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Abstract The optimization of power consumption at a very high design level is a critical
step towards a power-efficient digital system design. The increasing usage of
battery-powered and often wireless portable systems is driving the demand for
IC and SoC devices consuming the smallest possible amount of energy. The aim
of the method presented in this paper is to integrate low power methods within
the scheduling process of the High-Level Synthesis by defining partitions. Start-
ing from an Controlled-Data-Flow-Graph (CDFG) the proposed method uses
standard scheduling techniques and path analysis on the graph to identify regions
that can be combined to partitions. Each partition has a controlled activation or
deactivation mechanism. That means, the partition can be switched off when it
is not used. As an example design, a part of the MPEG-2 algorithm is used.

1. INTRODUCTION
The optimization of power consumption at a very high design level is a crit-

ical step towards a power-efficient digital system design. Furthermore creating
optimal low power designs involves making tradeoffs such as timing-versus-
power and area-versus-power at different stages of the design flow. Successful
power-sensitive designs require engineers, having the ability to accurately and
efficiently perform tradeoffs. In order to achieve this, engineers require access
to appropriated low power analysis and optimization engines, which need to be
integrated with and applied throughout the entire system design flow (see [7]).

We can distinguish between dynamic and static power dissipation. Dynamic
power dissipation occurs in logic gates that are in the process of switching
from one state to another. During the switching activity of the gates, any inter-
nal capacitance associated with the gates transistors has to be charged, thereby
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consuming energy. Static power consumption, however, is associated with the
logic gates when they are inactive. In this case, these gates should theoreti-
cally not be consuming any power, but in reality, there is always some amount
of leakage current passing through the transistors. That means those gates do
consume a certain amount of power. In order to integrate optimization of power
consumption at high design level it is necessary to modify the High-Level Syn-
thesis (HLS) process of the system design flow.

2. RELATED WORK
For a low power behavioral synthesis system, automatic techniques must be

developed to minimize the switching activity on globally shared busses and
register files, to select low power modules while satisfying the timing con-
straints, and to schedule operations to minimize the switching activity from
one cycle to another cycle. In the past, several algorithms for HLS have been
developed. The major objective for all these algorithms was the minimization
of the used resources to reduce chip area and the optimization of the system
delay time [4]. An interesting approach for the integration of low power tech-
niques into HLS is presented [10]. It focuses on the minimization of resources
per cycle whereby energy consumption is reduced. This could be achieved
by mapping the same operation types to a real resource. Most of the HLS
perform scheduling of the Control and Data Flow Graph (CDFG) before the
allocation of the registers and modules, like functional units, and synthesis of
the interconnects (see [6] and [13]). Additionally, timing information for the
allocation and assignment of various operations are provided. In other sys-
tems the resource allocation and binding, before scheduling, is performed to
provide more precisely the timing information during the scheduling (see [5]).
The work presented in [5] assumes that the scheduling of the CDFG has been
done and performs the register allocation before the allocation of modules and
interconnection. The work presented in [2] and [8] demonstrates that deci-
sions at the behavioral level have a significant impact on power consumption
of the final system implementation. The authors of [3] present a new technique
for power optimization of control-dominated designs. This approach is an im-
provement of the existing techniques described in [9]. For control-dominated
designs that typically consist of lots of sequential processes, scheduling is the
most critical step during HLS. In our approach, we built intelligent partitions
during scheduling. The developed approach is applicable to different target
architectures. Especially, self-controlled architectures like the one presented
in [12] are addressed. A self-controlled architecture has no global control unit;
only distributed small control parts are present in the design. The data is as-
sembled with so-called control information to direct the data content to the
operation nodes by intelligent routers. Furthermore, our approach proposes
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mapping possibilities, to reduce resources with the effect of reducing leakage
current.

3. POWER SCHEDULER
The aim of this work is to integrate low power methods within the schedul-

ing process of the High-Level Synthesis (HLS). We call the developed system
Power Scheduler (see [11]). From the input (CDFG), a scheduled CDFG is
generated that supports low power saving. The idea is to have a partitioned
graph, whereby each partition can be activated or deactivated by a guard. A
guard could be implemented by using gated clocks, guarded evaluation or
power down in our approach.
Following, a short overview of the developed method is given in details by
specifying the different scheduling phases, but before the cost function for the
Power Scheduler is described.

3.1 COST FUNCTION
As already known from the dynamic power dissipation is the product from

the overall capacity is the square of the supply voltages and the frequency
(see [7]).

