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Abstract—In this paper we take an overall look at key 

technical challenges in the evolution of the Radio Access Network 
(RAN) architecture towards Cloud RAN, and solutions to 
overcome them. To address fronthaul limitations, we examine the 
implications and tradeoffs enabled by functional splits on 
fronthaul needs, system performance, and centralization scale. 
We examine the architecture of algorithms for multi-cell 
coordination and implications in a Cloud RAN environment. To 
maximize the use of General-Purpose Processors (GPP) and 
operating systems such as Linux for Cloud RAN, we propose 
methods of achieving real-time performance suitable for RAN 
functions.  To enable right-sizing the amount of compute used for 
various RAN functions based on the workload, we propose 
methods of pooling and elastic scaling for RAN functions that 
exploit the fact that certain RAN functions perform per-user 
operations while others perform per-cell operations. Cloud RAN 
also aims to use cloud management technologies such as 
virtualized infrastructure management (VIM) and orchestration 
for automating the instantiation and scaling of RAN functions. 
We identify special needs for RAN arising from real-time 
constraints and a mix of GPP and non-GPP hardware.  

Keywords—Cloud RAN, fronthaul, real-time, pooling, elastic 
scaling, multi-cell coordination, orchestration, NFV, 5G. 

I. INTRODUCTION  

As mobile data traffic demand rapidly grows [1], it is 
expected that mobile networks will have to add significant 
amounts of spectrum for the radio access network, as well as 
significantly increase the density of cells either by cell-splitting 
at the macro layer or by adding underlay small cells. Due to 
this, the amount of baseband processing needed will 
significantly increase, and further, there will be significantly 
higher levels of interference in the network due to the high 
density of cells. Cloud Radio Access Network (Cloud 
RAN)[2][3], in our terminology consisting of both 
centralization of processing resources for the RAN and use of 
cloud technologies, is a deployment paradigm that aims to 
achieve a significantly lower cost-per-bit in such a scenario. In 
conventional RAN deployments, baseband functions are 
typically distributed at the cell sites, whereas in Cloud RAN, 
all or portions of the baseband would be centralized, thereby 
reducing operating costs of cell sites by simpler site solutions 
and fewer site visits for maintenance and upgrades. Cloud 
RAN aims to maximize the use of general purpose processors 
(GPPs) such as Intel x86 and ARM for RAN functions, thereby 
simplifying procurement, enabling reuse of hardware across 
RAN and other network functions, and leveraging economies 
of scale due to GPP use in the IT industry. Similar to cloud 
technologies used in datacenters in the IT industry, Cloud RAN 
aims to maximize scalability and minimize over-provisioning 
of processing resources by right-sizing the amount of 
processing used to the workload. Cloud RAN aims to increase 

automation in the deployment and lifecycle management of 
RAN functions by leveraging datacenter cloud management 
technologies like virtualized infrastructure management (VIM) 
and orchestration. To combat high levels of interference, Cloud 
RAN aims to enable better performance of multi-cell 
coordination algorithms than conventional RAN deployments. 
In this paper, we investigate challenges for these objectives of 
Cloud RAN, and identify solution approaches. 

When some or all portions of the baseband are centralized, 
the network interconnecting the central portion to the cell sites 
is termed as fronthaul. The ideal transport medium for today’s 
fronthaul is dark point-to-point fiber, but this is not widely 
available. More widely available transport such as Metro 
Ethernet may be constrained in bandwidth or may provide 
higher latency or jitter. To address fronthaul limitations, in 
Section II, we examine the implications and tradeoffs enabled 
by functional splits on fronthaul needs, system performance, 
and centralization scale. In Section III, we examine the 
architecture of multi-cell coordination algorithms and 
implications in a Cloud RAN environment. We make the case 
that multi-cell coordination algorithms should be designed to 
have a decentralized algorithm architecture and use a flexible 
coordination cluster design, so as to maximize the flexibility of 
placing RAN functions within the RAN cloud as well as the 
benefit from multi-cell coordination. A key challenge in the 
use of GPP/Linux environments for RAN functions is that 
RAN functions have real-time constraints at the millisecond 
level. In Section IV, we propose methods of achieving such 
real-time performance. To right-size the amount of compute 
used for various RAN functions based on the workload, we 
propose methods of pooling, elasticity, and load-balancing for 
RAN functions in Section V, exploiting the fact that certain 
RAN functions perform per-user operations while others 
perform per-cell operations. For the application of cloud 
management technologies such as VIM and orchestration for 
RAN functions, we identify special needs for RAN arising 
from real-time needs and supporting a mix of GPP and non-
GPP hardware in Section VI that should be taken into account 
as these technologies are adapted for RAN in forums such as 
ETSI NFV. While our focus is on LTE, we also consider 
implications of 5G on various aspects of Cloud RAN. 

