
Cloud RAN Challenges and Solutions

Rajeev Agrawal, Anand Bedekar, Troels Kolding, and Vishnu Ram
Nokia Networks

Abstract—In this paper we take an overall look at key

technical challenges in the evolution of the Radio Access Network
(RAN) architecture towards Cloud RAN, and solutions to
overcome them. To address fronthaul limitations, we examine the
implications and tradeoffs enabled by functional splits on
fronthaul needs, system performance, and centralization scale.
We examine the architecture of algorithms for multi-cell
coordination and implications in a Cloud RAN environment. To
maximize the use of General-Purpose Processors (GPP) and
operating systems such as Linux for Cloud RAN, we propose
methods of achieving real-time performance suitable for RAN
functions. To enable right-sizing the amount of compute used for
various RAN functions based on the workload, we propose
methods of pooling and elastic scaling for RAN functions that
exploit the fact that certain RAN functions perform per-user
operations while others perform per-cell operations. Cloud RAN
also aims to use cloud management technologies such as
virtualized infrastructure management (VIM) and orchestration
for automating the instantiation and scaling of RAN functions.
We identify special needs for RAN arising from real-time
constraints and a mix of GPP and non-GPP hardware.

Keywords—Cloud RAN, fronthaul, real-time, pooling, elastic
scaling, multi-cell coordination, orchestration, NFV, 5G.

I. INTRODUCTION

As mobile data traffic demand rapidly grows [1], it is
expected that mobile networks will have to add significant
amounts of spectrum for the radio access network, as well as
significantly increase the density of cells either by cell-splitting
at the macro layer or by adding underlay small cells. Due to
this, the amount of baseband processing needed will
significantly increase, and further, there will be significantly
higher levels of interference in the network due to the high
density of cells. Cloud Radio Access Network (Cloud
RAN)[2][3], in our terminology consisting of both
centralization of processing resources for the RAN and use of
cloud technologies, is a deployment paradigm that aims to
achieve a significantly lower cost-per-bit in such a scenario. In
conventional RAN deployments, baseband functions are
typically distributed at the cell sites, whereas in Cloud RAN,
all or portions of the baseband would be centralized, thereby
reducing operating costs of cell sites by simpler site solutions
and fewer site visits for maintenance and upgrades. Cloud
RAN aims to maximize the use of general purpose processors
(GPPs) such as Intel x86 and ARM for RAN functions, thereby
simplifying procurement, enabling reuse of hardware across
RAN and other network functions, and leveraging economies
of scale due to GPP use in the IT industry. Similar to cloud
technologies used in datacenters in the IT industry, Cloud RAN
aims to maximize scalability and minimize over-provisioning
of processing resources by right-sizing the amount of
processing used to the workload. Cloud RAN aims to increase

automation in the deployment and lifecycle management of
RAN functions by leveraging datacenter cloud management
technologies like virtualized infrastructure management (VIM)
and orchestration. To combat high levels of interference, Cloud
RAN aims to enable better performance of multi-cell
coordination algorithms than conventional RAN deployments.
In this paper, we investigate challenges for these objectives of
Cloud RAN, and identify solution approaches.

When some or all portions of the baseband are centralized,
the network interconnecting the central portion to the cell sites
is termed as fronthaul. The ideal transport medium for today’s
fronthaul is dark point-to-point fiber, but this is not widely
available. More widely available transport such as Metro
Ethernet may be constrained in bandwidth or may provide
higher latency or jitter. To address fronthaul limitations, in
Section II, we examine the implications and tradeoffs enabled
by functional splits on fronthaul needs, system performance,
and centralization scale. In Section III, we examine the
architecture of multi-cell coordination algorithms and
implications in a Cloud RAN environment. We make the case
that multi-cell coordination algorithms should be designed to
have a decentralized algorithm architecture and use a flexible
coordination cluster design, so as to maximize the flexibility of
placing RAN functions within the RAN cloud as well as the
benefit from multi-cell coordination. A key challenge in the
use of GPP/Linux environments for RAN functions is that
RAN functions have real-time constraints at the millisecond
level. In Section IV, we propose methods of achieving such
real-time performance. To right-size the amount of compute
used for various RAN functions based on the workload, we
propose methods of pooling, elasticity, and load-balancing for
RAN functions in Section V, exploiting the fact that certain
RAN functions perform per-user operations while others
perform per-cell operations. For the application of cloud
management technologies such as VIM and orchestration for
RAN functions, we identify special needs for RAN arising
from real-time needs and supporting a mix of GPP and non-
GPP hardware in Section VI that should be taken into account
as these technologies are adapted for RAN in forums such as
ETSI NFV. While our focus is on LTE, we also consider
implications of 5G on various aspects of Cloud RAN.

II. FRONTHAUL AND FUNCTIONAL SPLITS

In traditional Centralized RAN deployments, conventional
baseband units are housed in a centralized location (a so-called
“BTS hotel”) and interconnected to the radio heads at the cell
sites with fiber, typically dark point-to-point fiber. The
protocol used over the fiber is typically CPRI [6] or OBSAI
RP3 [7]. These protocols have very stringent latency and jitter
requirements, typically less than 200us, and result in outage if
the requirements are not met. Further, the dark fiber needed to

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

14

ensure adequate bandwidth and low latency/jitter for CPRI or
OBSAI is not widely available. As 5G calls for sub-ms RTT at
air interface and use of massive MIMO, the latency and
bandwidth scalability challenge becomes even more
pronounced. More widely available transport such as Metro
Ethernet is typically packet-switched transport, however, and
thus typically has higher jitter than what CPRI or OBSAI can
tolerate, and further may impose bandwidth constraints as well.

