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Abstract. Most large and complex physical systems are studied by
mathematical models, implemented as high dimensional computer simu-
lators. While all such cases differ in physical description, each analysis of
a physical system based on a computer simulator involves the same un-
derlying sources of uncertainty. These sources are defined and described
below. In addition, there is a growing field of study which aims to quan-
tify and synthesize all of the uncertainties involved in relating models
to physical systems, within the framework of Bayesian statistics, and to
use the resultant uncertainty specification to address problems of fore-
casting and decision making based on the application of these methods.
We present an overview of the current status and future challenges in
this emerging methodology, illustrating with examples drawn from cur-
rent areas of application including: asset management for oil reservoirs,
galaxy modeling, and rapid climate change.
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1 Uncertainty in complex systems represented by
computer simulators

Most large and complex physical systems are studied by mathematical models,
implemented as high dimensional computer simulators (like climate models).
To use complex simulators to make statements about physical systems (like
climate), we need to quantify the uncertainty involved in moving from the model
to the system. The issues that we must address are methodological (how can we
estimate what climate is likely to be?), computational (how can we ensure that
our methods are tractable?) and foundational (why should our methods work
and what do our answers mean?).
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Applications range across all areas of science and technology. In this article,
I will offer illustrations based on the following three applications, chosen as I
have some personal experience with each, and they illustrate the wide range of
areas of application for the methodology that we shall describe.

Oil reservoirs An oil reservoir simulator takes as inputs a physical descrip-
tion of the properties of a reservoir (permeabilities, porosities, faults, etc) and
produces, as output, various well characteristics(pressure profiles, oil and gas
production rates, etc.). The simulator is used to help manage assets associated
with the reservoir. The aim is commercial: to develop efficient production sched-
ules, determine whether and where to sink new wells, and so forth.

Galaxy formation The study of the development of the Universe is sup-
ported by using Galaxy formation simulators. These simulators take as input
various parameters controlling physical processes which are thought to control
the formation of galaxies and the simulators perform simulations of the develop-
ment of the universe from the point of origin to the present producing as output
various large scale quantities which can be compared to current cosmological
measurements. The aim is scientific - to gain information about the physical
processes underlying the Universe.

Climate change Large scale climate simulators are constructed to assess
likely effects of human intervention upon future climate behaviour. Aims are both
scientific - much is unknown about the large scale interactions which determine
climate - and also very practical, as such simulators provide evidence for the
importance of changing human behaviour before possibly irreversible changes
are set into motion.

While each such model differs in all details of the scientific basis and mathe-
matical implementation, there are various sources of uncertainty which are com-
mon across all such applications.

(i) parametric uncertainty (each model requires a, typically high dimen-
sional, parametric specification, whose value is not known),

(ii) condition uncertainty (uncertainty as to boundary conditions, initial
conditions, and forcing functions),

(iii) functional uncertainty (model evaluations often take a long time, so
the function is unknown for almost all choices of inputs),

(iv) stochastic uncertainty (either the model is stochastic, giving different
outcomes each time it is evaluated under the same choice of input parameters,
introducing uncertainly directly, or aspects of the modelling which should in-
volve such stochastic uncertainty have been reduced to a deterministic form,
introducing uncertainty indirectly),

(v) solution uncertainty (the system equations can only be solved to some
necessary level of approximation),

(vi) structural uncertainty (even taking into account all of the above
sources of uncertainty, the model only approximates the physical system and
this discrepancy introduces further uncertainty about system behaviour),

(vii) measurement uncertainty (as the model is calibrated against system
data all of which is measured with error),
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(viii) multi-model uncertainty (usually we have not one but many mod-
els related to the physical system),

(ix) decision uncertainty (to use the model to influence real world out-
comes, we need to relate things in the world that we can influence to inputs to
the simulator and through outputs to actual impacts. These links are uncertain).

Different physical models vary in many aspects, but the formal structures for
analyzing all of these components of the uncertainty for the physical system, as
derived from the study of computer simulators for the system, are very similar,
which is why there is a common underlying methodology for such problems.
In this article, we give an informal introduction to some important features of
this methodology. First, we introduce some general features of the uncertainty
structure, describe the Bayesian approach for addressing these uncertainties, and
explain why we prefer, in certain cases, a Bayes linear approach to the uncer-
tainty analysis. Then, we outline the rationale for history matching as a way
to constrain the input space, and describe a simple forecasting methodology for
future system outcomes. We illustrate the development with a brief description
of examples arising from each of the simulation problems described above. Fi-
nally, we consider the reason why we should view a computer simulator as being
informative for a physical system.

