general struc-
ture of information at particular screen, and then adding more details about
widgets. It is very efficient, it takes on average about 2 minutes per screen.
ScreenSpec is also easy to learn, it takes about an hour, for a person that has
never seen ScreenSpec, to become proficient in using it.

14 Ł. Olek, J. Nawrocki, M. Ochodek

Although it is interesting to use ScreenSpec at requirements elicitation stage,
it could be even more interesting to use it at later stages. One can think about
generating skeleton user interface code (in XUL, SWT, Swing or other technolo-
gies), that could be refined during implementation. Appropriate research will be
conducted as a future work.

Acknowledgements

Authors would like to thank companies which cooperate with Poznań University
of Technology: Polsoft and Komputronik. They found time and courage to try
our ideas in practice and provided us with a substantial feedback. This research
has been financially supported by the Polish Ministry of Science and Higher
Education under grant N516 001 31/0269.

References

1. A web page containing all materials for a ScreenSpec evaluation case study:
http://www.cs.put.poznan.pl/lolek/homepage/ScreenSpec.html.

2. Home page for Mozilla XUL: http://www.mozilla.org/projects/xul/.
3. The Web Modeling Language Home Page. http://www.webml.org/.
4. UC Workbench project homepage. http://ucworkbench.org.
5. UWE - UML-based Web Engineering Home Page. http://www.pst.informatik.uni-

muenchen.de/projekte/uwe/index.html.
6. Steve Adolph, Paul Bramble, Alistair Cockburn, and Andy Pols. Patterns for

Effective Use Cases. Addison-Wesley, 2002.
7. Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley, 2001.
8. Larry L. Constantine and Lucy A. D. Lockwood. Software for Use: A Practical

Guide to the Models and Methods of Usage-Centered Design. ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 1999.

9. Ivar Jacobson. Object-Oriented Software Engineering: A Use Case Driven Ap-
proach. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA,
2004.

10. James A. Landay and Brad A. Myers. Sketching storyboards to illustrate interface
behaviors. In CHI ’96: Conference companion on Human factors in computing
systems, pages 193–194, New York, NY, USA, 1996. ACM Press.

11. Dean Leffingwell and Don Widrig. Managing Software Requirements: A Use Case
Approach, Second Edition. Addison-Wesley Professional, May 2003.

12. CJ Neill and PA Laplante. Requirements Engineering: The State of the Practice.
Software, IEEE, 20(6):40–45, 2003.

13. Łukasz Olek, Jerzy Nawrocki, Bartosz Michalik, and Mirosław Ochodek. Quick
prototyping of web applications. In L. Madeyski, M. Ochodek, D. Weiss, and
J. Zendulka, editors, Software Engineering in Progress, pages 124–137. NAKOM,
2007.

14. Roger Pressman. Software Engineering - A practitioners Approach. McGraw-Hill,
2001.

15. Jim Rudd, Ken Stern, and Scott Isensee. Low vs. high-fidelity prototyping debate.
interactions, 3(1):76–85, 1996.

Enhancing Use Cases with Screen Designs 15

16. G. Schneider and J. P. Winters. Applying Use Cases: A Practical Guide. Addison-
Wesley, 1998.

17. Carolyn Snyder. Paper Prototyping: The Fast and Easy Way to Define and Refine
User Interfaces. Morgan Kaufmann Publishers, 2003.

18. Yan Sommerville and Pete Sawyer. Requirements Engineering. A Good Practice
Guide. Wiley and Sons, 1997.

19. Miriam Walker, Leila Takayama, and James A. Landay. High-Fidelity or Low-
Fidelity, Paper or Computer? Choosing Attributes When Testing Web Applica-
tions. In Proceedings of the Human Factors and Ergonomics Society 46th Anuual
Meeting, pages 661–665, 2002.

	Enhancing Use Cases with Screen Designs
	Łukasz Olek, Mirosław Ochodek