To make efficient use of more widely available transport
options, one approach is to not centralize all the baseband
functions, but centralize a subset leaving the rest at the cell
sites. A range of such functional splits are possible, each of
which presents different needs on bandwidth and latency and
tolerance to jitter on the fronthaul. Figure 1 illustrates a family
of such functional splits. Bandwidth needs of various
functional splits have been analyzed in [8]. Our focus here is to
present some key insights and tradeoffs in functional splits.

CPRI/OBSAI

RF L2 L3L1

Cell site Central unit

CPRI/OBSAI

compressed CPRI

RF L2 L3L1

Cell site Central unit

compressed CPRI

RF L2 L3L1`

Cell site Central unit

L1
subset

MAC PDUs

RF L2 L3`

Cell site Central unit

MAC PDUs
L1

PDCP PDUs

RF L3`

Cell site Central unit

PDCP PDUs

L1 L2 L2
RLC/MAC PDCP

subset

Figure 1. Functional Splits.

We observe that in LTE, the HARQ loop and limit on the
number of HARQ processes impose constraints on the
fronthaul and processing latency for functional splits where the
HARQ loop is terminated in the central site. This is illustrated
in Figure 2 for FDD-LTE for the functional split where all
baseband functions are centralized. A similar constraint also
applies to TDD-LTE. For an ack/nack transmission sent by the
user equipment (UE) in TTI n, the RAN’s radio Scheduler
must process the ack/nack and grant a fresh transmission or
retransmission to be transmitted over the air in TTI n+4 to
ensure peak throughput. If the RAN cannot meet this, e.g.
because of latency or jitter in the fronthaul or in processing,
TTIs have to be skipped, leading to a loss of air interface
throughput as quantified in [9].

UE sends ack/nack
on UL

TTI N N+1 N+2 N+3 N+4

DL next transmission for this
HARQ process (new tx or retx)

UL
Rcvr

Sch MAC
(DL)

DL
enc

Time at
cell site

Time at
Central site

FH
Latency

FH
Latency

N+5 N+6

Skipped
HARQ

Skipped
HARQ

Figure 2. LTE-FDD HARQ constraint on latency.

This has several ramifications. First, the total latency plus
jitter of the fronthaul must be such as to allow finishing the
HARQ-related baseband processing within 3ms (i.e. from TTI
n+1 to TTI n+3) to avoid a loss in air interface throughput. In

this sense, jitter on the fronthaul is like additional latency that
must be accounted for in the time budget. Second, we observe
that this bounds the distance between the cell site and central
location, limiting the scale of centralization. Centralization
scale is typically tied to the ability to extract pooling gains and
other cloud benefits. For example, if the baseband processing
consumes 2.5ms, that leaves 0.5ms for the round-trip fronthaul
latency plus jitter, which constrains the distance for light
propagation in optic fiber to a maximum of around 50km. In a
real network fiber is not typically laid along geodesic lines
from the cell sites to the central site, so the limitation on
geographic distance between the cell sites and central site in a
real network may be even worse. Large-scale centralization is
thus not realistic for such functional splits – a Cloud RAN
deployment for such splits may thus consist of multiple Cloud
RAN hosting locations distributed fairly close to the cell sites.

In contrast, for functional splits where the HARQ loop is
terminated at the cell site (e.g. where only non-real-time parts
of Layer-2 (PDC) and Layer-3 (RRC) are centralized), it is
possible to achieve larger-scale centralization; however since a
significant portion of baseband functionality is left at the cell
sites in these splits, the potential benefits of Cloud RAN such
as lower OpEx and higher pooling gains would be reduced as
well. Thus in choosing the functional split for their network
deployment, operators are faced with a multi-dimensional
tradeoff between conflicting objectives of reducing the
bandwidth needs by leaving more functionality at the cell site,
relaxing the tolerable latency and jitter, achieving greater
operational benefits by greater scale of centralization,
maximizing air interface performance, and cost/complexity.

An example illustration of such a tradeoff is shown in
Figure 3 with some qualitative scoring of current Distributed
RAN and CPRI-based Centralized RAN architectures. Hybrid
functional-split-based architectures seek to achieve a better
overall tradeoff weighing pros and cons within specific
operator’s conditions. A methodology to evaluate this type of
tradeoff has been proposed in [15].

Cell site savings
potential

Aggregation site
savings potential

Transport cost
savings

Baseband pooling
savings

Air interface
performance

Resiliency/SPOF
protection

D‐RAN (S1/X2) C‐RAN (CPRI)

Figure 3. Multi-dimensional tradeoff for functional splits.

In dense metro areas where the density of cells is high,
there may be hundreds of cells within a few kilometers of
cloud RAN centralization sites such as central offices, so
significant scale of centralization may be obtained even using
central sites that are near the cell sites. Further, the availability
of low-latency fiber is typically also easier in dense metros.
Thus the HARQ loop can be more easily centralized, and such
areas may be sweet spots for maximal Cloud RAN benefits.

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

15

In 5G, it is anticipated that TTI duration will be even
shorter than the LTE TTI of 1ms, while the carrier bandwidths
are expected to be significantly larger than the 20MHz in LTE.
This means that the processing execution time may increase,
while in principle the total time budget available for fronthaul
and processing will shrink compared to LTE, which may
constrain the scale of centralization even further in 5G unless
the 5G air interface designs a more flexible HARQ mechanism.

