
A HIERARCHICAL APPROACH FOR POWER
MANAGEMENT ON MOBILE EMBEDDED
SYSTEMS∗

Arliones Stevert Hoeller Junior, Lucas Francisco Wanner
and Antônio Augusto Fröhlich
Laboratory for Software and Hardware Integration
Federal University of Santa Catarina
PO Box 476 - 88049-900 - Florianópolis, SC, Brazil
{arliones,lucas,guto}@lisha.ufsc.br

Abstract
Mobile Embedded Systems usually are simple, battery-powered systems with

resource limitations. In some situations, their batteries lifetime becomes a pri-
mordial factor for reliability. Because of this, it is very important to handle
power consumption of such devices in a non-restrictive and low-overhead way.
This power management cannot restrict the wide variety of different low-power
modes such devices often feature, thus allowing a wider system configurabili-
ty. However, once in such devices processing and memory are often scarce, the
power management strategy cannot compromise large amounts of system re-
sources. In this paper we propose a simplified interface for power management
of software and hardware components. The approach is based on the hierar-
chical organization of such components in a component-based operating system
and allows power management of system components without the need for costly
techniques or strategies. A case study including real implementations of system
and application is presented to evaluate the technique and shows energy saves of
almost 40% by just allowing applications to express when certain components
are not being used.

Keywords: Power management, energy consumption management, embedded systems, mo-
bile computing, low-power computing, embedded operating systems.

1. Introduction
In a mobile, battery-powered embedded system, battery lifetime is a pri-

mordial factor for reliability, thus making power management a very important

∗This work was partially supported by FINEP (Financiadora de Estudos e Projetos) grant no. 01.04.0903.00.

issue for those systems. Embedded systems hardware usually provides some
level of support for low-power operating modes. However, current software
methodologies, techniques and standards for power management often focus
on general purpose systems, where processing and memory overheads are
mostly insignificant. Although these techniques have shown good results [1]
[2][3], they impose extra processing costs or require advanced hardware re-
sources, thus making them unusable in restricted embedded systems where
processing and memory are very scarce.

Power management standards such as APM and ACPI were created focusing
personal computers. These standards require either BIOS support or enough
memory and processing capabilities for running a power management virtual
machine. These requirements restrict their use to powerful embedded sys-
tems, which usually feature fast processors and large amounts of memory and
make use of interactive operating systems such as LINUX and WINDOWS. The
Advanced Power Management (APM) design assumed that the BIOS might
make decisions regarding power consumption solely on monitoring the hard-
ware. The lack of control of the operating system over the power management
features of the BIOS, e. g., when the system will change power states, and
the missing information on the BIOS level about the characteristics and re-
quirements of the applications have been identified as the main drawbacks of
APM [4].

The most important and established power management interface for gen-
eral purpose computing systems is Advanced Configuration and Power Inter-
face (ACPI), released in 1996 as a replacement of the previous industry stan-
dard for power management, Advanced Power Management (APM). ACPI
identifies the operating system as the entity which has comprehensive knowl-
edge about the hardware components and their usage and about the characteris-
tics and behavior of the applications which access these hardware components.
In contrast to APM, the operating system has full control over the operating
modes and power management features of the hardware. ACPI is designed to
not rely on the firmware and the exact implementation of the routines to ac-
cess the hardware. The key to achieve this goal is the use of the ACPI source
language (ASL), which is compiled to the machine language AML, similar to
JAVA bytecode. Execution of the AML code is done by an interpreter in the op-
erating system, inside a sandbox. This approach has several advantages: The
interpretation of AML code prevents erroneous or malicious code to harm the
system. AML code abstracts from the operating system as well as the platform
or architecture it is executed on, so the burden of supporting drivers for sev-
eral different operating systems or architectures is released from the hardware
manufacturers [5]. However, ACPI abstracts the operating modes of the hard-
ware in a way which may be too restrictive for embedded systems. The four
device power modes defined by ACPI (D0 – D3) may be too coarse grained for

embedded applications, once most components used in such systems usually
feature several low-power operating modes. Furthermore, the use of an in-
terpreted language to access hardware components, though having substantial
advantages, poses requirements on the system which by far exceed the limited
resources of most embedded devices.

