
THE PADERKICKER TEAM: AUTONOMY
IN REALTIME ENVIRONMENTS

Willi Richert, Bernd Kleinjohann, Markus Koch, Alexander Bruder,
Stefan Rose, and Philipp Adelt
Faculty of Computer Science, Electrical Engineering and Mathematics,
University of Paderborn, Germany

richert@c-lab.de

Abstract: The Paderkickers are a robot soccer team that makes heavy use of au-
tomotive technology like C167 micro-controllers or communication over
CAN bus. All sensor data is processed on these decentralized embedded
nodes to yield a high degree of reliability and hardware layer abstrac-
tion. In this paper, we describe how the complex system copes with
perception and action in real-time and integrates it in the higher strat-
egy layer to achieve autonomous behavior.

1. INTRODUCTION
The Paderkicker team [8] consists of five robots (Fig. 1) that already

participated successfully in the German Open competition in 2004 and
2005, and the Dutch Open 2006. Currently, last preparations for the
RoboCup 2006 World Championships are in progress.

Our platform asks for the whole range of research issues needed for a
successful deployment in the real world. This includes embedded real-
time architectures [2, 5, 14–17], real-time vision [2, 14–17], learning and
adaptation from limited sensor data, skill learning and methods to prop-
agate learned skills and behaviors in the robot team [13, 12, 9]. However,
our goal is not to carry out research for specific solutions in the robotic
soccer domain, but to use and test advanced techniques from different re-
search projects. The Paderkicker platform serves as a test bench for the
collaborative research center 614 (funded by the Deutsche Forschungs-
gesellschaft). Furthermore, the knowledge in vision, motion and object
tracking is currently used in the AR PDA (Bundesministerium für Bil-
dung und Forschung) project [11].



2 W. Richert, B. Kleinjohann, M. Koch, A. Bruder, S. Rose and P. Adelt

Figure 1. The Paderkicker team. Figure 2. The Paderkicker architec-
ture.

2. ROBOT OUTLINE
The robots (Fig. 1) have differential drive (2*75W) allowing for a

maximum speed of 2.5 m/s. Instead of omni-vision we use four standard
cameras for improved recognition of far away objects. As the colored
marker objects at the corner will be removed in the near future the robots
will have to distinguish far away line markers. We use a slide driven by an
elastic band to shoot the ball. For the proper positioning of the ball prior
to shooting the robot can use two side wise rolls and one above the ball,
all of them electrically driven in both directions if needed. The central
processing unit in our robot architecture (Fig. 2) is a PC compatible
board which boots real-time Linux. The main process on the PC is
Paderkicker’s Brain module written in Java, which is the central instance
to process the accumulated perception and choose the correct actions.
This is possible, because all time-consuming processing is sourced out
to the diverse distributed controllers. The system still has very low
processor load. The Java process is assisted by a Particle Filter process
(C++) which sits between the vision sensor and Brain, calculating the
global robot position, relative ball position, and obstacles. Thereby, we
have two ball positions the behavior system can operate with: a fast
inaccurate one for approaching the near ball for better reactivity and a
delayed, accurate and more stable one for moving towards the ball that
is more than 2,5m away. Furthermore, Brain connects to a separate
Jess [7] process, a rule engine similar to CLIPS but written in Java. The
Jess instance has the task to switch between strategies (Attack, Defend,



The Paderkicker Team: Autonomy in Realtime Environments 3

etc.) dependent on team variables like e.g. “our team possesses the ball”
or “enemy in goal area”.

2.1 HARDWARE
Paderkicker robots make use of automotive technology like C167 16bit

micro controllers and communication over CAN bus. Furthermore ded-
icated hardware is used for image processing. Self designed PCBs are
integrated for voltage and temperature control. All incidental sensor
data is processed on these decentralized embedded nodes for better reli-
ability and hardware layer abstraction. The extracted data is reported
to the central processing node, a Mini-ITX board with a VIA EPIA
1GHz CPU running real-time Linux.

Research is done mainly in the area of real-time image processing. An
optimized algorithm for low latency real-time color segmentation [16]
which even performs well on a PDA is implemented on a Trimedia TM
1100 video processing board running at only 100 MHz. Four rotatable
analog cameras are used to cover the whole 360◦ view instead of omni-
vision resulting in an overall higher resolution. Hence, we are capable
of seeing distant objects much better. Higher visual coverage of the
environment will become more important in the near future when the
field will likely be extended in size. All four cameras are connected to
the Trimedia Board. The data stream of one camera is evaluated at a
time and the extracted objects are delivered at a speed of up to 20 fps
over RS232 to the Mini-ITX board. Additionally, object recognition and
tracking [2] are a prerequisite for accurate self localization. Combining
our real-time color segmentation algorithm and the implemented edge
vectorizer [17] we can easily feed our real-time particle filter [10] with
the crucial data needed to provide our world model with the absolute
robot position.