2 General uncertainty structure

Each simulator for a physical system can be conceived as a function F (x), where
x is an input vector, representing unknown properties of the physical system,
and F (x) is the corresponding output vector representing aspects of system
behaviour, y.

Interest in the analysis concerns general qualitative insights as to the be-
haviour of the system plus some of the following: (i) the “appropriate” (in some
sense) choice, x∗, for the system properties x; (ii) the use that we can make of
historical observations z, observed with error on a subset yh of y, both to test
and to constrain the model; (iii) how informative F (x∗) is for actual system
behaviour, y, particularly for forecasting future system outcomes, yp;(iv) the
optimal assignment of any decision inputs, d, in the model.

For example, in a climate analysis, yh might correspond to historical climate
outcomes over space and time, y to past, current and future climate, and the
“decisions” might correspond to different policy relevant choices such as carbon
emission scenarios.

How can we solve such problems? If observations, z, are made without error
and the model is a perfect reproduction of the system, then, in principle, we can
write z = Fh(x∗), invert fh to find x∗ and learn about all future components of
y = F (x∗). If x contains some control parameters, then these are set to optimize
properties of future outcomes contained in y.

However, in practice, the inversion of slow, high dimensional and complex
functions is a very hard problem. Further, the observations z are typically made
with error, and the model always differs from the physical system, so we must
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separate the uncertainty representation into two relations, one expressing the
data uncertainty and one expressing the structural uncertainty: for example, the
simplest such representation is of the form

z = yh ⊕ e, y = F (x∗)⊕ ε (1)

where e, ε have some appropriate probabilistic specification, possibly involving
parameters which require estimation, and the notation U ⊕ V denotes the addi-
tion of U + V , in the case where U is probabilistically independent of V , for a
full probabilistic specification or U, V are uncorrelated, if we only make a second
order specification of means, variances and covariances. We therefore need to
make a statistical inversion of the data through the function and make statis-
tical predictions as to future system behaviour. This is a much harder problem
than the deterministic inversion, and we still haven’t accounted for condition
uncertainty, multi-model uncertainty, and so forth.

In practice it is extremely rare to find a serious quantification of the total
uncertainty about a complex system arising from the all of the uncertainties in
the model analysis that we have identified. Therefore, for almost all applications,
no-one really knows the reliability of the model based analysis, so that there can
be no sound basis for identifying appropriate real world decisions based on such
analyses. The space between models and reality arises partly because modellers
and scientists don’t think about total uncertainty in a sufficiently systematic
way and nor do most statisticians. Policy makers don’t know how to frame the
right questions for the modellers to identify the gap between their analyses and
the likely outcomes in the real world and there are few funding mechanisms to
address such issues. And, of course , such a full uncertainty analysis is difficult
and time consuming.

3 Bayesian uncertainty analysis for complex models

In the subjectivist Bayesian view, the meaning of any probability statement
is the uncertainty judgement of a specified individual, expressed on the scale of
probability (by consideration of some operational elicitation scheme, for example
by consideration of betting preferences); for a somewhat subjective introduction
to the subjectivist position, see[6]. This interpretation has an agreed testable
meaning, sufficiently precise to act as the basis of a discussion about the meaning
of the analysis. In this interpretation, any probability statement is the judgement
of a named individual, so we should speak not of the probability of rapid climate
change, but instead of Anne’s probability or Bob’s probability of rapid climate
change and so forth.

There is an important practical issue of perception, as most people expect
something more authoritative and objective than a probability which is one per-
son’s judgement. However, the disappointing truth is that, in almost all cases,
stated probabilities emerging from a complex analysis are not even the judge-
ments of any individual. Nor do they have any other clear and well defined
meaning.
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So, it is not unreasonable that the objective of our analysis should be prob-
abilities which are asserted by at least one person (more would be good!). The
Bayesian formalism provides a way, at least in principle, to realize this aim.
In the simplest form, the Bayesian approach requires the specification of the
following ingredients:

– a prior probability distribution for best inputs x∗

– a probabilistic uncertainty description for the computer function F
– a probabilistic discrepancy measure relating F (x∗) to the system y
– a likelihood function relating historical data z to y

This full probabilistic description provides a formal framework to synthesis
expert elicitation, historical data and a careful choice of simulator runs. We
may then use our collection of computer evaluations and historical observations
to analyze the physical process in order to determine appropriate values for
simulator inputs (calibration; history matching), to assess the future behaviour
of the system (forecasting), and to optimize the performance of the system.