We also observe that to maximize the latency+jitter budget
available for the fronthaul, the latency+jitter consumed by the
baseband processing execution should be minimized. We will
show in Section IV that executing some of the baseband real-
time functions on General Purpose Processor and Linux
environments can potentially introduce significant jitter in the
execution time, and provide ways to minimize that.

III. MULTI-CELL COORDINATION

To deal with the growth in traffic demand, mobile wireless
networks are expected to densify by increased cell splitting as
well as addition of small cell underlays. As the cell sites get
closer together, interference in the network will significantly
increase. Further, the additional sites are likely to be more
poorly planned due to the lack of optimal site placement
options, as well as the effort required to optimize site
parameters such as antenna orientation and downtilt. Such sub-
optimal planning will add to the level of interference. To
combat interference, various forms of multi-cell coordination
are expected to be increasingly used. These may operate at a
slow time-scale, e.g. Enhanced Inter-Cell Interference
Coordination (EICIC) for heterogeneous networks, or at a fast
time-scale, e.g. Coordinated Scheduling and Dynamic Point
Selection for downlink, and Joint Reception for uplink [10].
LTE standards have been adding support for fast-time-scale
Coordinated Multi-Point (CoMP) transmission and reception,
such as richer channel state information feedback from user
equipment. Performance analysis of multi-cell coordination
schemes has shown that the latency of the information
exchange between cells and the bandwidth available for
coordination are key aspects which impact the multi-cell
coordination performance [11][12].

In Cloud RAN, depending on the functional split, the layer
at which coordination happens (i.e. Layer 1 (Physical Layer) or
Layer 2 (MAC Scheduler)) may be in the central site or at cell
sites, depending on the functional split, and correspondingly
the multi-cell coordination may operate within the centralized
site or in a distributed manner among the cell sites.

We observe that even when the relevant parts of the
baseband involved in multi-cell coordination (e.g. Physical
Layer or MAC/Scheduler) are centralized, coordination
between cells can be accomplished in a decentralized manner
within the central complex. That is, instead of bringing all the
relevant information (e.g. users’ channel conditions relative to
the different cells) together into a common central processor, it
is possible to achieve coordination in a decentralized manner
by exchanging appropriately chosen metrics among
coordinating cells. The baseband of the coordinating cells may
be in a centralized location, but even within the centralized
complex, the algorithm architecture can still be decentralized.

We propose the following framework for decentralized
algorithm architecture. The framework is illustrated in Figure 4
for the case where coordination happens at layer-2 Scheduler,
e.g. for Coordinated Scheduling or Dynamic Point Selection.

Scheduler

Decision

Making

Cell 1

2

1

3

4

5

2 4

2 4
2 4

Scheduler

Decision

Making
Cell 2

2

1

3

4

5
Scheduler

Decision

Making

Cell 3

2

1

3

4

5

Figure 4. Decentralized algorithm architecture for multi-cell
coordination.

In this example of the proposed framework for Scheduler-

based coordination, each cell has its own Scheduler, which is
instantiated at the cell site in the case of a distributed RAN and
as a separate entity (e.g. a virtual machine) in the case of Cloud
RAN. In Step 1, the Scheduler derives certain metrics which
provide a concise representation of the operation of the
Scheduler within that cell, with possibly separate metrics
derived by the cell for each coordinating neighbor. For
example, for Dynamic Point Selection with a Proportionally
Fair (PF) Scheduler [13], the metric may be the maximum or
average of the per-user PF metrics of the users within the cell,
or in the case of Coordinated Scheduling, it may be a Benefit
Metric quantifying the benefit to the cell if a given neighbor
were to mute [14]. In Step 2, the Scheduler of each cell
exchanges this metric with an appropriate set of neighbor cells.
Each cell has its own local Decision-making Function, which
in Step 3 uses its local information about its own users together
with the metrics received from neighbors in Step 2 to make a
decision on its coordination action (e.g. whether to mute on
certain resources for Coordinated Scheduling, or whether to
transfer a user to another cell for Dynamic Point Selection,
etc). In Step 4 each cell communicates its decision to the
relevant neighbors. In Step 5, each cell then performs its local
scheduling to allocate its resources among the users that are to
be transmitted from that cell. This decentralized algorithm
architecture enables a very scalable framework that gracefully
adapts to increasing density of cells, and works the same way
regardless of whether the coordination is within the central site
or distributed among the cell sites.

One key to obtaining efficient performance from multi-cell
coordination is that each cell should be able to coordinate with
the right set of neighbors. From a given cell’s perspective, it
should be able to coordinate with all cells from which it
receives (or towards which it causes) significant interference.
In contrast, a design that includes only a subset of a cell’s
significant interferers within the coordination cluster will be
suboptimal. Liquid Clusters are an efficient way of structuring
coordination cluster relationships to capture this notion. As
illustrated in Figure 5, each cell determines its appropriate set
of neighbors with whom coordination would be beneficial –
neighboring cells may determine their own (overlapping, but
non-identical) Liquid Clusters. Liquid Clusters are thus well
suited to the decentralized coordination algorithm architecture.

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

16

1

2

Liquid
Cluster
of Cell 1

Liquid
Cluster
of Cell 2

Figure 5. Liquid Clusters for multi-cell coordination.

