
COMMUNICATION-AWARE
COMPONENT ALLOCATION ALGORITHM
FOR A HYBRID ARCHITECTURE ∗

Marcelo Götz, 1 Achim Rettberg 2 and Carlos Eduardo Pereira 3

1Heinz Nixdorf Institute
University of Paderborn, Germany
mgoetz@uni-paderborn.de

2C-LAB
University of Paderborn, Germany
achim@c-lab.de

3Electrical Engineering Department
UFRGS, Brazil
cpereira@ece.ufrgs.br

Abstract High computational performance and flexibility are the requirements of nowa-
days embedded systems and they are increasing constantly. A single architec-
ture must be able to support different application with dynamically requirements
(changing environments). As an operating system (OS) is desired to provide
support for such systems, it has to use the available resources in an optimal way
(competing with the application), since an embedded system architecture usually
lack in resources. Therefore, we present here our approach towards a reconfig-
urable RTOS that is able to distribute itself over a hybrid architecture (compris-
ing FPGA and CPU). In this paper we will concentrate in the strategies used to
allocate the OS services over a hybrid architecture, taken into consideration the
used resources in the running domain (CPU or FPGA) and the communication
costs.

Keywords: Reconfigurable Computing, System-on-Chip, Real Time Operating System

∗This work was developed in the course of the Special Research Initiative 614 - Self-optimizing Concepts
and Structures in Mechanical Engineering - University of Paderborn, and was published on its behalf and
funded by the Deutsche Forschungsgemeinschaft.

2 Marcelo Götz, Achim Rettberg and Carlos E. Pereira

1. INTRODUCTION
Embedded systems are increasingly requiring more computational perfor-

mance and flexibility due to the growing application complexity and changing
environments where these systems are inserted. Additionally, the used execu-
tion platforms are usually lacking in resources, which make the instantiation
of a complete system a challenge for a system developer.

In counterpart, the development of an execution platform for such systems
may profit from modern Field Programmable Gate Arrays (FPGAs), like the
Virtex-II Pro, where a CPU is hardcore embedded into the fabric. Thus, high
computation performance can be achieved by implementing components in
hardware. Additionally, flexibility is provided due to availability of a CPU and
the partial reconfigurable capability of such devices.

In order to easier the activities of the user when developing the application,
the used Operating System (OS) needs to tackle the underlying platform prop-
erly. Actually, the reasons to use an OS for a Reconfigurable Systems-on-Chip
(RSoC) are not different from those for running an OS on any system ([3]).

Towards this objective, we are developing a reconfigurable RTOS that is
able to distribute itself over a hybrid architecture, which comprises a CPU and
a FPGA. In changing environments, where application requirements are dy-
namic, the RTOS needs to provide the services currently needed by the running
application. However, due to the lack of resources of the underlying platforms,
a complete instance of a RTOS is usually not possible. Therefore, we pro-
pose to reconfigure the RTOS at run-time over the hybrid architecture in order
to better use the available resources, which is also shared by the application
tasks.

Our proposal fits into the scope of an in-house ongoing research, where
support for self-optimizing systems is being studied. For such systems, a self-
optimizing RTOS is also required. In this paper, however, we will concentrate
on the strategies used to allocate the OS services over the hybrid architecture,
taken into consideration the used resources in the running domain (CPU or
FPGA) and the communication costs.

The remaining of this paper is organized as follows. Section 2 describes
the related work, followed by a detailed discussion of the RTOS we are using
(Section 3) including a briefly description of the previous OS service allocation
algorithm. In this section, we also describe the execution platform. We then
present our communication-aware allocation algorithm is Section 4. There, the
clustering and the allocation of the components are described. In Section 5 we
present the evaluation results and we finalize in Section 6 with our conclusions.

Communication-Aware Component Alloc. Algorithm for a Hybrid Architecture 3

2. RELATED WORK
The overhead added by the operating system used for embedded systems

need to be carefully considered due to the usual lack of resources provided by
the underlying platform. However, up to now all approaches have been based
on implementations that are static in nature, see [9], [8], [7], [10] and [11]. It
means that they do not change at run-time, even when application requirements
may significantly change.