There is much current interest in this problem. Good starting points for
entering the Bayesian literature in this area are [10], [12]. A great general
resource, offering references, papers, discussion and a methodological toolkit,
is the Managing Uncertainty in Complex Models (MUCM) web-site, http:

//www.mucm.ac.uk/. (MUCM is a consortium between the Universities of As-
ton, Durham, LSE, Sheffield, Southampton, developing general methodology for
this general area with Basic Technology funding.)

This approach is very successful for problems of intermediate size and com-
plexity. For very large scale problems, however, such a full Bayes analysis is very
difficult because (i) it is hard to give a meaningful full prior probability spec-
ification over high dimensional spaces; (ii) the computations for learning from
data (observations and computer runs), particularly for identifying informative
ensembles of choices of parameter values at which to evaluate the simulator, may
be technically difficult; (iii) the likelihood surface is extremely complicated, and
any full Bayes calculation may therefore be extremely non-robust.

4 Bayes linear approach

The idea of the Bayesian approach, namely capturing our expert prior judge-
ments in stochastic form and modifying them by appropriate rules given obser-
vations, is conceptually appropriate (and there is no obvious alternative). Bayes
linear analysis is a practical alternative to the fully specified Bayesian approach,
being based on a prior specification only of the means, variances and covariances
of all quantities of interest, where we make expectation, rather than probability,
the primitive for the theory, following de Finetti, [5]. For a full account of the
Bayes linear approach, see [9].de Finetti chooses expectation over probability as,
if expectation is primitive, then we can choose to make as many or as few expec-
tation statements as we choose (including our choice of probabilities, which are

http://www.mucm.ac.uk/
http://www.mucm.ac.uk/
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simply expectations for the corresponding indicator functions), whereas, if prob-
ability is primitive, then we must make all of the probability statements before
we can make any of the expectation statements. When there are many quantities
that we must specify uncertainty judgements for, it is very helpful to have the
option of restricting our attention to that sub-collection of specifications which
we are most interested in analyzing carefully.

Corresponding to Bayes theorem, which is the basic updating tool for full
Bayes analysis, is the operation of belief adjustment. Ez[y],Varz[y] are the ex-
pectation and variance for the vector y adjusted by the vector z, evaluated as

Ez[y] = E(y) + Cov(y, z)Var(z)−1(z − E(z)),

Varz[y] = Var(y)− Cov(y, z)Var(z)−1Cov(z, y).

If Var(z) is not invertible, then we use an appropriate generalized inverse.
Bayes linear adjustment may be viewed as an approximation to a full Bayes

analysis or the appropriate analysis given a partial specification based on expec-
tation as primitive. The foundation for the approach is an explicit treatment of
temporal uncertainty, and the underpinning mathematical structure is the inner
product space, as opposed to the probability space, which is simply a special
case. The adjusted expectation of y given z is the linear combination of the
elements of z, plus the unit constant, which minimizes the expected squared
distance to y. Observe that de Finetti’s primitive definition for conditional ex-
pectation (see [5]) corresponds to this definition in the special case in which the
vector z = (z1, . . . , zr) represents the elements of a partition (so that one and
only one of the elements of z will equal 1, and all other elements will equal 0). In
this special case, adjusted expectation is equivalent to conditional expectation,
so that the definition of conditioning may be viewed as a special case of that
for belief adjustment, in which the vector z is restricted to a partition vector.
There are other special cases in which adjusted expectation and conditional ex-
pectation coincide, the most important being that of the multivariate Gaussian
distribution.

Full Bayes analysis can be more informative than the Bayes linear counter-
part, if done extremely carefully, both in terms of the prior specification and the
analysis. Bayes linear analysis is partial but easier, faster, and often more robust
particularly for history matching and forecasting. The examples discussed below
were all carried out within the Bayes linear approach. However, the ideas and
approaches are complementary and there are natural full Bayes counterparts for
each of the analyses that we describe.