The central node of our hardware layer is the Mini-ITX board running
a Timesys Linux kernel (2.6 series) on a linux system built from scratch.
The board is connected to the robot’s actuators via the CAN bus. With
three C167 boards we handle the drive control, odometry, ball control
(rolls), and camera positioning. Voltage and temperature sensors are
read out over USB. The base system is placed on a compact flash card,
mutable configuration data resides on a USB stick. Finally, we use a
WLAN USB module to communicate with a central server that routes
the messages to the proper robot peer. With this hardware architecture,
the system is able to provide the behavior and strategy level with all the
necessary information it needs.



4 W. Richert, B. Kleinjohann, M. Koch, A. Bruder, S. Rose and P. Adelt

2.2 SOFTWARE
Our software behavior system breaks down into four independent

modules (Fig. 3):

World model module We use particle filters for every robot and com-
munication between the team members to update their world state,
that includes the state of the robot and some features from the
team members.

Strategy module Depending on the world model the strategy module
decides the current strategy independently for every robot. Strate-
gies include e.g. Defend, Attack, but also standard situations like
Kick off or Penalty. This is done by the aforementioned rule en-
gine (cf. Section 3.1).

Tactics module Every strategy is realized by a finite state machine
that carries out the tactics. Its states are, e.g., Ball facing, or Stay
between goal and opponent.

Behavior module This module executes the actual actions. It is be-
havior based in terms of Arkin’s Motor Schemes [1]. Our behavior
system [4] allows for a distinction between cooperative and com-
petitive behaviors and behavior control through time excited eval-
uation functions. It consists of a set of low-level behaviors that
have to be combined in order to result in a vector that can be sent
to the actuators.

Figure 3. Information flow in the Paderkicker.

Every major tactic like attacking the opponent or defending the own
goal has been modelled as a separate automaton. The selection of the



The Paderkicker Team: Autonomy in Realtime Environments 5

proper automaton is the task of a rule engine implemented in Jess that
keeps track of robot and team state changes (Fig. 3). In this way, the
RoboCup soccer rules could be implemented very quickly and we could
concentrate on the behavior details.

2.3 THE MESSAGE FORMAT:
CONNECTING HARDWARE AND
SOFTWARE

With the decentralized approach the systems autonomy is delegated
to the dedicated hardware boards, every board has one task to accom-
plish and is responsible for it. This leads to a more complex information
exchange mechanism needed to provide all subsystems with needed in-
formation in time. In addition, there are different bus systems to pass
information over — CAN bus, RS 232, USB and TCP/IP for communi-
cation between robots. For this domain, a special message format has
been designed that can be used on all bus systems in the Paderkicker
architecture (Fig. 4). This message format turned out to be robust and

�����

������

����

�����	��

����


���

����


���������

����


���

����


���

����

���

�����

������

	
���
�������

����

����

��������

�����������

�������������

����������

������ �������

�������!�"��

#����$$	��

%����	�$�

&�������"����

�������

������'����

������(�

����$�		

�
�)
*+

�
,
�-
*

����

�����

Figure 4. The message format.

computationally cheap. Every message is preceded by three bytes 0xFF
as a message start delimiter. Thereby, every subsystem is able to figure
out the starting point of messages in continuous data streams with low
processing overhead. With the Message ID field it is possible to extend
the current message set by not yet foreseen message possibilities.

3. TEAM OUTLINE
The mission of the RoboCup project is to “develop a team of fully

autonomous humanoid robots that can win against the human world
champion team in soccer” by 2050 [3]. To decrease the gap of robots
ability today and the mentioned honor future goal we have to focus on
different substantial skills. A robot on one hand must be capable of act-
ing fully autonomously under a dynamic environment and on the other
hand needs to cooperate with other team members to have a chance to



6 W. Richert, B. Kleinjohann, M. Koch, A. Bruder, S. Rose and P. Adelt

win a soccer game. We will focus on these two important points on the
layer of strategy. The complexity of such a project will spread quickly to
different other problems like a union world model, exchange of percep-
tions between teammates, role negotiation, to play by the competition
rules and to handle uncertainty. The strategy level of both bases on
the rule-based system Jess [7] which is used as an expert system for
RoboCup and interacts closely with other components of the robot and
even over the whole team.

3.1 STRATEGY LAYER
For the strategy layer of the Paderkicker we use a rule-based system

for tactics on a higher level of the robotic architecture. The planning on
that layer is very intuitive by using expert system declarative program-
ming methodology. So the expert knowledge is well human readable
and acts in a manner of what’s to be solved and not procedural how
this should happen. We prefer to program like first mentioned and rely
on the ability of the expert system to reason even under incomplete
world information [6]. First we want to mention the interaction between
the rule-based system and the other components of the robotic software
architecture.

