
Power Aware Media Delivery Platform Based on
Containers

Jimmy Kjällman, Miika Komu, Tero Kauppinen
NomadicLab, Ericsson Research, Finland
Email: firstname.lastname@ericsson.com

Abstract—Use of mobile devices for media consumption has
become popular and is expected to grow significantly in the
coming years. Optimizing energy consumption in this context
can bring several benefits, especially to users of battery-powered
devices where the consumption is directly noticeable. In this
paper we describe a platform where the cloud computing model
and container-based virtualization is utilized for deploying and
executing functions that optimize media streams for improved
energy efficiency.

I. INTRODUCTION

Energy efficiency is getting considerable attention in the
fields of IT and ICT due to goals for improved sustainability
and cost savings, and consequently power saving opportunities
and mechanisms for, e.g., data centers, networks, and devices
are being investigated. In addition, maximizing battery lifetime
in, e.g., mobile devices is another important topic is this area.

Another notable trend is that media consumption over the
Internet has become very commonplace, and thus a large
portion of Internet traffic is comprised of media delivery.
For example, the share of video is currently over 60% of
consumer Internet traffic according to some estimates, and
it is still expected to grow [1]. A significant portion of this
media content is delivered via Content Distribution Networks
(CDNs). Moreover, video consumption on mobile devices is
also increasing rapidly.

Given these premises, attempting to achieve power savings
within the context of online content delivery appears to be
relevant in general. In this paper, we focus on utilizing power
saving methods related to media stream processing, e.g., as a
sub-component of CDNs or as a complementary mechanism
to CDNs. More specifically, we look mainly at deploying
cloud computing instances into nodes in the network, i.e.,
in a distributed cloud, in order to optimize media delivery
to mobile devices1. Existing solutions in this space include,
for instance, deployment of proxies or similar functions that
shape traffic or transcode media in order to allow devices (and
potentially also networks to some extent) to save energy [3]2.
In our work, we plan to reuse such existing functions.

In particular, our goal is to make it possible to deploy such
media stream processing functions – which provide the energy

1I.e., cloud storage (used, e.g., by Cloud CDNs [2]) and distribution of
content into storage nodes acting as media sources is out of scope in this
paper.

2The actual energy savings that can be achieved varies quite much across
different techniques.

savings – automatically and quickly on demand into suitable
locations in the network, e.g., when a new media stream is
started. The choice of location for a function can based on
information about, for instance, available resources and other
constraints, location and type of media consumers and groups,
media stream characteristics, and power consumption. We also
envision that the cloud nodes running these functions can range
from constrained Wi-Fi access points (APs) in local networks
to more powerful hardware used in data centers (DCs). In
other words, the computing infrastructure to be used in this
context can be very heterogeneous, but despite that, it would
still be desirable to manage and run instances using only one
sufficiently generic mechanism.

In order to address these issues we propose that the media
processing functions are deployed as containers, which have
gained attraction in recent years as a lightweight and (at least
to some degree) portable application packaging, process iso-
lation, and execution mechanism in clouds. The most notable
embodiment of the concept of containers is currently Docker3.

In the following section, we describe the “building blocks”
of our proposed platform in a bit more detail and provide
arguments for using them in our context. We also give some
examples of media processing functions that could be managed
and deployed with this system, and what kind of energy
savings could thus be achieved.

II. DESIGN

A. Distributed Cloud

As mentioned, we envision that we can utilize a ubiquitous
and heterogeneous cloud infrastructure for executing media
processing functions. A high-level overview of this kind of a
distributed cloud is shown in Figure 1. This cloud environment
spans across central data centers (DCs) and regional DCs, edge
DCs (e.g., even in nodes at base stations), and local computing
facilities, including constrained network nodes such as Wi-Fi
APs.

In the last category of nodes mentioned above, for ex-
ample the Capillary Networks architecture for Internet-of-
Things (IoT) enables computing in local Linux-based wireless
gateways (e.g., Raspberry Pis with ARM CPUs), which are
part of the cloud and managed by service providers. [4].

In this context we can note that work towards enabling
cloud computing capabilities at the edge of the mobile network

3https://www.docker.com/

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

278

Media
process
ing

Media
process
ing

Central
Data Center(s)

+ Media
Stream Sources

E.g. Base
Station

Site

E.g. Base
Station

Site

Media
process
ing

Media
process
ing

Edge
Data Center(s)

Orchestration

Devices

E.g. WLAN
Access Point

(Gateway)

Media
process
ing

Media Streams

Fig. 1. Media processing functions in a distributed cloud

has started in standardization bodies. For example, ETSI
Mobile Edge Computing [5], [6] and IEEE Open Mobile Edge
Cloud4 are such initiatives. Computing near devices, even in
constrained nodes, is also part of the fog computing concept,
which is in focus for the Open Fog Consortium5. Thus we can
conclude that including nodes beyond DCs into cloud systems
may be becoming more common, which would increase the
feasibility of realizing our proposed platform.