The power of a node, for example a gate, is given by the following Equation:
Pnode = 1

2 ∗ CL ∗ V 2
dd ∗ fclk, whereas CL is the capacity of the node and fclk

the clock frequency. When we multiply with the switching activity αnode of
the node we get the dynamic power dissipation of a single node: Pdyn,node =
1
2 ∗ CL ∗ V 2

dd ∗ αnode ∗ fclk.
The switching activity is hard to predict during the HLS process, therefore,

we take only the worst case into account αnode = 1. Now we can calculate
the total power dissipation of a design by summing up the dynamic power
dissipation of all nodes. This is given in the following Equation: Pdyn,tot =∑n

i=1 Pdyn,i, whereas n is the total number of nodes in the design. Later on,
we will see that for our approach Pdyn,node is used to calculate the dynamic
power dissipation for a partition. A partition consists of a number of nodes.
Therefore, the dynamic power dissipation of a partition p is given by: Pdyn,p =∑m

j=1 Pdy,j , whereas m are the number of nodes inside the partition. It is
necessary to add the costs for the components (partition control unit) needed
to activate or deactivate the partition. This is illustrated in Figure 1. The left
side of Figure 1 shows an un-partitioned design. In opposite to that, the right
side shows how a control unit, a so-called guard, which activates or deactivates
the execution of this design part, controls Partition 1.

The partition control unit is always active in the part of the circuit where the
partition is embedded in opposite to the controlled partition. The power cost
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Figure 1. Partition with control unit.
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Figure 2. Energy reduction for example
from Figure 1.

for a partition control unit (guard) of partition p is called Pgc,p. The power
costs for Pgc,p can be calculated by Pdyn,tot.

Now we can replace the number of nodes n in Equation for Pdyn,tot by the
number of partitions p of the entire design to calculate the total dynamic power
dissipation of the design and adding the additional partitioning costs.

Pdesign =
p∑

j=1

Pdyn,p + Pgc,p. (1)

Let us look at the example in Figure 1. What does equation 1 mean for the
example? Let the dynamic power consumption of the entire design without
partitioning Pexam = 20µW/MHz. Let Pdyn,Part1 = 8µW/MHz. Thus
the un-partitioned part has a dynamic power consumption of Pdyn,un−part =
12µW/MHz. In Equation 1 the un-partitioned part of the design is also con-
sidered as a partition (Pdyn,un−part), but without low power control. The power
cost for the partition control is Pgc,Part1 = 1µW/MHz. Here we assume the
partition control consists of a gated clock.

That means, Pexam′ =
∑p

j=1 Pdyn,p+Pgc,p = Pdyn,un−part+(Pdyn,Part1+
Pgc,p) = 12 + (8 + 1)µW/MHz = 12 + 9µW/MHz = 21µW/MHz, but
Pexam′ = 21µW/MHz is greater than Pexam = 20µW/MHz. Within this
calculation we have not considered the run-time. Therefore it is necessary to
include the run-time of the system into the Equation.

By taking the run-time of the system into account, we will calculate the
delay d of entire design and of each partition. In literature, it is well known to
evaluate different implementations of a design w.r.t low power, by calculating
the power-delay product. Equation 2 shows the power-delay product for a
partition k.

PDk = (Pdyn,k ∗ dk) + (Pgc,k ∗ dl), (2)
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whereas dk is the delay of the partition and dl is the delay of the part of
the circuit where partition k is embedded. Let us go back to the example.
When we assume that the entire system has a run-time of 100 cycles than the
delay for Pdyn,un−part is dun−part = 100 cycles. That means, the total energy
for the design without low power reduction is 20µW/MHz ∗ 100 cylces =
2000µWs = 2000µJ . The delay for the low power control of the partition
is also 100 cycles. Let us further assume that the partition is only 50 cycles
active at run-time, the delay of dPart1 = 50 cycles By including all this values
into Equation 2 we get: PDPart1 = Pdyn,Part1 ∗ dPart1 + Pgc,p ∗ dgc =
8µW/MHz ∗50cycles+1µW/MHz ∗100cycles = 400µWs+100µWs =
500µWs = 500µJ and for the un-partitioned part of the system PDun−part =
Pdyn,Part1 ∗100cycles = 12µW/MHz ∗100cylces = 1200µWs = 1200µJ .

The power-delay product of the entire design can now be calculated by sum-
ming up the power-delay product of all partitions (see Equation 3).

TPD =
l∑

x=1

PDx, (3)

whereas l is the number of design partitions. For our example we get:
TPD = PDPart1+PDun−part = 500+1200µWs = 1700µWs = 1700µJ .

Remembering that, for the design without our low power reduction method
we need 2000µJ , we got an energy reduction of 300µJ (15 %). Obviously,
the energy reduction depends on the run-time of the system (see Figure 2). If
dPartition1 is less than 88s we reduce the energy, for this case.