In the context of Cloud RAN, this decentralized algorithm
architecture enables flexible placement of the coordinating
cells’ baseband functions (e.g. Schedulers) at any suitable
location within the cloud where processing resources are
available. For example, it does not require that the Schedulers
of coordinating cells be instantiated on the same physical
server. However, as noted earlier, the latency or bandwidth of
coordination impacts the achievable gain. In constructing its
Liquid Cluster, a cell may choose to exclude neighbor cells
which may be significant from an air interface perspective, but
due to poor latency or bandwidth available for coordination,
would not provide enough coordination benefit. So we propose
that the Cloud RAN should have an optimal placement
algorithm that decides the mapping or placement of baseband
functions of the various cells into the processors in the Cloud
infrastructure so as to maximize the coordination gain, taking
into account the topology and characteristics (e.g. latency,
bandwidth) of the network interconnecting the processors and
the potential implications on Liquid Clusters of the cells.

For functional splits where the coordination happens within
the central site, the performance will be impacted by the
latency of the fronthaul, whereas for other functional splits
where the same type of coordination is done in a distributed
manner among the cell sites, the performance will be impacted
by latency of the backhaul network interconnecting the sites.
We note here a key insight from [15] that the performance of a
multi-cell coordination technique in the centralized case, for a
given latency of fronthaul, will be no better than its
performance in the distributed case, if the backhaul latency is
the same as the fronthaul latency in the centralized case.

IV. REAL-TIME RAN FUNCTIONS ON GPPS/LINUX

Conventionally, baseband processing has been
implemented using special purpose processors such as Digital
Signal Processors (DSPs) and Systems-on-Chip (SOCs), using
real-time operating systems, due to the tight real-time
requirements of many baseband functions of 1ms or less. In
contrast, one of the key drivers for Cloud RAN is to maximize
the use of General-Purpose Processors (such as those based on
the Intel x86 Architecture or ARM), using general-purpose
operating systems like Linux. These GPP platforms have
traditionally been used for non-real-time functions, and are
more naturally applicable for baseband functionality without
tight real-time constraints e.g. PDCP or RRC. For some
functional splits the real-time portions of the baseband are also
desired to be centralized, and the question of the suitability of
GPP/Linux to these functions arises. For Layer-1, functions
such as turbo coding/decoding are quite heavy and can benefit
significantly from special instructions or accelerators in terms
of cost, power consumption, and form factor. Further, in the

march to 5G, radio standards will likely continue to evolve at
the edge of capability of dedicated hardware leaving a gap
between GPP capability and the most critical requirements for
the physical layer. Due to this, specialized hardware may
continue to remain suitable for Layer-1. However, for other
real-time parts of the baseband which are compute heavy, such
as the RLC/MAC and the Scheduler, GPP/Linux is a realistic
possibility, and we explore this in the following.

The Scheduler and MAC have to execute a certain set of
actions in every TTI (1ms in LTE, and expected to be even
smaller in 5G). The operating environment has to be able to
initiate the tasks every TTI with very low latency, and ensure
completion of the execution with very low variability
(execution jitter). The Linux kernel typically does not ensure
either of these. Special low-latency versions and real-time
patches of the kernel are possible, but they typically
compromise throughput performance to ensure real-time
response, and also violate the desire to have generic
environments for RAN and other functions.

Instead of using linux kernel interrupts to wake up tasks
every TTI, an alternative paradigm is to use a “run-to-
completion” execution model. Tasks (e.g. Scheduler or MAC
operation for a given TTI) wait in queues, and a “dispatcher” is
prioritizes the next task to be executed and provides it to one of
multiple software instances. For low-latency dispatching,
software instances poll the dispatcher for tasks, rather than
using linux kernel interrupts. The software instance executes
the provided task, and on finishing (“run-to-completion”) goes
back to check for the next task. A benefit of such a model is the
automatic load-balancing of tasks across multiple processor
cores. Open Event Machine [15] is an open-source framework
for a user-space run-to-completion model, and is a suitable
basis for real-time RAN baseband functions.

The linux kernel, however, does not necessarily guarantee
uninterrupted access of any particular software instance to the
underlying CPU core. This can cause significant variability in
the execution time. To understand the performance challenges
that a real-time application such as Scheduler or MAC faces,
we consider a simple CPU-bound application that iteratively
repeats some set of operations (e.g. arithmetic operations), and
examine its execution jitter i.e. variability in the execution time
of an iteration of the operation. Ideally the execution time of an
iteration should be constant, but in real-world scenarios,
significant variability is observed, as shown in Figure 6.

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300

Ex
ec
u
ti
o
n
 t
im

e
 (
u
s)

Iteration number

Figure 6. Variability in execution time on Linux.

Figure 6 shows observations on an Intel Xeon E5-2695v2
running Linux with kernel version 3.13.04-20-generic. Typical

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

17

execution time of an iteration is around 18us. However, for a
significant fraction of iterations, the maximum execution time
spikes to greater than 300 microseconds. Considering the LTE
TTI of 1 ms, and especially in 5G where the TTI is expected to
be much smaller, such variability in the execution time of
Scheduler or MAC would result in unacceptably high missed
TTI deadlines. We identify below potential causes of and
solutions for this variability.