In addition to these standards, several techniques were developed to allow
an accurate control of power consumption for individual subsystems such as
CPU, memory and I/O devices. These techniques use several strategies to de-
fine the best trade-off between performance and power consumption in each
situation. For example, Dynamic Voltage and Frequency Scaling (DVFS) [6]
is a strategy to slow down the CPU frequency or reduce its voltage supply and,
consequently, save energy. Other strategies use event counter registers avali-
able in some architectures to identify which parts of the hardware are in use
and how these parts must behave to satisfy the system needs in terms of power
consumption [1]. Although good results have been achieved, heuristics used to
dynamicly guide the application of such techniques also impose extra process-
ing costs or require extra hardware resources, thus becoming mostly unusable
in deeply embedded systems.

In order to enable power management in embedded systems without incur-
ring excessive overhead, we propose a simple and uniform interface for power
management of software and hardware components. The mechanism behind
this interface is based on the hierarchical organization of software and hard-
ware components, and allows consistent power state migration of individual
components, subsystems or the whole system. A case study is presented to
demonstrate the use of the technique on a real implementation of this strategy
in our component-based embedded operating system, EPOS.

This paper is organized as follows. Section 2 introduces the system power
management interface for software and hardware components. Section 3 pre-
sents an application to exemplify the use of the power management interface.
Section 4 gives an overview of related work. Section 5 finalizes.

2. Power Management Interface for Software and
Hardware Components

Power management policies in operating systems such as LINUX and WIN-
DOWS dynamically analyze the behavior of applications and the system in
order to determine when a hardware component should change its operating
mode through an ACPI-compliant interface. However, most embedded sys-
tems cannot afford the overhead of such dynamic power management strate-
gies. Furthermore, considering that a deeply embedded system is usually com-
prised by a single application, the best place to determine a power management
strategy is in the application itself.

Embedded Parallel Operating System (EPOS) is a component-based, appli-
cation-oriented operating system. In EPOS, high-level system abstractions,
such as File, Thread, Scheduler and Communicator, are exported to
applications through a component interface, and interact with the underlying
hardware through hardware mediators. Through the system component hier-
archy, each system abstraction and hardware mediator knows the state of its
resources.

Through the definition of an uniform power management interface for sys-
tem components, we allow the application programmer to change the power
consumption status of each component individually. The interface is com-
prised by two methods: one to verify the component power state (power())
and other to change it (power(user desired status)). The mecha-
nism behind this interface makes use of the hierarchical organization of soft-
ware and hardware components in EPOS to allow consistent state migration
among system operating modes.

Low-power hardware typically used in embedded systems often present a
large set of operating modes. Enabling the use of all available operating modes
is likely to enhance the system configurability, but might also increase the ap-
plication complexity when managing the system power consumption. In order
to solve this issue, we established a set of high-level definitions for the power
consumption states, which will ease the application programmer from having
to understand every hardware component in the system. As in ACPI [5], four
universal modes were defined: FULL, LIGHT, STANDBY and OFF. These may
be extended by system components whenever needed. When the device is fully
operational, it is in the FULL state. The LIGHT state will consume less energy,
but will grant the proper behavior of the device, it will probably incur in per-
formance loss. In STANDBY, the device will have its behavior changed. This
state will probably be a sleep mode. When OFF the device is switched off or
switched to its smallest energy consumption state.

As embedded applications grow in complexity they make use of a large
number of individual system components. As such, it may be impracticable
for application programmers to take care of the power consumption of each
component individually. To solve this problem we allow applications to man-
age individual subsystems or the system as a whole.

In order to exemplify how an entire subsystem may change its operating
mode, we present a brief description of the EPOS communication subsystem.
This subsystem is shown in Figure 1 and is basically comprised by four fam-
ilies of components: Communicator, Channel, Network and NIC. NIC
is a family of hardware mediators, which abstracts the hardware device to the
Network family. Network is responsible for abstracting the network (e. g.,
Ethernet, CAN, ATM, etc). Channel is responsible for inter-process commu-
nication and uses Network to build a logical communication channel through

which messages are exchanged. Finally, a Communicator is an end-point
for communications.

Application

power(..) power(..)

power(..)
power(..)