B. Containers

Assuming that we have a distributed cloud computing
infrastructure in place, we need to address how to deploy
software instances in it. For a couple of reasons, we propose
using containers, such as Docker, and related orchestration
mechanisms, as enablers for our proposed architecture.

Firstly, containers provide a service packaging mechanism.
That is, a standard way of bundling an application and its
dependencies (such as libraries) and other files into a container
image. Such images can be automatically retrieved, e.g., from
a container image repository (such as a Docker registry) when
needed.

Secondly, containers can be used as a lightweight virtual-
ization mechanism for executing applications in an isolated
environment in a host operating system. Until quite recently,
hypervisor-based virtual machines (VMs) have very commonly
been used for this purpose. Containers, however, have a
lower overhead in general than VMs: e.g., a lower memory
footprint (in particular since they do not run a guest OS
image that VMs need6) and a lower performance overhead
(e.g., wrt. networking) [7], [8]. Moreover, they do not require
hardware-level virtualization support in the hosts7. All of these
characteristics are beneficial when deploying functions into

4http://ieee-sdn.blogspot.fi/2015/11/ieee-sdn-initiative-launcing-mobile.
html

5http://www.openfogconsortium.org/
6Notably, another alternative in this space is VMs based on unikernels,

which have a minimal guest OS that includes only the essential functionality
required by each application.

7On the other hand, the applications in the containers must be able to run
on the same OS (incl. kernel) and OS version that the host has. Typically
this OS is a Linux distribution. Furthermore, the isolation provided by Linux
containers may currently be less secure than with hypervisor-based VMs.

different types of nodes, including constrained nodes, in the
cloud.

In addition, containers have fast (even sub-second) startup
times, so in general they are nowadays often chosen for
services that need to be launched rapidly on demand.

Container instances themselves also have a slightly lower
power consumption compared to VMs. For example, a dif-
ference in the scale of ∼5% has been observed with some
networking-intensive workloads [9]. The consumption of con-
tainers is close to the consumption of processes running na-
tively on hosts. This can provide a lower energy consumption
in the distributed cloud nodes and thus in our system overall
compared to using VMs.

C. Container orchestration

While containers provide a basic abstraction for packaging,
distributing, and executing services, we of course also need a
component that orchestrates the containers and handles issues
such as scheduling of container instances into suitable (and
available) hosts in the cloud.

Several generic container orchestration mechanisms exist.
Examples of open source software in this category are Docker
Swarm8, Google Kubernetes9, and Apache Mesos10.

From the point of view of energy efficiency, the orches-
tration function would ideally launch media processing con-
tainers into nodes that would provide optimal end-to-end
energy consumption – possibly while still giving more weight
to power savings in end devices when needed. In practice,
however, the placement algorithm in the orchestrator might
not have all the required information to handle the placement
completely optimally.

D. Media processing

In order to illustrate and concretize how to use our platform
and how to achieve energy savings, we present (on a relatively
high level) a few example functions below. But these are, of
course, not the only media processing functions that could
be deployed with this rather generic platform. Potentially
different power consumption optimization functions could also
be combined, as in service chaining, so that the same stream
passes through multiple containers in this system.

1) Traffic shaping proxy: Mobile devices commonly save
energy by turning their network interfaces inactive when there
is no traffic to send or receive. Thus sending traffic in bursts
instead of in a continuous stream can save energy in a mobile
terminal. This can be achieved, e.g., by buffering small parts
of the stream, e.g., in a proxy. Shaping of traffic into bursts is
most beneficial in the close proximity of devices, e.g., in Wi-
Fi APs [10]. The reason to push this functionality to the edge
is that the traffic might otherwise be subject to other shaping,
etc., on its way to the destination. By using this method, power
savings up to 65% have been measured in mobile terminals a
Wi-Fi network [10].

8https://www.docker.com/products/docker-swarm
9http://kubernetes.io/
10http://mesos.apache.org/

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

279

With the proposed platform, a container containing a traffic-
shaping proxy function could be deployed automatically into
a local Wi-Fi AP that is part of the distributed cloud. In that
case the orchestrator needs to know which AP the user is
connected to. If device connectivity is managed centrally, as
in the case of the Capillary Networks architecture [4], this
information is readily available from a connectivity manager
function. Alternatively, if a device sends the request for the
stream over HTTP, the AP itself (e.g., a static web proxy in
it) can add its own identity to the outgoing request, and this
information can be passed to the orchestrator. The client can
be explicitly redirected to obtain the content via the traffic
shaping proxy when it has been instantiated in the AP.