Architecture and Interfaces. The overall rule-based system archi-
tecture is shown in Fig. 5. Beginning at the left side of the figure the
expert system core architecture is shown. It consists of different mod-
ules. The working memory holds the facts and variables of the actual
world model (Here: It is unknown if the ball is in the perception range
of the robot). The rule-base holds the domain specific expert knowledge
coded into rules. (Here: If the ball is in range then change the role of
the robot to offender.) The pattern matcher matches the rule premises
against the facts in working memory and creates an agenda for execution
of the activated rules. Now the interface to the rest of the robot comes
into account on the right side of the figure. The rule-based system is
fed for example by the perception module of the behavior system. The
perceptions are preprocessed and appended into the working memory
as facts independently of the inference machine. This is solved by an
observer in Java. For example if the perception system recognizes a
ball in range then the observer reflects this as a fact into the working
memory. The way back to the behavior system and later on to the ac-
tuators is done by extending Jess with so called User-Functions which
implement a Transmitter to the behavior system. In our example if the
ball is in range the rule will fire and change the role of the robot via the
change-transmitter to offender. This closes the circle of interaction.



The Paderkicker Team: Autonomy in Realtime Environments 7

Figure 5. The rule engine allows for autonomy at the strategy level.

In future enhancements we think about using the capabilities of shad-
owed facts in Jess, which are automatically updated by core rule system
mechanism. The way from the expert system to the lower layers is
done by extending the Jess functionality by special user-functions which
transmits the automation activation and other commands.

Teammate Knowledge. The teammate knowledge base holds the
facts and rules which are relevant for one autonomous robot on its own.
The rule-base reasons on states of the robot world that are mapped
to facts of the expert system. In addition, it reasons on requirements
which can be created inside the expert system itself or outside, like
other team members or a team server. The interaction with a team
server is particularly important for mixed teams like the mixed team of
Paderkicker and Tech United participating in the world championship in
Bremen this year. The teammate expert system activates and monitors
the different tactics (finite state machines) which are required to handle
typical situations in RoboCup.

Team Knowledge. There are different ways to form a team out of
individual soccer robots. One way is to create one dedicated server pro-
cess that distributes roles and commands to the teammates. Another
way is to design the expert system in a distributed way, so that every
robot has the same rule base and there are special rules for team de-
cisions that every teammate makes an independent decision in a given
situation. We started with the second solution, implementing our team



8 W. Richert, B. Kleinjohann, M. Koch, A. Bruder, S. Rose and P. Adelt

play as a distributed expert system. That way, we have to handle a lot
of special rules for rule assignment and additionally have to hold every
piece of information redundant in every database. For the RoboCup
world championship in Bremen we need to build a mixed team where
both teams — the Paderkickers and TechUnited Eindhoven — have
completely different hard- and software. This led to the introduction
of a team server that holds a separate Expert System for cooperation
of robots from different universities. The team server acts on a coach
level like in real soccer games. The different robots register at the team
server and transmit facts which are important for a coach. Examples of
these facts are the robots’ positions and the position of the ball on the
playground.

3.2 CONNECTING TEAMS
In order to be able to connect with other soccer robot teams to form

one team, a team server serves as a central point, featuring a simple and
easy-to-adopt team message format. This was necessary, since other
teams should not have to bother with the message format peculiarities
that stem from our robots’ unified communication including CAN-bus,
a serial line, etc. The new team message format thus only supports
messages that are dedicated to inter-team communication, world model
exchange und routing referee commands between the different teams. It
is now being evaluated with TechUnited, the Robocup midsize league
team of Eindhoven and Delft.

4. OUTLOOK
At the moment we are redesigning our platform (Fig. 6) having now

omni-wheels, allowing for better vision capabilities and supporting inter-
team connection for building mixed teams.

Concerning the demanding needs for line detection and higher frame
rates the Trimedia processor and the RS232 connection are bottlenecks.
Therefore current research takes place in the field of image processing on
FPGA where color segmentation and line detection is to be integrated to
deliver extracted 2D features easily at speeds of more than 50 fps. A self
designed PCB with a FPGA and USB as well as the image processing
circuit meet these needs and will be integrated in the near future.

Another purpose of our Paderkicker soccer team is the investiga-
tion of appropriate means to propagate learned knowledge in teams of
robots [13, 12, 9]. Currently, we develop a framework that enables robots
in a team to find their most natural skills. As every robot has a different
perception stream the sensorimotorical couplings will be learned much



The Paderkicker Team: Autonomy in Realtime Environments 9

Figure 6. The new platform with a more robust chassis, better vision capabili-
ties, omnidirectional drive, a stronger shooting device (right side), and a software
architecture that supports inter-team cooperation.

faster by decentralizing the “babbling phase”, in which they find out
basic behaviors by trial and error. These can then be propagated to
other team members.