5 Function emulation

Uncertainty analysis, for high dimensional problems, is even more challenging if
the function F (x) is expensive, in time and computational resources, to evaluate
for any choice of x. For example, large climate models can take many weeks to
evaluate on extremely powerful computers.
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In such cases, F (x) must be treated as uncertain for all input choices except
the small subset for which an actual evaluation has been made. Therefore, we
must construct a description of the uncertainty about the value of F (x) for each
possible choice of x. Such a representation is often termed an emulator of the
function - the emulator both suggests an approximation to the function and also
contains an assessment of the likely magnitude of the error of the approximation.
We use the emulator either to provide a full joint probabilistic description of
all of the function values (full Bayes) or to assess expectations variances and
covariances for pairs of function values (Bayes linear).

There are many ways to construct emulators for computer models. A good
introduction to this area is [11]. A common choice of form for the emulator is as
follows. We express the emulator for component Fi of F as

fi(x) =
∑
j

βijgij(x)⊕ ui(x)

where B = {βij} are unknown scalars, gij are known deterministic functions of
x,ui(x) is a weakly second order stationary stochastic process. There are many
choices of correlation function for this process; a common choice is

Corr(ui(x), ui(x
′)) = exp

(
−
(
‖x− x′‖

θi

)2
)

In this representation, Bg(x) expresses global variation, i.e. aspects of the overall
behaviour of the function that we can discover from a design which is well dis-
persed in parameter space, while u(x) expresses local variation, i.e. those aspects
of the behaviour of the function which can only be assessed by making function
evaluations in the neighbourhood of x.

We fit the emulators, given a collection model evaluations, using our favourite
statistical tools, such as generalized least squares, maximum likelihood, full
Bayes or Bayes linear, aided wherever possible by detailed expert judgement.
We need careful (multi-output) experimental design to choose informative model
evaluations, and detailed diagnostics to check emulator validity.

If the simulator is really slow to evaluate, then a practical way to develop the
emulator is to model jointly the simulator with a fast approximate version, F ′.
So, for example, based on many fast simulator evaluations, we build emulator

f ′i(x) =
∑
j

β′ijgij(x)⊕ u′i(x)

We use this form as the prior specification for the emulator fi(x). Then a
relatively small number of evaluations of Fi(x), combined with relations such as

βij = αiβ
′
ij + γij

enables us to adjust the prior emulator to an appropriate posterior emulator for
Fi(x). This approach exploits the heuristic that we need many more function
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evaluations to identify the qualitative form of the model (i.e. choose appropriate
forms gij(x), etc) than to assess the quantitative form of all of the terms in the
model - particularly if we fit meaningful regression components to account for a
large component of global variation.

6 History matching

Model calibration aims to identify “true” input parameters x∗. However full
Bayes calibration analysis may be technically difficult and non-robust. Further,
we may not believe in a unique true input value for the model and, indeed, we
may be unsure whether there are any good choices of input parameters (due to
model deficiencies).

A conceptually simple alternative, or precursor, to calibration is “history
matching”, i.e. finding the collection of all input choices x for which we judge
the match of the model to the data to be acceptable, using some ‘implausibility
measure’ I(x) based on a natural probabilistic metric, accounting for emulator
uncertainty, condition uncertain, structural discrepancy, observational error and
so forth.

We construct the implausibility measure as follows. Using the emulator we
can obtain, for each set of inputs x, the mean and variance, E(Fh(x)) and
Var(Fh(x)). If x = x∗, then , setting F ∗ = F (x∗), we have

zi = yi ⊕ ei, yi = F ∗i ⊕ εi

so that

Var(zi − E(Fi(x))) = Var(Fi(x)) + Var(εi) + Var(ei)

We can therefore calculate, for each output Fi(x), the ‘implausibility’ if we
consider the value x to be the best choice x∗, which is the standardized distance
between zi and E(Fi(x)), given by

I(i)(x) = |zi − E(Fi(x))|2/[Var(Fi(x)) + Var(εi) + Var(ei)]

Large values of I(i)(x) suggest that it is ‘implausible’ that x = x∗.
The implausibility calculation can be performed univariately, or by multivari-

ate calculation over sub-vectors for which we are prepared to make a full joint
covariance specification for the emulator errors and for the structural discrep-
ancy. With such a full joint specification, the implausibility criterion is a form of
Mahalanobis distance between the system observations and the function outputs.
The implausibilities are then combined, such as by using IM (x) = maxi I(i)(x),
and can then be used to identify regions of x with large IM (x) as implausible,
i.e., unlikely to be good choices for x∗.