Reconfigurable hardware/software based architectures are very attractive
for implementation of run-time reconfigurable embedded systems. The hard-
ware/software allocation of applications tasks to dynamically reconfigurable
embedded systems (by means of task migration) allows for customization of
their resources during run-time to meet the demands of executing applications,
as can be seen in [6].

An example of this trend is the Operating System for Reconfigurable Sys-
tems (OS4RS) ([13]). This work proposes an operating system for a heteroge-
neous reconfigurable System-on-Chip (SoC). It aims to provide an on-the-fly
reallocation of specific application tasks, over a hybrid architecture, depend-
ing on the computational requirements and on the Quality of Service (QoS)
expected from the application. Nevertheless, the RTOS itself is still static.
Moreover, the reconfiguration time cost is not a big issue in the design.

Additional research efforts spent in reconfigurable computing field are only
focusing on application level, leaving to the RTOS the responsibility to provide
the necessary mechanisms and run-time support. The works presented in [1],
[14] and [12] are some examples of RTOS services to support the (re)location,
scheduling and placement of application tasks on an architecture composed by
FPGA with or without an CPU. In our proposal, we expand those concepts and
propose new ones to be applied in the RTOS level. Thus, the RTOS can profit
from the reconfigurable hybrid architecture in order to make a better usage
of the available resources in a flexible manner. Moreover, from our knowl-
edge there are no other works dealing with on-line RTOS services migration
between hardware and software execution environments.

Nevertheless, note that in our currently approach, we do not consider that a
OS service may be preempted in CPU and resumed at FPGA (or vice-versa).
This is different from [13]. In our approach the migration occurs when the
OS component is not being used. Beside that, we focus on OS component
migration instead of application tasks. In [4] we show how a migration may
dynamically be executed without requiring service preemption during migra-
tion.

4 Marcelo Götz, Achim Rettberg and Carlos E. Pereira

OS/
HW

Communication Layer

OS/
SW

OS/
SW

APP/
SW

APP/
SW

Interface

OS/
HW

Interface

Figure 1. Proposed microkernel based architecture.

3. PRELIMINARIES
Our RTOS is composed of a set of services that may run either on the CPU

or on the FPGA. Therefore, the reconfigurable services are provided in two
implemented versions: software and hardware. In our approach, most of the
application tasks run on the CPU and only application critical tasks use FPGA
resources.

The target RTOS architecture follows the microkernel concept, where appli-
cation and operating system services are seen as components running on top
of a small layer which provides basic functionalities. The Figure 1 shows ab-
stractly our architecture. Additionally, the communication infrastructure layer
provides the necessary support to allow the communication among compo-
nents running over the hybrid architecture in an efficient manner. More details
about this topic are provided in Section 3.3.

Without loss of generality, we assume that over the hybrid architecture the
OS services are seen as components, which uses system resources (FPGA area,
CPU workload and communication bandwidth). This view is enforced by the
usage of the microkernel architecture model.

3.1 PROBLEM STATEMENT
From a higher point of view, we can see two major problems related with

the OS services: their allocation and their reconfiguration. The allocation of
the OS services over the hybrid architecture should be done in such a way to
optimize the used resources (including the communication costs). This is the
focus of the current paper.

Nevertheless, as we considered a changing environment, this allocations
need to be continuously evaluated. Whenever the OS components allocations
are required to change, a system reconfiguration happens. This reconfiguration
activity needs to be carried out respecting the correctness of the running appli-
cation. In a real-time system, it means that the reconfiguration activities can
not violate any time constraint of the running tasks. This problem is handled

Communication-Aware Component Alloc. Algorithm for a Hybrid Architecture 5

by modelling theses activities as aperiodic jobs and scheduled together with
the running tasks using, therefore, a server ([4]).