Commu−
nicator Channel Network

NIC

Figure 1. EPOS communication subsystem.

To grant portability of application code, the application programmer is sug-
gested to use higher level abstractions, such as members of the Communica-
tor family in the communication subsystem. In this context, our power man-
agement strategy must provide ways for the application programmer to change
the power state of a communicator and this component must consistently prop-
agate power state migrations to all software and hardware components in its
hierarchy. For example, an implementation of a Communicator will use
a Channel and probably an Alarm component to handle time-outs in the
communication protocol. When the application executes a command asking
the Communicator component to switch the operating mode to OFF, the
Communicator will finish all started communications by flushing its buffers
and waiting for all acknowledgment signals before shutting down other com-
ponents in its hierarchy.

System-wide power management actions are handled by the System com-
ponent in EPOS. The System component contains references to all subsys-
tems used by the application. Thus, if an application wants to switch the whole
system to a different operating mode, it may use the interface on the System
component, which will propagate this request to all subsystems.

Figure 2 illustrates the system-wide power management interface may be
accessed. It shows the components instantiated for a hypothetical sensing sys-
tem. In this instance, the system is comprised by four components: the CPU, a
Communicator, a Sensor and the System component. Each component
has its own interface, which may be called by the application at anytime, and a
set of power consumption levels. If the application wants to switch a specific
subsystem to another power consumption level, it can access its components
directly. If it wants to modify the whole system power consumption level, it
may access the System component, which will propagate the modification
through the system.

The main challenge identified on the development of power-aware compo-
nents was the need for consistent operating mode propagation. This propa-

Status
FULL
LIGHT
STANDBY
OFF

System
power():Status
power(Status)

Status
0 = FULL
1 = LIGHT
2 = STANDBY
3 = OFF

Sensor
power():Status
power(Status)

Communicator
power():Status
power(Status)

Status
0 = FULL
1 = LIGHT
2 = STANDBY
3 = OFF

Status

1
2
3 = LIGHT
4
5 = STANDBY

0 = FULL

6 = OFF

power():Status
power(Status)

AVR_CPUCC1000_RF
power():Status
power(Status)

Status
0 = FULL
1
2
3 = LIGHT
4
5
6
7 = STANDBY
8 = OFF

ERT−J1VR103J
power():Status
power(Status)

Status
0 = FULL
1 = OFF

Application

Operating System
Abstractions

Intermediate Components

hardware mediators)
(Other abstractions or

Some hardware mediators

Figure 2. Accessing the power management interface.

gation must guarantee that no data will be lost and no unfinished actions will
be interrupted. By letting each component handle its responsibilities (e. g., a
Communicator flushing all its buffers and waiting for all acknowledgment
signals) before propagating the power state propagation (e. g. shutting down
Alarm and Channel), it is possible to guarantee consistent operating mode
propagation of an entire subsystem.

In this strategy, the application programmer is expected to specify in the
application when certain components aren’t being used. It is done by issuing
"power" commands to individual components, subsystems or the system. In
order to free the application programmer from having to wake-up these com-
ponents, such components are implemented to automatically switch on when
a call is done to any of their methods. When this happens, components are
switched to the their previous states or to the less energy spendable power state
in which is possible to perform the required actions.

3. Case Study: Thermometer
In order to demonstrate the usability of the defined interface, a thermometer

was implemented using a simple prototype with a 10 kilo ohm thermistor con-
nected to an analog-to-digital converter channel of an Atmel ATMega16 [7]
microcontroller. The embedded application is presented in Figure 3. This ap-
plication uses four system components: System, Alarm, Thermometer
(member of the Sentient family [8]) and UART. The EPOS hierarchical or-

ganization binds, for example, the Thermometer abstraction with the micro-
controller’s analog-to-digital converter hardware mediator.