 Linux kernel scheduler can migrate a process across cores.
To mitigate this, the RAN function process can be “pinned” to
a specific CPU core (“affinity”). The Linux kernel may
schedule other processes or kernel tasks on the core on which
the RAN function is running, due to which the RAN function
may not get continuous access to the core. To mitigate this, the
CPU core on which the application is running can be “isolated”
from other processes or kernel tasks. This can be
accomplished by either the isolcpus boot parameter, or
cgroups. The Linux kernel may service soft IRQs on the same
core as the desired application. Interrupt redirection can
mitigate this, e.g. by configuring the irqbalance daemon which
would otherwise service interrupts across all CPU cores. In
extreme cases, the fact that the linux kernel scheduler sends a
“tick” to each CPU core itself can cause some variability in the
application execution. If the RAN function is run inside a
virtual machine (VM), the actual physical CPUs (pCPUs) of
the host on which the VM’s virtual CPUs (vCPUs) are
executed may change, adding further variability. Pinning
specific vCPUs to pCPUs can mitigate this. System
Management Interrupts (SMIs) initiated from the BIOS can
take control of the processor away from the OS. These can
result in unpredictable outage for RAN real-time functions.
Their impact may be mitigated by disabling them. SMI
behavior, frequency and impact is dependent on the server
OEM, so it is essential that server OEMs allow proper control
of the SMIs to the OS or hypervisor.

Taken together, these mechanisms have the effect of
creating an essentially dedicated environment for RAN
functions, free from interruptions, on an otherwise non-real-
time processor-shared system like Linux. Using all these
mechanisms, Figure 7 shows the performance of the example
application above running on the same CPU and OS as in
Figure 6, on the host Linux (black line) and in a virtual
machine with the same guest kernel (red line).

10 20 30 40 50 60

0.
0

0
.2

0.
4

0
.6

0
.8

1
.0

CDF of Max execution time

Max execution time (us)

C
D

F

Figure 7. Cumulative Distribution Function (CDF) of execution jitter
on Linux.

It is seen that large spikes are eliminated, execution time
never exceeds 60ms, and is largely below 30us. We conclude
that for LTE TTI of 1ms, the potential variability introduced by
a generic linux environment can be brought to a tolerable range
of 30 to 60us. However, we note that for even shorter 5G TTIs,
such variability may still pose problems.

V. POOLING AND ELASTIC SCALING

A key objective for Cloud RAN is to enable dynamic right-
sizing of the processing resources based on the workload. In
this section, we take a look at design considerations for
mechanisms pooling across cells, load-balancing, and elastic
scaling, which are important for achieving this objective.

A conventional view is that Cloud RAN will consist of a
set of virtualized entities (e.g. Virtual Machines or Containers),
each serving one cell (a “virtualized cell”), as illustrated in
Figure 8, each using its own CPU cores. In the figure, “L2”
represents the RAN Layer-2 functions PDCP/RLC/MAC,
“Sch” stands for Scheduler, “Trs” represents the Transport
module that terminates GTP tunnels towards the gateway, and
“L3” represents the Radio Resource Control (RRC) signaling.
As noted earlier, Layer-1 (PHY) functions may possibly be not
virtualized, and hence are not shown below, but the following
concepts apply as well to Layer-1 if virtualized.

L2Sch

TrsL3

Cell 1

CPU CPU

CPU CPU

…
L2Sch

TrsL3

Cell 2

CPU CPU

CPU CPU

L2Sch

TrsL3

Cell K

CPU CPU

CPU CPU

Figure 8. Conventional view of Cloud RAN virtualized cells

In principle processor pooling can be achieved among these
per-cell VMs by sharing access to physical CPU cores via a
hypervisor such as KVM/Linux. However, because some of the
RAN functions of each cell have real-time constraints, a
generic processor-sharing hypervisor will not be able to ensure
that each cell’s functions will meet their deadlines in each TTI.
Further, more careful configuration is needed to ensure low
execution jitter as discussed in the previous section. Moreover,
each additional virtual machine can bring overheads e.g.
memory consumption and guest kernel overhead. So having
separate VMs for each cell may not be the best, especially for
low-traffic cells. In the following we propose a different
structure for the RAN that involves decomposing and
reassembling the RAN functions across cells to yield an
efficient overall structure that aims to maximize pooling
(statistical multiplexing) gains in terms of processor
allocations, while assuring deadlines are met.

We observe that some RAN functions operate on one user
at a time (per-user operations), while others operate on a cell
context at a time (per-cell operations). For example, the PDCP,
RLC, and MAC operations are per-user operations. The PDCP
layer performs ciphering and header compression, and when
processing any given packet, it only needs to access the context
of the user that the packet belongs to (e.g. bearer state,
ciphering key, sequence numbers, etc), regardless of the cell to
which the user is connected. In contrast, other functions such

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

18

as the Scheduler are per-cell functions, because a cell’s
Scheduler has to consider the state of all the users in the cell
(e.g. channel state and scheduling metrics of all users, and the
resources available to the cell) in order to make optimal
resource allocations. Figure 9 shows an illustration of per-user
and per-cell functions of the RAN.

Per-cell
operation

Per-user
operation

GTP-u-DL

Scheduler-DL

PHY-DL

PHY-DL

RLC-DL
MAC-DL

PDCP-DL PDCP-UL

PHY-UL

PHY-UL

GTP-u-UL

Scheduler-UL

UE-RRC

Cell-RRC
(Broadcast, SIB,

Paging)

Control
Plane

L2

L1

GTP

RLC-UL
MAC-UL

Figure 9. Per-cell and Per-user operations in RAN.