3.2 COMMUNICATION UNAWARE ALLOCATION
ALGORITHM

A heuristic algorithm presented in [5] determines the allocation OS com-
ponents. Although presenting good performance, this algorithm does not take
into consideration the communication costs. It decides at run-time where to
place each OS component taking into consideration its current cost and the
remaining available system resources. Here, the resources are: FPGA area
(for components being located in hardware) and CPU processor utilization (for
components being located in software). Thus, the system has to locate the
RTOS components in a limited FPGA area (Amax) and limited CPU processor
workload (Umax).

Every component i has an estimated cost ci,j , which represents the percent-
age of resource from the execution environment used by this component. On
the FPGA (j = 2) it represents the circuit area needed by the component and
on the CPU (j = 1) it represents the processor load used by it. The heuristic
mentioned above minimizes a objective cost function (Equation 1) subjected
to a system resources constraints (Equations 2 and 3).

min{
2∑

j=1

n∑
i=1

ci,jxi,j} (1)

U =
n∑

i=1

xi,1ci,1 ≤ Umax (2)

A =
n∑

i=1

xi,2ci,2 ≤ Amax (3)

Besides these constraints, an additional one is defined in order to maintain
a balanced resource utilization: B = |w1U − w2A| ≤ δ. Where δ is the max-
imum allowed unbalanced resource utilization between CPU and FPGA. We
also consider that a component i can be assigned just to one of the execution
environment. Thus,

∑2
j=1 xi,j = 1 for every i = 1, ..., n. The weights w1 and

w2 are used to proper compare the resource utilization between two different
execution environments.

Due to the application dynamism, the assignment decision needs to be checked
continuously. Whenever the specified constraint δ is no longer fulfilled, a sys-
tem reconfiguration takes place. This implies that a set of RTOS component
needs to be relocated (reconfigured) by means of migration. In other words, a
service may migrate from software to hardware or vice-versa.

6 Marcelo Götz, Achim Rettberg and Carlos E. Pereira

S1 SnS1 Shared
Memory

Global
CTRL

LOCAL BUS
(Busmacros)

MEMORY
CPU

RTR

FPGA

(a) Architecture overviwe

Local
Mem.

OS
Service

CTRL

Local Bus

Slot n

(b) OS service slot template

Figure 2. System architecture.

The working algorithm is composed of two phases. First, starting from an
empty CPU and FPGA utilization, the components having the smallest costs
are selected first and placed on either CPU or FPGA, trying to keep the re-
source utilization between these two execution domains the same. In the sec-
ond phase (based on Kernighan-Lin [2]), the allocation is refined by changing
the previous location of a component pair (each one locate in different exe-
cution domain). This last phase is used in order to improve the balance of
resource used and achieve the constraint δ.

3.3 EXECUTION PLATFORM
The kern of our architecture is a Virtex-II Pro fabric, which can be par-

tially reconfigured at run-time and provides additionally a hardcore embedded
processor. In Figure 2(a) we show the embedded system architecture in more
details. The reconfigurable part of the FPGA is divided in n slots. Each slot
provides a OS service framework (Figure 2(b)). The local memory is used to
support the communication between local components and the global shared
memory is used to perform the communication with components running on
the CPU. The local controller is used to manage the access to the local memory
and the global controller, which together with its counterpart in software, per-
forms the communication infrastructure mentioned in Section 3. The slots are
connected using Busmacros. In order to program the FPGA slots, the reconfig-
uration port is used, which may be local (by using the ICAP Xilinx entity) or
an external Run-Time Reconfiguration (RTR) controller.

Communication-Aware Component Alloc. Algorithm for a Hybrid Architecture 7

4. COMMUNICATION-AWARE ALLOCATION
ALGORITHM

The new algorithm is build on top of the already available allocation heuris-
tic shortly described in Section 3.2. The idea is to group those components
together who present lower communication costs when located at same exe-
cution domain. After this clustering process, we do apply the allocation al-
gorithm, where not only single components are assigned to CPU or FPGA,
but also meta-components (cluster of components). The previous algorithm is
slightly modified in its second phase, when the components assignments are
refined, in order to avoid the grouping of made at first.