Generally a HLS system tries to minimize the delay D and area A of a
design. With the TotalPowerDelay function we have another constraint power
P minimized by a HLS system. Therefore, we use Equation 3 as a cost function
for our approach.

3.2 SCHEDULING FLOW
The CDFG consists of two different graphs, a so called Control-Flow-Graph

(CFG) and a Data-Flow-Graph (DFG). Generally, the design of digital systems
bases on a high-level specification, which is transformed into algorithmic de-
scriptions, like C or behavioral VHDL source code. The HLS transforms the
behavioral descriptions into structural ones. During the HLS the algorithmic
description (CDFG) is transformed into internal formats. The CFG represents
the controller for the DFG which is itself the data-path of the given algorithm.
The Power Scheduler starts with a CDFG, which describes the design, with
each node corresponding to operations and control steps and each directed edge
representing data dependency and control order.
The first step of the Power Scheduler is to read the CDFG that consists of a
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CFG and DFG, and store the graphs into the internal data format. The second
step of the Power Scheduler is to use As-Soon-As-Possible (ASAP) and As-
Late-As-Possible (ALAP) scheduling on the DFG. ASAP scheduling means
that all operations are scheduled as soon as they can processed in the sense
of time. Vice versa ALAP means that all operations are scheduled as late as
possible. If both scheduling methods are processed it is possible to calculate
the mobility of each operation within the DFG. Mobility means the degree of
freedom the operation has within the scheduling.
The next important step, the third one of the Power Scheduler, is to calculate
the pathes within the DFG. This step consists of three different phases. The
first phase examines all disjoint paths of the DFG. Eventually some of these
paths are not active during the entire run-time of the system. In the second
phase fork and join nodes of the DFG will be examined. The different paths
between the fork and join nodes are the basis for the partitioning construc-
tion, because they are alternatively active during the run-time. In the third
phase control nodes of the CFG are examined. That means, if it is applicable
to schedule them as soon as possible, different paths can be identified which
are alternatively active during run-time. The examined paths are the basis of
the partitioning and they could be, again combined to partitions. All paths are
nodes in a so called compatibility graph.
The fourth step of the Power Scheduler is to build the partitions by combining
the paths that are calculated in the second step To do this it is necessary to
examine if there are so-called conflicts between the paths. Two paths are in
conflict to each other if they are, for example, both depending from the same
fork, join or control node. That means, paths with a conflict have no edge be-
tween each other in the compatibility graph. Then a clique search algorithm [1]
is used to find cliques in the compatibility graph. Finally, a clique builds a par-
tition than can be activated or deactivated during the run-time to save energy.
From the perspective of the reader of this paper, two questions are opened.
Why is it important to build partitions to save energy instead of controlling
each single node? Why not use each calculated path as a partition? The an-
swer to both questions is the same. The insertion of activation or deactivation
mechanisms into a circuit has also power costs in the data-path as well as in the
controller. To reduce these additional costs it is necessary to combine the paths
to partitions. Nevertheless, it could be possible that after the clique approach a
partition contains only one path.

3.3 PATHS ANALYSIS
As described before the path analysis consist of three different phases. In

the first one we examine disjoint pathes, followed by path analysis between
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fork and join nodes. In the third phase the scheduling of control nodes are
important. A path is defined as follows:

Definition 3.1 (Path) A path pvs,ve , with i ∈ IN, is a connection from a
source vs to a destination node ve to transport a data-word within the DFG
G = (Vd, Ed). Whereas vs, ve ∈ Vd. All nodes vi ∈ Vd between vs and ve and
all nodes that are necessary to provide the correct operation of the path are
objects: pvs,ve,i = {vj , · · · , vn} with j, n ∈ IN and index i ∈ IN.

The index is necessary if different alternatives paths between the correspond-
ing nodes exist. Furthermore, we need the time of each path pvs,ve , which is
defined as follows:

Definition 3.2 (Path-Time) Let time(pvs,ve,i) the time necessary to send
one data-word from the start node vs to the end node ve of pvs,ve,i.