Based on this, we propose a structure called Horizontal
Aggregation for per-user functions, where instead of having
separate VMs for each cell, we have a set of VMs each of
which is capable of serving any user from any cell. Thus, for
example, we can have a set of VMs each of which is capable of
performing PDCP/RLC/MAC functions for any user from any
cell. Users can then be assigned to the PDCP/RLC/MAC VMs
in a load-balancing fashion – e.g. new users are assigned to a
VM on arrival based on the user or traffic distribution across
the VMs. Within a given VM, the processing of different users’
packets can be efficiently load-balanced across multiple vCPUs
using the Event Machine model [15]. On any given physical
server, it is enough to have only one PDCP/RLC/MAC VM to
minimize VM overhead, though one may choose to have more
than one to limit impacts of VM failure. Further, it is also
possible to ensure that the real-time functions (e.g. MAC) meet
their deadlines by treating the RLC/MAC tasks within the
PDCP/RLC/MAC as higher priority compared to the non-real-
time PDCP, e.g. with queues of different priorities in Open
Event Machine. Horizontal Aggregation thus efficiently
achieves pooling gains by allowing mixing of users across
cells, and efficiently sharing between real-time and non-real-
time functions.

Even for per-cell operations such as Scheduler, it is not
necessary to have separate VMs per cell. One can conceive of a
structure wherein a VM with a certain number of vCPUs can
serve the Schedulers of a group of cells. When a new cell is
added to the network, the cell’s Scheduler is assigned to one of
the existing Scheduler VMs in a load-balancing fashion. To
ensure that all cells’ Schedulers assigned to a given VM meet
their deadlines, the number of vCPUs (and corresponding
mapping to pCPUs) must be dimensioned to be sufficient to
ensure adequate processing resources. We also note here that
the decentralized algorithm architecture for multi-cell
coordination discussed in Section III allows a flexible mapping
of cells’ Schedulers to VMs. The Schedulers of different cells
can coordinate with other cells across the virtual interconnect
(e.g. virtual or physical switches), and a cell has flexibility to
include other cells in its liquid cluster regardless of whether
those cells are mapped to the same VM or not.

Thus, by decomposing the RAN functions of the various
cells and reassembling them into VMs for per-cell and per-user
operations, we reach a flexible structure that allows the right
type of pooling and scalability for each RAN function, as
illustrated in Figure 10.

L2
L2

L2
L2

L3
Trs

Trs
Sch

Sch
Sch L3

CPU CPU CPU CPU CPU CPU

Virtual inter-connect

Per-cell instances

Per-user functions:
Horizontal aggregation

Figure 10. Flexible structure for Cloud RAN based on decomposing
and reassembling the RAN functions.

 We note that the total processing resources consumed by
each type of function should be further dynamically modified
based on the workload, a concept known as elastic scaling
which was introduced in [15]. It was noted there that RAN
functions may have non-real-time bottlenecks as well as real-
time bottlenecks. For example, for the Layer-2
(PDCP/RLC/MAC), non-real-time bottlenecks may be
quantified by the number of queued packets awaiting PDCP
processing, while real-time bottlenecks may be quantified by
the frequency of missed deadlines by the RLC/MAC. An
algorithm for elastic scaling was proposed in [15], which takes
into account both the real-time and non-real-time bottlenecks.
We note one implication of elastic scaling based on the real-
time bottleneck in the context of the constraint introduced by
the LTE HARQ on the processing latency and fronthaul
latency+jitter noted in Section II. Even if the workload does
not change, if the fronthaul jitter or latency increases, that will
result in a real-time bottleneck for the processing resulting in
increased frequency of missed deadlines. Elastic scaling would
then trigger to increase the amount of processing available, so
as to finish the same workload in less time with more
processors, thus automatically counteracting the increase in the
fronthaul latency+jitter.

 We propose a framework for Elastic Scaling to enable
hyper-scale for RAN, by adapting both the number of cores
used by of each VM, as well as adapting the number of VMs to
exploit the availability of additional physical servers, while
ensuring that both real-time and non-real-time bottleneck
metrics meet targets. The framework is illustrated in Figure 11.

Core Core Core… Server

Core Core Core… Server

Core Core Core… Server

…

Scale-up: use additional CPU cores in node

Scale-out: when
one server is
“full”, use next

Figure 11. Combining scale-up and scale-out for RAN.

 Elastic Scaling can add vCPUs to an existing VM, called
scale-up. This can happen either by “vCPU hot-swap”, or
bringing already-initialized but idle vCPUs into service. As

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

19

noted in Section IV, to ensure low execution jitter for real-time
functions, a VM’s vCPUs may have to be pinned to suitably
isolated physical CPUs, and this action may have to be
dynamically undertaken when the elastic scaling logic decides
to add a vCPU to a VM. Elastic Scaling can also add a new
VM to perform a given function, called scale-out, e.g. when no
more pCPUs are available on existing VM hosts to allow
adding vCPUs to those VMs, elastic scaling can start a new
VM on another server with available pCPUs, load-balancing
across VMs by assigning users (for per-user functions) or cells
(for per-cell functions) across the VMs. When all physical
server CPU resources are used up, operators can simply
provision one more server. Our framework for Elastic Scaling
thus effectively utilizes both scale-up and scale-out to achieve
hyper-scale for RAN, as illustrated in Figure 11.

VI. VIRTUALIZED INFRASTRUCTURE MANAGEMENT AND

ORCHESTRATION

 A key objective of Cloud RAN is increase automation in
the deployment and lifecycle management of RAN functions.
The ETSI Network Functions Virtualization (NFV) industry
specifications group has developed a reference architectural
framework [18] to formalize the adaptation of datacenter cloud
management technologies such as virtualized infrastructure
management (VIM) and orchestration for Virtualized Network
Functions (VNFs), including RAN. In this section, we examine
how the needs of real-time RAN functions and the framework
for pooling and elastic scaling discussed in earlier sections
compares with the NFV framework. The NFV reference
architectural framework is shown in Figure 12.