Using this analysis, we can then refocus our efforts on the ‘non-implausible’
regions of the input space, by making more simulator runs and refitting our
emulator over such sub-regions and repeating the analysis. This process is a
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form of iterative global search aimed at finding all choices of x∗ which would
give good fits to historical data.

We may find no choices at all which give good fits and that is a clear sign
of problems with our physical simulator or with our data. Further, even if our
ultimate goal is Bayesian model calibration, it is good practice to history match
first, to check the model and (massively) reduce the search space for the Bayesian
algorithm.

7 Forecasting

There are two basic sources of uncertainty that we must quantify in order to
predict future system outcomes, yp. Firstly, we are unsure as to the system
prediction, Fp(x∗), for yp, as we are uncertain about both F and x∗, and secondly
we are uncertain about the model discrepancy, εp, between Fp(x∗) and yp. The
simplest Bayes linear forecasting system for taking account of these uncertainties
is as follows; for details see [2].

The mean and variance of F (x) are obtained from the mean function and
variance function of the emulator f for F . Using these values, we compute the
mean and variance of F ∗ by first conditioning on x∗ and then integrating out
x∗, typically over the parameter region identified by history matching. Given
E(F ∗),Var(F ∗), and specification of the variances for model discrepancy, ε, and
sampling error, e, it is straightforward to compute the joint mean and variance
of the collection (y, z) (as y = F ∗ ⊕ ε, z = yh ⊕ e).

We can therefore evaluate the mean and variance for yp adjusted by z using
the Bayes linear adjustment formulae. This analysis is fast and tractable even
for large systems. Further, because of the simple structure of the calculations, it
is tractable to identify collections of simulator evaluations which are appropriate
for minimizing adjusted forecast variance. Typically, this will be the second stage
choice of simulator evaluations, as the first stage will be a design appropriate to
identify the form of emulator, estimate coefficient matrices and refocus, once or
several times.

This analysis exploits the global features of the emulator to construct the
joint covariance structure and is effective when the local component of emulator
variation is small. When the local component is large, then a more detailed
analysis is required, either by full Bayes specification or using the approach of
Bayes linear calibrated forecasting; for details, see [7].

8 Example: emulating a climate simulator

(This uncertainty analysis is work with Danny Williamson, with NERC funding;
details in [14].)

One of the aims of the NERC funded RAPID programme is to assess the
risk of shutdown of the AMOC (Atlantic Meridionnal Overturning Circulation),
which transports heat from the tropics to Northern Europe, and how this risk
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depends on the future emissions scenario for CO2. The RAPID sub-project aims
to address aspects of this question by use of large ensembles of the UK Met
Office climate model HadCM3, run through climate prediction.net. At an early
stage of the project, as a preliminary demonstration of concept for the Met
Office, we were asked to develop an emulator for HadCM3, based on 24 runs of
the simulator, with a variety of parameter choices and future CO2 scenarios. We
had access to some runs of FAMOUS (a lower resolution model), which consisted
of 6 scenarios for future CO2 forcing, and between 40 and 80 runs of FAMOUS
under each scenario, with different parameter choices. There was very little time
to do the analysis.

The design that we chose was to match the inputs for 8 of the HadCM3 runs
with corresponding inputs to a FAMOUS run (to help us to compare the models)
and to construct a 16 run Latin hypercube over different parameter choices and
CO2 scenarios (to extend the model across CO2 space). In this experiment only
3 parameters were varied (an entrainment coefficient in the model atmosphere,
a vertical mixing parameter in the ocean, and the solar constant).

Our output of interest was a 170 year time series of AMOC values. The
series is noisy and and the location and direction of spikes in the series was
not important. Interest concerned aspects such as the value and location of the
smoothed minimum of the series and the amount that AMOC responds to CO2
forcing and recovers if CO2 forcing is reduced.