4.1 DEFINITIONS AND NOTATIONS
The new allocation algorithm is based on component clustering. There-

fore, we model our system as an undirected weighted graph G = (V, E).
The edges in E represent the communication costs CM between two differ-
ent components. Note that CM depends on two main factors: a static one,
related with the architecture (time to deliver a message) and a factor related
to the amount of data changed between two components, which is dynamic
and depends on the application. Additionally, as each component may be lo-
cated in one of two different execution environments, the communication cost
CM performed between two components is noted by three different values
CM = {Cα, Cβ, Cγ}:

Cα, when both are on SW domain;

Cβ , when both are on HW domain;

Cγ , when both are in different domains.

The Figure 3 shows a sample of such a graph. The grey nodes in the graph
may be seen as the OS services primitives (API) that are made available for
the application tasks (running in software). Note that such node do not have
allocation costs as they only is used to properly represent the communication
cost between an application task and an OS service.

To measure the connection degree between two communicating compo-
nents, we define the local preference metric, pl = 2Cγ

2Cγ+Cα+Cβ
, which is cal-

culated using CM (pl = f(Cα, Cβ, Cγ)). The metric pl compare the com-
munication cost between two components when both are placed in the same
execution domain in comparison with the case where each of them are placed
in different execution domains.

We also define a global preference metric, pg, which is pl multiplied by
a global factor (see Equation 4). This metric enable us to compare all local
preferences with each other by doing the clustering process.

8 Marcelo Götz, Achim Rettberg and Carlos E. Pereira

SW

SW,HW

Figure 3. Sample of an OS component graph.

T4

T2

T5

T3

T1

T6

T4

T5

T3 T*

T6

Higher pg

pg=0.8

0.2

0.1

0.3 0.7

0.5

0.3

0.1

0.2

pg*

Figure 4. Example of a two component being clustered.

pg = (
Cγ

maxV {Cγ}
)pl (4)

4.2 CLUSTERING COMPONENTS
The proposed clustering algorithm starts searching for the biggest global

preference value, pg′, among all edges and tries to cluster the two related com-
ponents, o and p, respecting two conditions:

Components o and p have not been clustered;

(co,1 + cp,1, co,2 + cp,2) ≤ (λ1, λ2), where λ1 and λ2 are the maxi-
mum component costs allowed when performing the combination of o
and p. This criterium is used to avoid the deprecation of the allocation
algorithm when the allocation costs of the formed components increase.

If a cluster is formed, the two involved components are combined and the
search is executed again. This method is repeated until no more components
are free for clustering.

When two components are grouped together, a new one is generated T ∗.
The Figure 4 shows an example. For this case, the CM∗ will be generated as
follows: CM∗ = CM1,3 + CM2,3. Thus, pg∗ is calculated using this new
value CM∗: pg∗ = f(C∗

α, C∗
β, C∗

γ). Note that the communication costs, Cα

and Cβ , between T1 and T2 (from the example) are no longer considered for
the pg evaluation. Nevertheless, they are stored and used during the balance
improvement executed in second phase of the original algorithm ([5]).

Communication-Aware Component Alloc. Algorithm for a Hybrid Architecture 9

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

15

20

foldings

P
er

ce
n

ta
g

e
o

f
re

d
u

ct
io

n

Comm. costs reduction compared to original solution

SW
HW
SW−HW

Figure 5. Evaluation results comparison.

4.3 COMPONENT ALLOCATION
When the clustering process ends, we apply the allocation algorithm, which

is basically the same one presented in [5]. However, in the second phase of
this algorithm, where the allocation decision is refined in order to fulfil the δ
constraint (balance improvement), we use the stored Cα and Cβ costs. Thus, a
pair of components is allowed to change their location, only if this change will
improve the balancing and also represent a reduction of the communication
costs inside the execution domain.