5. CONCLUSION
With the platform described in this paper we achieve the two conflict-

ing goals in the soccer domain needed to reach true autonomy: quick
response rates for high reactivity and more complex but less frequent
deliberation processes. Components that are subject to quick changes
in the environment are arranged in a decentralized manner and are lo-
cated on specialized hardware. Those processes that do not need that
fast update cycles like team communication, planning or processing at
the higher levels are located at the Mini-ITX, allowing for faster devel-
opment cycles but slower execution time. This architecture has evolved
naturally out of the needs to combine a fault tolerant embedded system
with fast development cycles for behavior exploration.

REFERENCES

[1] R. C. Arkin. Motor schema based navigation for a mobile robot: An approach to
programming by behavior. In Proceedings of the IEEE Conference on Robotics
and Automation, 1987.

[2] D. Beier, R. Billert, B. Brüderlin, Bernd Kleinjohann, and Dirk Stichling.
Marker-less vision based tracking for mobile augmented reality. In Proceed-



10 W. Richert, B. Kleinjohann, M. Koch, A. Bruder, S. Rose and P. Adelt

ings of the Second International Symposium on Mixed and Augmented Reality
(ISMAR 2003), 2003.

[3] H.-D. Burkhard, D. Duhaut, M. Fujita, P. Lima, R. Murphy, and R. Rojas. The
road to robocup 2050. IEEE Robotics and Automation Magazine, 9(2):31–38,
2002.

[4] Natascha Esau, Bernd Kleinjohann, Lisa Kleinjohann, and Dirk Stichling. MEXI
- machine with emotionally extended intelligence: A software architecture for
behavior based handling of emotions and drives. In Proceedings of the 3rd In-
ternational Conference on Hybrid and Intelligent Systems (HIS’03), 2003.

[5] Natascha Esau, Bernd Kleinjohann, Lisa Kleinjohann, and Dirk Stichling. Visi-
track - video based incremental tracking in real-time. In 6th IEEE International
Symposium on Object-oriented Real-time Computing (ISORC ’03), 2003.

[6] Ernest Friedman-Hill. Jess in Action : Java Rule-Based Systems (In Action
series). Manning Publications, December 2002. ISBN 1930110898.

[7] Ernest Friedman-Hill. Web site for the software Jess, 2005.
http://herzberg.ca.sandia.gov/jess/.

[8] Bernd Kleinjohann. The Paderkicker Team, 2006. http://paderkicker.upb.de.

[9] Markus Koch, Willi Richert, and Alexander Saskevic. A self-optimization ap-
proach for hybrid planning and socially inspired agents. In Second NASA
GSFC/IEEE Workshop on Radical Agent Concepts, 2005.

[10] Cody C. T. Kwok, Dieter Fox, and Marina Meila. Real-time particle filters. In
Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors, NIPS, pages
1057–1064. MIT Press, 2002. ISBN 0-262-02550-7.

[11] Christian Reimann. Kick-Real - a mobile mixed reality game. In ACE2005,
ACM SIGCHI International Conference on Advances in Computer Entertain-
ment Technology, 2005.

[12] Willi Richert, Bernd Kleinjohann, and Lisa Kleinjohann. Evolving agent soci-
eties through imitation controlled by artificial emotions. In M. Huang, X.-P.
Zhang, and M. Huang, editors, ICIC 2005, number 3644 in LNCS, pages 1004–
1013. Springer-Verlag Berlin, 2005.

[13] Willi Richert, Bernd Kleinjohann, and Lisa Kleinjohann. Learning action se-
quences through imitation in behavior based architectures. In Systems Aspects
in Organic and Pervasive Computing - ARCS 2005, number 3432 in LNCS,
pages 93–107. Springer-Verlag Berlin, 14 - 17 March 2005.

[14] Dirk Stichling. VisiTrack - Inkrementelles Kameratracking für mobile Echtzeit-
systeme. PhD thesis, Universität Paderborn, Fakultät für Elektrotechnik, Infor-
matik und Mathematik, 2004.

[15] Dirk Stichling and Bernd Kleinjohann. CV-SDF - a model for real-time com-
puter vision applications. In IEEE Workshop on Application of Computer Vi-
sion. IEEE, December 2002.

[16] Dirk Stichling and Bernd Kleinjohann. Low latency color segmentation on em-
bedded real-time systems. In Bernd Kleinjohann, K.H. Kim, Lisa Kleinjohann,
and Achim Rettberg, editors, Design and Analysis of Distributed Embedded Sys-
tems. Kluwer Academic Publishers, 2002.

[17] Dirk Stichling and Bernd Kleinjohann. Edge vectorization for embedded real-
time systems using the CV-SDF model. In Proceedings of the 16th International
Conference on Vision Interfaces (VI 2003), June 2003.