To emulate the whole time series, we first smoothed by fitting splines fs(x, t) =
Σjcj(x)Bj(t) where Bj(t) are basis functions over t and cj(x) are chosen to give
the ‘best’ smooth fit to the time series. We emulate fs by emulating each coef-
ficient cj(x) in fs(x, t) = Σjcj(x)Bj(t) (separately for each CO2 scenario). We
test our approach by building emulators leaving out each observed run in turn,
and checking whether the run falls within the stated uncertainty limits.

We now have an emulator for the smoothed version of FAMOUS, for each
of the 6 CO2 scenarios. We extend the FAMOUS emulator across all choices of
CO2 scenario using fast geometric arguments, exploiting the speed of working
in inner product spaces. For example, we have a different covariance matrix for
local variation at each of 6 CO2 scenarios. We extend this specification to all
possible CO2 scenarios by identifying each covariance matrix as an element of
an appropriate inner product space, and adjusting beliefs over covariance matrix
space by projection.

We develop relationships between the elements of the emulator for FAMOUS
and the corresponding emulator for HadCM3, using the paired runs, and ex-
pert judgements. This gives an informed prior for the HadCM3 emulator. We
use the remaining runs of HadCM3 for Bayes linear adjustment of the emulator
for HadCM3, and carry out further leave one out diagnostic checks and vari-
ance tuning. Our Met Office collaborators were happy with the resulting model
emulations as a basis for further analysis given access to the larger ensemble.
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9 Example: Oil Reservoir Simulators

(This uncertainty analysis is work with Jonathan Cumming, carried out with
Basic Technology funding as part of the MUCM project; details of the application
are in [4], and of the multi-level inference and design calculations are in [3].)

An oil reservoir is an underground region of porous rock which contains oil
and/or gas. The hydrocarbons are trapped above by a layer of impermeable rock
and below by a body of water, thus creating the reservoir. The oil and gas are
pumped out of the reservoir and fluids are pumped into the reservoir (to boost
production). The simulator models the flows and distributions of contents of the
reservoir over time.

Each cell in the reservoir has a collection of associated input parameters,
such as permeability and porosity. There are also other parameters, such as
fault transmissibility, aquifer features and saturation properties. Since there are
a huge number of cells in the reservoir, it is common to use scalar multipliers
over subregions, to modify values.

The model outputs comprise the behaviour of the various wells and injectors
in the reservoir Output, typically, is a time series on the following variables for
each well; bottom-hole and tubing head pressure, production/injection rates and
totals, for each of oil, water and gas, and fluid ratios for water cut and gas-oil
ratio.

The term history matching, within the oil industry, refers to the identification
of choices of input parameters for the simulator for which the simulator output
is in close correspondence to the observed reservoir history. Our Bayes linear
approach to reservoir history matching, based on the methodology described
in [1], has been successfully implemented in software widely in use in the oil
industry.

An example that we have provided to illustrate the methodology is given
in [4]. This model, of a reservoir located in the North Sea, is based on grid
size 38 × 87 × 25, with 43 production and 13 injection wells, and simulates
10 years of production, taking up to three hours per simulation. The inputs,
in the illustration, are field multipliers for porosity (φ), permeabilities (kx, kz),
critical saturation (crw), and aquifer properties (Ap, Ah). The outputs that we
use for history matching are oil production rates for a 3-year period, for the 10
production wells active in that period, described by four month averages over
the time series.

The computer model is expensive to evaluate, so we use a ‘coarse’ model,
F c, based on coarsening vertical gridding by factor of 10, to capture qualitative
features of F . F c is substantially faster, allowing 1000 runs of F c in a Latin
Hypercube over the input parameters.

Because of the high level of correlation between the different outputs, we
use the principal variables approach to screen the wells. This method identifies,
sequentially, the output, or group of outputs, which accounts for most of the
variation in the remaining outputs. Applied to the coarse model evaluations, we
retain outputs from 4 of the wells. These capture 87% of the total variation in
all outputs.
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We consider the coarse and the full model emulators to have the form

f ci (x) = gi(x[i])
Tβc

i + wc
i (x), fi(x) = gi(x[i])

Tβi + wc
i (x)βwi + wa

i (x)

where x[i] is a subset of ‘active inputs’, i.e. the inputs which account for most of
the variation in F . We fit emulators to each output individually, using stepwise
regression and generalized least squares for the coarse model runs, to get emula-
tor f ci (x) for F c

i . We found that the choice of three active inputs was adequate
for expressing global variation in each output, for example achieving R2 values
in excess of 0.96 for all outputs but one. The porosity and critical saturation
turned out to be active for all of the outputs, while each other output was active
in a subset of the outputs. The two emulators are linked via equations relating
corresponding pairs of coefficients as outlined in section (5). Careful choice of a
small design of 20 evaluations for the full simulator, based on informative con-
figuration over the active input collections, followed by Bayes linear adjustment,
leads to the resulting emulator for F .