5. EVALUATION RESULTS
For the evaluation of our algorithm, we did implement it using the MAT-

LAB tool. We create the same environment used in the evaluation of the origi-
nal algorithm and compare the communication costs achieved by the allocation
with and without the clustering process. For our case, we generate randomly
the communication graphs of n = 20 components respecting the following
relation: Cα < Cβ < Cγ , which corresponds what we have observed in
our architecture. (The communication costs across execution domains are the
most expensive ones). The Figure 5 presents the results of the evaluation in
every execution domain and also between them. It indicates in percentage, the
increase of communication costs for a case using the clustering process in re-
lation to the case where cluster was not used. Therefore, a negative percentage
value indicates that a reduction of the communication costs was achieved. The
results were performed for different number of clustered (folding) formed.

10 Marcelo Götz, Achim Rettberg and Carlos E. Pereira

6. CONCLUSIONS
The paper presents a communication-aware allocation algorithm that is used

for mapping OS services (components) of a system to FPGAs or CPUs. We
give an idea how to evaluate the communication between the tasks and show
how to cluster the tasks. This work is based on the approach presented in [5]
and its extension is right now under development, but will be ready for the final
version of the paper if it will be accepted.

REFERENCES
[1] Krishnamoorthy Baskaran, Wu Jigang, and Thamipillai Srikanthan. Hardware partition-

ing algorithm for reconfigurable operating system in embedded systems. In Sixth Real-
Time Linux Workshop, November 2004. Singapore.

[2] Petru Eles, Krzysztof Kuchcinski, and Zebo Peng. System Synthesis with VHDL: A Trans-
formational Approach, chapter 4, pages 114–119. Kluwer Academic Publishers, 1998.

[3] Frank Engel, Ihor Kuz, Stefan M. Petters, and Sergio Ruocco. Operating Systems on
SoCs: A Good Idea? In ERTSI Workshop, 2004.

[4] Marcelo Götz and Florian Dittmann. Scheduling Reconfiguration Activities of Run-time
Reconfigurable RTOS Using an Aperiodic Task Server. In Proc. of the ARC 2006, Delft,
The Netherlands, March 2006.

[5] Marcelo Götz, Achim Rettberg, and Carlos E. Pereira. Towards Run-time Partitioning of
a Real Time Operating System for Reconfigurable Systems on Chip. In Proc. of IESS,
Manaus, Brazil, August 2005.

[6] J. Harkin, T. M. McGinnity, and L. P. Maguire. Modeling and optimizing run-time re-
configuration using evolutionary computation. Trans. Embedded Comp. Sys., 3(4), 2004.

[7] Paul Kohout, Brinda Ganesh, and Bruce Jacob. Hardware support for real-time op-
erating systems. In International Symposium on Systems Synthesis. Proc. of the 1st
IEEE/ACM/IFIP Inter. Conf. on HW/SW codesign and system synthesis, 2003.

[8] P. Kuacharoen, M. Shalan, and V. Mooney. A configurable hardware scheduler for real-
time systems. In ERSA, pages 96–101, June 2003.

[9] J. Lee, K. Ingström, A. Daleby, Tommy Klevin, V.J. Mooney III, and Lennart Lindh. A
comparison of the rtu hardware rtos with a hardware/software rtos. In ASP-DAC, January
2003.

[10] Jaehwan Lee, Kyeong Ryu, and V. J. Mooney III. A framework for automatic generation
of configuration files for a custom hardware/software rtos. In ERSA, June 2002.

[11] Lennart Lindh and Frank Stanischewski. Fastchart - a fast time deterministic cpu and
hardware based real-time-kernel. In EUROMICRO, 1991.

[12] Jean-Yves Mignolet, Vincent Nollet, Paul Coene, Diederik Verkest, Serge Vernalde, and
Rudy Lauwereins. Infrastructure for design and management of relocatable tasks in a
heterogeneous reconfigurable system-on-chip. In DATE, pages 10986–10993, 2003.

[13] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins. Designing an operating
system for a heterogeneous reconfigurable soc. In IPDPS, Washington, DC, USA, 2003.
IEEE Computer Society.

[14] Grant Wigley and David Kearney. The development of an operating system for reconfig-
urable computing. In FCCM, pages 249–250, April 2001.