The path identification can be realized by Depth-First-Search (DFS), starting
from source to the destination node and to the primary inputs or outputs that
are necessary to realize the path.
To find all disjoint paths we modify the DFG slightly by including a virtual
source and destination node. The source node is connected by edges with the
primary inputs and constants of the DFG, because these are the only elements
from where data goes into the circuit. In similarity, all primary outputs are
connected by edges to the destination node, because output data goes only via
the primary outputs to the environment where the circuit is embedded in.
For pathes between fork and join nodes, we start with the analysis from the
fork towards the join node and add all visited nodes to the path. If we found
nodes on the path with additional inputs or outputs we follow them to their
primary inputs or outputs and add all visited nodes to the path. If we exam-
ine an already visited node, we stop with the determination for the path. For
the example given in Figure 3 the following pathes for pfork,join,i (with i =



8 Achim Rettberg and Franz Rammig

1 · · · 3) can be identified: pfork,join,1 = {∗cm2,+,+}, pfork,join,2 = {∗cm0}
and pfork,join,3 = {∗cm1,+, ∗cs}. By assuming that operation ∗ needs two
and operation + one timestep the paths times are: time(pfork,join,1) = 4,
time(pfork,join,2) = 2 and time(pfork,join,3) = 5.

After the analysis of the fork and join nodes control nodes, are examined.
They are scheduled as soon as possible to allow the identification of alterna-
tive paths (see also [3] and [9]). Once more, those paths are the basis of the
partitioning and they are combined to partitions. Figure 4 gives an example for
the path analysis for control nodes. The node contr controls the join node (in
this case join corresponds to a multiplexer) and selects which of the inputs are
directed to the output. If we can schedule and execute contr before all other
nodes an additional timestep is needed, but we are able to activate only the
used input path of the multiplexer. Therefore, we get three paths for our analy-
sis: p+,join,1 = {+,+}, p∗cm0,join,1 = {∗cm0} and p∗cm1,join,1 = {∗cm1, ∗cs}.
The path time for these paths are: time(p+,join,1) = 2, time(p∗cm0,join,1) = 2
and time(p∗cm0,join,1) = 4.

Obviously, depending on the characteristics and timing requirements of the
design it may be not possible to schedule a control node by extending the
run-time. Furthermore, all independent graphs in the CDFG forms a path for
the partitioning. Before, we discuss the partitioning of the Power Scheduler a
design example is introduced in the next section.

3.4 PARTITIONING
The example that is used to illustrate the Power Scheduler steps is part of

the MPEG-2 algorithm. Figure 5 shows the DFG of the vertical and horizontal
conversion used for the motion estimation of MPEG-2. Besides this, the DFG
depicted in Figure 5calculates the conversion of the image format CIF 4:2:2
to CIF 4:2:0. This conversion halved the chrominance values of the MPEG-2
picture.

The path analysis for the example examines nine paths (named A to I) dis-
played in Figure 5. These paths are used for the partitioning of the design.
Hence, that independent graphs in the CDFG forms also a partition. To build
the partitions by combining the paths that are calculated by the path analysis,
we construct a compatibility graph, which is defined as follows:

Definition 3.3 (Compatibility Graph (CG)) Let G = (Vk;Ek) be
a undirected graph, with the set of nodes Vk = v1, v2, · · · , vn equal to the
number of paths of the CDFG. An edge (as, at) with as, at ∈ Vk exists in Ek

if there is no conflict between the nodes.

Each path of the path analysis is a node in the compatibility graph. An edge
between two nodes exists if they have no conflict and not the same start and
end node. Two paths are in conflict to each other if they are depending from the
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A

B

C

D
E

F
G

H

I

Figure 6. Compatibility graph.

798

0

691

35

677

28

600
620
640
660
680
700
720
740
760
780
800

P
ow

er
-D

el
ay

Un-partitioned Each-Path-
Partition

Partitioned

Additional Costs

Power-Delay

Figure 7. Results for design example.

same fork, join or control node. Therefore, those paths have no edge between
each other in the compatibility graph. Furthermore, the path time is recognized.
Then a clique search algorithm [1] is used to find cliques in the compatibility
graph. The clique algorithm found three cliques for our design example (see
Figure 6). Therefore, partitions P1 = {A,F, G}, P2 = {C,D,H} and P3 =
{E, I} can be activated or deactivated during run-time to save energy. Finally,
node B builds an own partition.

4. RESULTS
First results of our proposed method are promising. For the used exam-

ple, we achieved an energy saving of 15 % in comparison to a not partitioned
design (see Figure 7). Also in opposite to a solution where each path build
a partition, Figure 7 show, that we achieve a better result. For measurement
we used the cost function given in Section 3.1. Furthermore, we implemented
the example from the partitioned CDFG in synthesizable VHDL and used the
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Power Compiler from Synopsis to prove our measurements. For other parts of
the MPEG-2 approach, we achieve similar results.

5. CONCLUSION
In this paper, we presented an approach for low power driven synthesis.

Thus, we use standard scheduling algorithms and implement a special parti-
tioning algorithm based on clique search. The implemented Power Scheduler
contains all developed methods and allows the integration of power saving at a
high abstraction level. The presented example, part of the MPEG-2 algorithm,
demonstrates the effectiveness of the method.
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