We now specify the observation and discrepancy variances and carry out
the implausibility calculations for history matching. We find that working to
a three standard deviation implausibility threshold eliminates about 90%of the
input space, and corresponds to imposing a constraint on the upper value of φ.
Since reducing the space, many of the old model runs are no longer relevant, so
we supplement our emulation with further evaluations obeying the parameter
constraint, namely an extra 100 coarse runs and 20 full simulator runs, and
further adjust the emulator, using the old emulator structure as a starting point.

We now consider the final four time points in the three year period that we
have emulated, and use the observed historical values to forecast the correspond-
ing output values for an additional time point, one year beyond the end of this
period. We have historical observations for the values to be forecast, which act
as a quality check on the forecasts. We use the approach of section (7) effectively
combining each model forecast with a correction for the estimated model dis-
crepancy. In each case, the resulting forecast interval is within the measurement
error of the actual historical measurement.

10 Example: Galaxy formation simulation

(This uncertainty analysis is work with Ian Vernon, carried out with with Basic
Technology funding as part of the MUCM project; details in [13])

The Cosmologists at the Institute of Computational Cosmology at Durham
University are interested in modelling galaxy formation in the presence of Dark
Matter. First, a Dark Matter simulation is performed over a volume of (1.63
billion light years)3. This takes 3 months on a supercomputer. Then, the simu-
lator Galform takes the results of this simulation and models the evolution and
attributes of approximately 1 million galaxies. Galform requires the specification
of 17 unknown inputs in order to run. It takes approximately 1 day to complete
1 run (using a single processor).
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The Galform model produces many outputs, some of which can be compared
to observed data from the real Universe. Initially, we analyze luminosity functions
giving the number of galaxies per unit volume, for each luminosity. These are Bj
Luminosity, corresponding to density of young (blue) galaxies and K Luminosity,
corresponding to density of old (red) galaxies. We choose 11 outputs that are
representative of the Luminosity functions and emulate the functions fi(x).

We assess condition uncertainty, structural uncertainty, measurement uncer-
tainty, and so forth. For example, we must account for the uncertainty resulting
from the unknown configuration of dark matter in our universe. We can form
judgements as to the magnitude of this uncertainty by making repeat simula-
tions of Galform with the same input parameters and different choices of dark
matter configuration.

We carry out the iterative history matching procedure, through four waves.
For each wave, we evaluate the simulator many times, restricting parameter
choices to those which have not yet been ruled out by earlier waves, emulate the
simulator within the reduced space and carry out the implausibility calculations
to reduce space further. A summary of the procedure, the number of active
variables at each stage and the space removed at each stage is as follows.

No. Model Runs No. Active Vars Space Remaining

Wave 1 1000 5 14.9 %

Wave 2 1414 8 5.9 %

Wave 3 1620 8 1.6 %

Wave 4 2011 10 0.12 %

In wave five, we evaluate many good fits to data, and we stop. Some of these
choices give simultaneous matches to data sets that the Cosmologists have been
unable to match before.

11 Linking models to reality

Each of the above examples, in common with most of the field of computer ex-
periments, takes it as almost self-evident that the computer model is informative
for the physical system. However, in most cases, the reason that the evaluations
of the simulator are informative for the physical system is that the evaluations
are informative about the general relationships between system properties, x,
and system behaviour y. Therefore, our inference from model to reality should
proceed in two parts.

We emulate the relationship between system properties and system behaviour.
We call this relationship, F ∗, the “reified model” (from reify: to treat an abstract
concept as if it were real). We can then decompose the difference between our
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model and the physical system into two parts. The first is the difference between
our simulator and the reified form, and the second is the difference between the
reified form at the physically appropriate choice of x and the actual system be-
haviour y. We call this the “Reifying principle”, namely that the simulator F is
informative for y, because F is informative for F ∗ and F ∗(x∗) is informative for
y. Similarly, a collection of simulators F1, F2, ... is jointly informative for y, as
the simulators are jointly informative for F ∗.