Computing
Hardware

Storage
Hardware

Network
Hardware

Hardware resources

Virtualisation Layer
Virtualised

Infrastructur
e

Manager(s)

VNF
Manager(s

)
VNF 2

Orchestrato
rOSS/BSS

NFVI

VNF 3VNF 1

Execution reference
points

Main NFV reference
points

Other reference
points

Virtual
Computing

Virtual
Storage

Virtual
Network

EMS 2 EMS 3EMS 1

Service, VNF and
Infrastructure

Description

Or-Vi

Or-Vnfm

Vi-Vnfm

Os-Ma

Se-Ma

Ve-Vnfm

Nf-Vi

Vn-Nf

Vl-Ha

Figure 12. NFV reference architectural framework.

 The Virtualized Infrastructure Manager (VIM) interacts
with the hypervisor of a compute node to manage, initiate, and
terminate VMs. A VNF can consist of one or more VMs, also
known as VNF Components or VNFCs. The VNF Manager
interacts with the VM instances in a possibly application-
specific manner, and has an interface to the VIM to take
actions on VMs. The Orchestrator is expected to take a system-
wide view to determine the right actions to take across multiple
VNFs, and also has an interface to the VIM to take actions on
VMs. The VIM, VNF Manager, and Orchestrator are together
referred to as MANO (Management and Orchestration)

components. A common industry software which can serve as
a VIM is OpenStack which is often used in data centers in the
Information Technology (IT) industry to deploy and manage
VMs in a cloud infrastructure.

 We propose the following methodology for using NFV
architectural framework to facilitate Cloud RAN operations
such as the addition of a new cell, as illustrated in Figure 13.

1. Operator wants to add a new cell:
RRH Installed at Site,
Front-haul links/capacity added
Requisite compute available

NFV
Infrastructure

3. Provision resources for new cell

OSS/BSS

6. Configure all connectivity between different
RAN functions, RRHs, etc

Orchestrator + VNF
Manager + VIM

4. Assign new cell’s functions to existing or new RAN VM instances
Determine network connectivity needs for all RAN functions

5. Create (or scale) instances of all
required functions in appropriate
locations using VIM APIs

7. Resource Provisioning complete;
Cell Up

2. Gather info about Compute Nodes
Transport network status, usage

Figure 13. Framework for using the NFV architecture framework for
addition of a cell.

 Before a cell can be added, certain pre-requisites may have
to be first put in place, e.g. installing transport connectivity
such as fiber between the Cloud RAN and radio heads etc.
Depending on the functional split, certain baseband
functionality of the cell may have to reside at the cell site as
well. So we propose a broader definition of the NFV
infrastructure to include not just the centrally hosted processing
resources but the processing resources at the cell sites as well,
and potentially also the transport network interconnecting the
cell site to the centrally hosted processing. In our framework,
the NFV MANO components gather information (on a periodic
or event-driven basis) regarding the usage and status of the
NFV infrastructure and transport network. When the operator
management console (OSS/BSS) requests the addition of a new
cell, the NFV MANO components have to translate this
directive into a set of actions in the NFV infrastructure. In the
context of the horizontal aggregation structure we proposed in
Section V, the MANO components have to decide whether
existing VM instances are already suitable in terms of
resources and placement to host the functions for the new cell,
or whether elastic scaling needs to be invoked to scale-up (add
vCPUs/pCPUs to existing VMs) or scale-out (create new
VMs). Once this placement and scaling decision is made, the
VIM APIs are used to direct the NFV infrastructure compute
nodes to take the appropriate actions on the VMs, as well as
reconfigure the transport connectivity.

 We observed in Section IV that in order to ensure low
execution jitter for real-time RAN functions on GPP/Linux
compute nodes, a series of actions may be needed to create the
appropriate environment. These include pinning of guest VM
vCPUs to underlying physical CPUs, suitably isolating the
pCPUs to prevent other processes from taking time away from
the real-time RAN functions, etc. Further, certain RAN
functions such as the Layer-1 may need to be instantiated on
non-GPP hardware. These requirements are key to RAN
virtualization, and do not exist in conventional IT datacenter
VIM tools such as OpenStack. Thus we propose that in Step 5

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

20

in Figure 13, the VIM APIs that are used to instantiate the
RAN functions in the NFV Infrastructure need to have suitable
facilities to execute these actions on demand, taking the type of
hardware (GPP or non-GPP) into account.

 We proposed in Section III that the decision on placement
of certain functions for the new cell, such as the Scheduler,
should take into account the relationships between cells for
multi-cell coordination or carrier aggregation and potential
implications of the network topology interconnecting the
processors on the Liquid Clusters of various cells. We further
note that there are also real-time timing and bandwidth
requirements between the different functions of a cell, such as
Scheduler, RLC/MAC, and PHY, which may force constraints
on the relative placement of these functions. Moreover, the
possible need to place the PHY on certain dedicated, non-
virtualized hardware may further constrain the placement of
functions such as the MAC and Scheduler which interact with
the PHY. We propose that the VNF Manager or Orchestrator
jointly optimize the placement incorporating these constraints.