System sys ;
Thermometer therm ;
UART uar t ;

void alarm_handler () {
ua r t . put (therm . get ()) ;

}

i n t main () {
Handler_Funct ion handler (& alarm_handler) ;
Alarm alarm (1000000 , &handler) ;

while (1) {
sys . power (STANDBY) ;

}
}

Figure 3. The Thermometer application

When the application starts, all used components are initialized by their
constructors and a periodical event is registered with the Alarm component.
The power state of the whole system is then switched to STANDBY through a
power command issued to System. When this happens, the System com-
ponent switches all system components, except for the Alarm, to sleeping
modes. The Alarm component uses a timer to generate interrupts at a given
frequency. Each time an interrupt occurs, the CPU wakes-up and the Alarm
component handles all registered events currently due for execution. In this
example, every two seconds the Thermometer and UART components are
automatically switched on when accessed and a temperature reading is for-
warded through the serial port. When all registered events are handled, the ap-
plication continues normal execution on a loop which puts the System back
in the STANDBY mode.

The graphics presented in Figure 4 show energy measurements for this
application with and without system power management capabilities. Both
graphics show the results of a mean between ten measurements. Each mea-
surement was ten seconds long. In graphic (a) is noticed that system power
consumption oscillates between 2.5 and 4 Watts. In graphic (b), the oscillation
stays between 2 and 2.7 Watts. By calculating the integral of these graphics
is possible to obtain energy consumption for these system instances during the
time it was running. The results were 3.96 Joules for (a) and 2.45 Joules for (b),
i.e., the system saved 38.1% of energy without compromising its functionality.

0 2 4 6 8 10
t [s]

0

1

2

3

4

5

P
[W

]

0 2 4 6 8 10
t [s]

0

1

2

3

4

5

P
[W

]

(a)

(b)

Figure 4. Power consumption for the Thermometer application without (a) with (b) power
management.

4. Related Work
TINYOS and MANTIS are embedded operating systems focused on wire-

less sensor networks. In these systems energy-awareness is mostly based on
low-power MACs [9, 10] and multi-hop routing power scheduling [11, 12].
This makes sense in the context of wireless sensor networks, for a significant
amount of energy is spent on the communication mechanism. Although this
approach shows expressive results, it often focuses on the development of low-
power components instead of power-aware ones. Another drawback in these
systems is the lack of configurability and standardization of a configuration
interface.

SPEU (System Properties Estimation with UML) [13] is an optimization tool
which takes into account performance, system footprint and energy constraints
to generate either a performance-efficient, size-efficient or energy-efficient sys-
tem. These informations are extracted from an UML model of the embedded
application. This model must include class and sequence diagrams, so the tool
can estimate performance, code-size and energy consumption of each appli-
cation. The generated system is a Java software and is intended to run over
the FEMTOJAVA [14] soft-core processor. Once SPEU only takes into account
the UML diagrams, its estimations show errors as big as 85%, making it only
useful to compare different design decisions. It also lacks configurability, once
the optimization process is only guided by one variable, i. e., if the applica-
tion programmer’s design choice is performance, the system will never enter
power-aware states, even if it is not using certain devices. This certainly limits
its use in real-world applications.

IMPACCT (which stands for Integrated Management of Power-Aware Com-
puting and Communication Technologies) [15] is a system-level tool for ex-
ploring power/performance tradeoffs by means of power-aware scheduling and
architectural configuration. The idea behind the IMPACCT system is the em-
bedded application analysis through a timing simulation to define the widest
possible dynamic range of power/performance tradeoffs and the power mode
in which each component should operate over time. This tool chain also in-
cludes a power-aware scheduler implementation for hard real-time systems.
IMPACCT tools deliver a very interesting way to configure the power-aware
scheduler and the power-modes of an embedded system, but is far from deliv-
ering a fast prototyping environment.

5. Conclusion
In this paper we presented an strategy to enable application-driven power

management in deeply embedded systems. In order to achieve this goal we
allowed application programmers to express when certain components are not
being used. This is expressed through a simple power management interface
which allows power mode switching of system components, subsystems or the
system as a whole, making all combinations of components operating modes
feasible. By using the hierarchical architecture by which system components
are organized in our system, effective power management was achieved for
deeply embedded systems without the need for costly techniques or strategies,
thus incurring in no unnecessary processing or memory overheads.

A case study using a 8-bit microcontroller to monitor temperature in an
indoor ambient showed that almost 40% of energy could be saved when using
this strategy.