2) Stream content adaptation: Another method used for
optimizing media streams is to alter to stream content, such
as its encoding, in the network to be more power-friendly to
receivers. As a very simple example, a high-quality stream
from a content server could be transcoded in a proxy for a
receiver (or even a group of receivers) that does not desire to
receive a high-quality stream [3].

In this case, a transcoding container can be deployed close
to a stream source, if possible. This can potentially save energy
in the network, in addition to devices.

3) Stream pausing: An even more simple approach to
potentially save energy in devices is to just pause a video
stream when the content is not changing. This can be the case
when monitoring a stream from a surveillance camera, for
instance.

In this case the container processing the video stream
can also be deployed close to a stream source. In the most
straightforward case, the container can, for example, inspect
the video stream and determine whether the video is changing
enough to justify sending it onward.

III. IMPLEMENTATION

We have created an initial implementation of the platform
based on Docker containers and the Docker Swarm orchestra-
tor, which allows using the standard Docker API for deploying
containers into clusters of hosts that run the Docker daemon.

Our implementation is currently based on a two-tier model,
where a separate orchestrator determines the nodes or locations
(e.g., a local gateway or a central DC) where containers should
be deployed, and then passes this information to Swarm, as
Swarm’s API provides the possibility to specify constraints
and affinities for controlling placement of containers in a
cluster. In other words, our orchestrator is the component
that will implement placement algorithms that are specific
for our media processing cases, while Swarm simply launches
container instances in the specified hosts.

IV. CONCLUSION AND FUTURE WORK

In this paper we present an initial design of a platform that
can be used for flexibly deploying media processing functions
as containers in a distributed cloud. These functions can then
modify media streams in order to enable power savings in
terminals.

Future work includes implementation and evaluation of
actual use cases and development and/or application of suitable
placement algorithms and mechanisms for the media process-
ing functions. In other words, there are still many details
to work out in this area – the purpose of this paper is just
introduce the concept and some initial thinking around it.

ACKNOWLEDGMENT

This work is supported by the European Celtic-Plus project
CONVINcE (CP2013/2-1) and was partially funded by Fin-
land (Tekes), France, Sweden and Turkey.

REFERENCES

[1] Cisco Visual Networking Index: Forecast and Methodology,
2014-2019 (White Paper), Cisco, 2015. [Online]. Avail-
able: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
ip-ngn-ip-next-generation-network/white paper c11-481360.pdf

[2] M. Wang, P. P. Jayaraman, R. Ranjan, K. Mitra, M. Zhang, E. Li,
S. Khan, M. Pathan, and D. Georgeakopoulos, “An overview of cloud
based content delivery networks: Research dimensions and state-of-
the-art,” Transactions on Large-Scale Data- and Knowledge-Centered
Systems XX, vol. 9070 of Lecture Notes in Computer Science, 2015.

[3] M. A. Hoque, M. Siekkinen, and J. K. Nurminen, “Energy efficient mul-
timedia streaming to mobile devices - a survey,” IEEE Communications
Surveys & Tutorials, vol. 16, 2012.

[4] O. Novo, N. Beijar, M. Ocak, J. Kjällman, M. Komu, and T. Kauppinen,
“Capillary networks – bridging the cellular and iot worlds,” in 2nd IEEE
World Forum on the Internet of Things, 2015.

[5] Mobile-Edge Computing - Introductory Technical White Paper, ETSI,
2014. [Online]. Available: https://portal.etsi.org/Portals/0/TBpages/
MEC/Docs/Mobile-edge Computing - Introductory Technical White
Paper V1%2018-09-14.pdf

[6] ETSI GS MEC-IEG 004 V1.1.1 (2015-11) Mobile Edge
Computing (MEC); Service Scenarios, ETSI, 2015. [Online].
Available: http://www.etsi.org/deliver/etsi gs/MEC-IEG/001 099/004/
01.01.01 60/gs MEC-IEG004v010101p.pdf

[7] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. lightweight
virtualization: A performance comparison,” in ”First Workshop on
Containers (WoC)”, 2015.

[8] W. Felter, R. Ferreira, R. Rajamony, and J. Rubio,
“An updated performance comparison of virtual ma-
chines and linux containers,” IBM, 2014. [Online]. Avail-
able: http://domino.research.ibm.com/library/cyberdig.nsf/%20papers/
0929052195DD819C85257D2300681E7B/$File/rc25482.pdf

[9] R. Morabito, “Power consumption of virtualization technologies: an em-
pirical investigation,” in ”First International Workshop on Sustainable
Data Centres and Cloud Computing (SD3C)”, 2015.

[10] M. A. Hoque, M. Siekkinen, and J. K. Nurminen, “On the energy
efficiency of proxy-based traffic shaping for mobile audio streaming,” in
IEEE Consumer Communications and Networking Conference (CCNC),
2011.

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

280