 We also propose a joint optimization for the elastic scaling
and placement decisions. As noted in Section IV, in order to
ensure low execution jitter for real-time RAN functions, it may
be necessary to pin a guest VM’s vCPUs to suitably isolated
pCPUs on the host. If either scale-up or scale-out is needed, the
placement decision needs to take into account the availability
of suitably isolated and unused pCPUs, and this results in the
scaling and placement decisions becoming a joint optimization.

VII. CONCLUSION

 In this paper, we investigated key challenges in achieving
the objectives of Cloud RAN, and proposed solutions. In
Section II, we examined some implications of functional splits,
wherein all or a portion of the baseband functionality is
centralized. We pointed out that the LTE HARQ loop limits the
achievable scale of centralization for functional splits where
the HARQ loop is terminated in the central site, and identified
a complex tradeoff that underlies the choice of functional split.
In Section III, we examined the architecture of multi-cell
coordination algorithms, proposing that they should be
designed to have a decentralized algorithm which will
maximize the flexibility of placement of RAN functions within
the RAN cloud as well as the benefit from multi-cell
coordination. In Section IV, we took a deeper look from a
software perspective at achieving real-time performance
suitable for RAN functions with GPP/Linux and virtualization,
proposing various techniques to improve the execution jitter. In
Section V, we proposed a flexible structure, based on
decomposing the RAN functions of the various cells and
reassembling them into per-cell and per-user components, that
allows the right type of pooling and scalability for each RAN
function. We showed how elastic scaling can help achieve
hyper-scale for RAN, exploiting both scaling-up of existing
VMs by adding cores as well as scaling out to additional
servers. In Section VI, for the application of cloud management
technologies such as VIM and orchestration for RAN
functions, we proposed a framework to translate radio-network
management actions such as addition of a cell into interactions
between the virtualized management and orchestration

functions and the compute infrastructure. We proposed that
special needs for RAN due to real-time constraints and a mix
of GPP and non-GPP hardware require extensions to the APIs.
We also proposed a joint optimization of the placement and
elastic scaling of RAN functions, taking into account the
interconnect between processors, multi-cell coordination
relationships between cells, timing constraints between RAN
functions, and special operations needed to assure low
execution jitter for real-time RAN functions.

ACKNOWLEDGMENT

The authors would like to acknowledge detailed technical
discussions with many colleagues in Nokia Networks, as well
as with wireless network operators in several countries.

REFERENCES
[1] Cisco, “Cisco VNI Global Mobile Data Traffic Forecast 2014-2019,”

Online at http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white_paper_c11-520862.html

[2] A. Checko et al, "Cloud RAN for Mobile Networks - A Technology
Overview,” IEEE Comm. Surveys and Tutorials, Vol. 17, No. 1, First
Quarter 2015.

[3] P. Rost et al, “Cloud Technologies for Flexible 5G Radio Access
Networks,” IEEE Comm. Mag., Vol. 52, No. 5, pp. 68-76, May 2014.

[4] 3GPP, “E-UTRA and E-UTRAN: Overall Description: Stage 2,” TS
36.300, Release 12, Dec. 2014.

[5] D. Lee et al, “Coordinated Multipoint Transmission and Reception in
LTE-Advanced: Deployment Scenarios and Operational Challenges,”
IEEE Comm. Mag., pp. 148-155, Feb. 2012.

[6] CPRI, “Common Public Radio Interface (CPRI): Interface
Specification,” version 6.1, July 2014. Online at http://www.cpri.info

[7] OBSAI, “Reference Point 3 Specification,” version 4.2. Online at
http://www.obsai.com

[8] NGMN Alliance, "Further Studies on Critical C-RAN Technologies,"
Version 1.0, March 2015. Online at
https://www.ngmn.org/uploads/media/NGMN_RANEV_D2_Further_St
udy_on_Critical_C-RAN_Technologes_v1.0.pdf

[9] S. Gulati et al, "Performance Analysis of Centralized RAN Deployment
with Non-ideal fronthaul in LTE-Advanced Networks," submitted to
IEEE VTC-Spring 2016.

[10] 3GPP, “Coordinated Multi-Point Operation for LTE Physical Layer
Aspects (Release 11),” TR36.819, v11.2.0, Sept. 2013.

[11] S. Gulati et al, “Performance Analysis of Distributed Multi-cell
Coordinated Scheduler,” in Proc. IEEE VTC-Fall 2015.

[12] D. Pengoria et al, “Performance of Co-Operative Uplink Reception with
Non-Ideal Backhaul,” in Proc. IEEE VTC Spring 2015.

[13] R. Agrawal et al, “Dynamic Point Selection for LTE-Advanced:
Algorithms and Performance,” in Proc. IEEE WCNC 2014.

[14] 3GPP, “X2 Application Protocol (X2-AP) Release 12,” TS 36.423,
v12.7.0, Sept. 2015.

[15] R. Agrawal et al, “Architecture Principles for Cloud RAN,” submitted to
IEEE VTC-Spring 2016.

[16] Open Event Machine Development Team, “Open Event Machine: An
event driven processing runtime for multicore,” Online at
http://sourceforge.net/projects/eventmachine

[17] ETSI, “Network Functions Virtualization: An Introduction, Benefits,
Enablers, Challenges & Call for Action,” Oct. 2012. Online at
https://portal.etsi.org/NFV/NFV_White_Paper.pdf

[18] ETSI, “Network Functions Virtualization (NFV): Architectural
Framework,” ETSI GS NFV 002 v1.1.1, Oct. 2013. Online at
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nf
v002v010101p.pdf

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

21