Acknowledgments
Authors would like to thank Augusto Born de Oliveira, Hugo Marcondes

and Rafael Cancian from LISHA for very helpful discussion. We also would
like to thank the Department of Computer Sciences 4 at Friedrich-Alexander
Universität (Germany), its head Prof. Schröder-Preikschat and Andreas Weis-
sel for providing equipment and some advise for this work.

References

[1] Bellosa, Frank, Weissel, Andreas, Waitz, Martin, and Kellner, Simon (2003). Event-driven
energy accounting for dynamic thermal management. In Proceedings of the Workshop
on Compilers and Operating Systems for Low Power, pages 04–1 – 04–10, New Orleans,
USA.

[2] Sorber, Jacob, Banerjee, Nilanjan, Corner, Mark D., and Rollins, Sami (2005). Turducken:
hierarchical power management for mobile devices. In MobiSys ’05: Proceedings of the

3rd international conference on Mobile systems, applications, and services, pages 261–
274, New York, NY, USA. ACM Press.

[3] Pering, T. and Broderson, R. (1998). Dynamic voltage scaling and the design of a low-
power microprocessor system. In Proceedings of the International Symposium on Com-
puter Architecture ISCA’98.

[4] Intel Corp. and Microsoft Corp. (1996). Advanced Power Management (APM) BIOS In-
terface Specification, 1.2 edition.

[5] Hewlett-Packard Corp., Intel Corp., Microsoft Corp., Phoenix Technologies Ltd., and
Toshiba Corp. (2004). Advanced Configuration and Power Interface Specification, 3.0
edition.

[6] Benini, Luca, Bogliolo, Alessandro, and Micheli, Giovanni De (1998). Dynamic power
management of electronic systems. In ICCAD ’98: Proceedings of the 1998 IEEE/ACM
international conference on Computer-aided design, pages 696–702, New York, NY, USA.
ACM Press.

[7] Atmel Corp. (2004). ATMega16L Datasheet. San Jose, CA, 2466j edition.

[8] Wanner, Lucas Francisco, Junior, Arliones Stevert Hoeller, Polpeta, Fauze Valerio, and
Frohlich, Antonio Augusto (2005). Operating system support for handling heterogeneity
in wireless sensor networks. In Proceedings of the 10th IEEE International Conference on
Emerging Technologies and Factory Automation, Catania, Italy. IEEE.

[9] Polastre, Joseph, Szewczyk, Robert, Sharp, Cory, and Culler, David (2004). The mote
revolution: Low power wireless sensor network devices. In Proceedings of Hot Chips 16:
A Symposium on High Performance Chips.

[10] Sheth, Anmol and Han, Richard (2004). Shush: A mac protocol for transmit power con-
trolled wireless networks. Technical Report CU-CS-986-04, Department of Computer Sci-
ence, University of Colorado, Boulder.

[11] Hohlt, Barbara, Doherty, Lance, and Brewer, Eric (2004). Flexible power scheduling for
sensor networks. In Proceedings of The Third International Symposium on Information
Processing in Sensor Networks, pages 205–214, Berkley, USA. IEEE.

[12] Sheth, Anmol and Han, Richard (2003). Adaptive power control and selective radio ac-
tivation for low-power infrastructure-mode 802.11 lans. In Proceedings of the 23rd In-
ternational Conference on Distributed Computing Systems Workshops, pages 797–802,
Providence, USA. IEEE.

[13] da S. Oliveira, Marcion F., de Brisolara, Lisiane B., Carro, Luigi, and Wagner, Flávio R.
(2005). An embedded sw design exploration approach based on xml estimation tools. In
Rettberg, Achim, mauro C. Zanella, and Rammig, Franz J., editors, From Specification to
Embedded Systems Application, pages 45–54, Manaus, Brazil. IFIP, Springer.

[14] Ito, S.A., Carro, L., and Jacobi, R.P. (2001). Making java work for microcontroller appli-
cations. IEEE Design and Test of Computers, 18(5):100–110.

[15] Chou, Pai H., Liu, Jinfeng, Li, Dexin, and Bagherzadeh, Nader (2002). Impacct: Method-
ology and tools for power-aware embedded systems. DESIGN AUTOMATION FOR EM-
BEDDED SYSTEMS, Special Issue on Design Methodologies and Tools for Real-Time
Embedded Systems, 7(3):205–232.