We link F and F ∗ using emulators. Suppose that our emulator for F is

f(x) = Bg(x)⊕ u(x)

Our simplest emulator for F ∗ might be

f∗(x,w) = B∗g(x)⊕ u∗(x)⊕ u∗(x,w)

where we might model our judgements as B∗ = CB + Γ and correlate u(x) and
u∗(x), while treating u∗(x,w), with additional parameters, w, as uncorrelated
with the remaining terms in the emulator. Structured reification improves on
this with systematic modelling for all aspects of model deficiency whose effects
we can consider explicitly. For an illustrated treatment of reification, see [8].

All of the Bayes linear history matching and forecasting methodology that
we have described is unchanged by this extra layer of modelling. All that has
changed is our description of the joint covariance structure which underlies each
of the subsequent calculations.

12 Concluding comments

To assess our uncertainty about complex systems, it is enormously helpful to
have an overall (Bayesian) framework to unify all of the sources of uncertainty.
Within this framework, all of the scientific, technical, computational, statistical
and foundational issues can be addressed in principle. Such analysis poses serious
challenges, but they are no harder than all of the other modelling, computational
and observational challenges involved with studying complex systems.

In particular, Bayes and Bayes linear multivariate, multi-level, multi-model
emulation, careful structural discrepancy modelling and iterative history match-
ing gives a great first pass treatment for most large modelling problems.
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DISCUSSION

Speaker: Michael Goldstein

Kyle Hickmann : Could you speak a little bit more on in what sense the
emulator converges to the simulator as more points are observed?

Michael Goldstein : The emulator is exactly equal to the simulator at each ob-
servation point, and uncertainty about the simulator increases for input choices
far from any of the observed values. We reduce uncertainty in any region of
parameter space by making function evaluations in that region, and the more
evaluations that we make, the further will the uncertainty be reduced. How
large a sample we must make to achieve a good measure of convergence across
the whole input space depends on the dimension of the input and output spaces
and the degree of regularity of the function over the range of the input space.
For example, very small regions of input space, in which the function behaves
quite differently from behaviour everywhere else, can be extremely difficult to
identify and emulate appropriately.

Antonio Possolo : We have learned from Lindley that linear polling is one way
of merging the conclusions multiple Bayesian analyses will have produced. What
is the state of the art?

Michael Goldstein : The appropriate way to merge multiple Bayesian analyses
depends on your judgements about the level of, and the relationship between, the
information and expertise contained within each analysis. There is no automatic
way to do this. The reification formalism described in this article is one way of
structuring the joint analysis when dealing with Bayesian analyses based around
computer simulators.

Antonio Possolo : An analysis that starts from expectations, variances, and
covariances, is bound to produces results that are expectations, variances, and
covariances. What additional assumptions would you regard as defensible to be
able to quantify the conclusions probabilistically?

Michael Goldstein : Probabilities are themselves expectations, for the indi-
cator functions corresponding to the events. If the analysis is described at a
sufficient level of detail to identify some of these expectations, then we have a
direct probabilistic inference. Alternately, we can use qualitative probabilistic
judgements to make a low assumption bridge between the Bayes linear and the
full probabilistic analysis. For example, when carrying out a history matching
analysis as described in this article, it is useful to know that, for any continuous,
unimodal probability density function, 95% of the probability will be contained
within three standard deviations of the mean (the so-called 3 sigma rule).

Jeffrey Fong : Regarding Bayesian linear analysis, in your two equations, one
expectation and the second variance, do they allow a user to derive a host of
relationship (as in classical theory of error propagation) that are used to get
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expectation and variance of a sum, product, quotient, etc. . . of a complicated
algebraic form?

Michael Goldstein : Bayes linear inferences obey all of the rules derived from
the linearity of expectation. Therefore, it is necessary to ensure that the ap-
propriate polynomial or other functional forms of the quantities of interest are
introduced as elements of the adjusting vector and of the vector of terms to be
adjusted. The Bayes linear Statistics volume ([9]) contains examples and discus-
sions of this.
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