II. FRONTHAUL AND FUNCTIONAL SPLITS 

In traditional Centralized RAN deployments, conventional 
baseband units are housed in a centralized location (a so-called 
“BTS hotel”) and interconnected to the radio heads at the cell 
sites with fiber, typically dark point-to-point fiber. The 
protocol used over the fiber is typically CPRI [6] or OBSAI 
RP3 [7]. These protocols have very stringent latency and jitter 
requirements, typically less than 200us, and result in outage if 
the requirements are not met. Further, the dark fiber needed to 

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

14



ensure adequate bandwidth and low latency/jitter for CPRI or 
OBSAI is not widely available. As 5G calls for sub-ms RTT at 
air interface and use of massive MIMO, the latency and 
bandwidth scalability challenge becomes even more 
pronounced. More widely available transport such as Metro 
Ethernet is typically packet-switched transport, however, and 
thus typically has higher jitter than what CPRI or OBSAI can 
tolerate, and further may impose bandwidth constraints as well. 

To make efficient use of more widely available transport 
options, one approach is to not centralize all the baseband 
functions, but centralize a subset leaving the rest at the cell 
sites. A range of such functional splits are possible, each of 
which presents different needs on bandwidth and latency and 
tolerance to jitter on the fronthaul. Figure 1 illustrates a family 
of such functional splits. Bandwidth needs of various 
functional splits have been analyzed in [8]. Our focus here is to 
present some key insights and tradeoffs in functional splits.  
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Figure 1. Functional Splits. 
 

We observe that in LTE, the HARQ loop and limit on the 
number of HARQ processes impose constraints on the 
fronthaul and processing latency for functional splits where the 
HARQ loop is terminated in the central site. This is illustrated 
in Figure 2 for FDD-LTE for the functional split where all 
baseband functions are centralized. A similar constraint also 
applies to TDD-LTE. For an ack/nack transmission sent by the 
user equipment (UE) in TTI n, the RAN’s radio Scheduler 
must process the ack/nack and grant a fresh transmission or 
retransmission to be transmitted over the air in TTI n+4 to 
ensure peak throughput. If the RAN cannot meet this, e.g. 
because of latency or jitter in the fronthaul or in processing, 
TTIs have to be skipped, leading to a loss of air interface 
throughput as quantified in [9]. 
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Figure 2. LTE-FDD HARQ constraint on latency. 
 

This has several ramifications. First, the total latency plus 
jitter of the fronthaul must be such as to allow finishing the 
HARQ-related baseband processing within 3ms (i.e. from TTI 
n+1 to TTI n+3) to avoid a loss in air interface throughput. In 

this sense, jitter on the fronthaul is like additional latency that 
must be accounted for in the time budget. Second, we observe 
that this bounds the distance between the cell site and central 
location, limiting the scale of centralization. Centralization 
scale is typically tied to the ability to extract pooling gains and 
other cloud benefits. For example, if the baseband processing 
consumes 2.5ms, that leaves 0.5ms for the round-trip fronthaul 
latency plus jitter, which constrains the distance for light 
propagation in optic fiber to a maximum of around 50km. In a 
real network fiber is not typically laid along geodesic lines 
from the cell sites to the central site, so the limitation on 
geographic distance between the cell sites and central site in a 
real network may be even worse. Large-scale centralization is 
thus not realistic for such functional splits – a Cloud RAN 
deployment for such splits may thus consist of multiple Cloud 
RAN hosting locations distributed fairly close to the cell sites.  

In contrast, for functional splits where the HARQ loop is 
terminated at the cell site (e.g. where only non-real-time parts 
of Layer-2 (PDC) and Layer-3 (RRC) are centralized), it is 
possible to achieve larger-scale centralization; however since a 
significant portion of baseband functionality is left at the cell 
sites in these splits, the potential benefits of Cloud RAN such 
as lower OpEx and higher pooling gains would be reduced as 
well. Thus in choosing the functional split for their network 
deployment, operators are faced with a multi-dimensional 
tradeoff between conflicting objectives of reducing the 
bandwidth needs by leaving more functionality at the cell site, 
relaxing the tolerable latency and jitter, achieving greater 
operational benefits by greater scale of centralization, 
maximizing air interface performance, and cost/complexity.  

An example illustration of such a tradeoff is shown in 
Figure 3 with some qualitative scoring of current Distributed 
RAN and CPRI-based Centralized RAN architectures. Hybrid 
functional-split-based architectures seek to achieve a better 
overall tradeoff weighing pros and cons within specific 
operator’s conditions. A methodology to evaluate this type of 
tradeoff has been proposed in [15].  
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Figure 3. Multi-dimensional tradeoff for functional splits. 
 

In dense metro areas where the density of cells is high, 
there may be hundreds of cells within a few kilometers of 
cloud RAN centralization sites such as central offices, so 
significant scale of centralization may be obtained even using 
central sites that are near the cell sites. Further, the availability 
of low-latency fiber is typically also easier in dense metros. 
Thus the HARQ loop can be more easily centralized, and such 
areas may be sweet spots for maximal Cloud RAN benefits.  
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In 5G, it is anticipated that TTI duration will be even 
shorter than the LTE TTI of 1ms, while the carrier bandwidths 
are expected to be significantly larger than the 20MHz in LTE. 
This means that the processing execution time may increase, 
while in principle the total time budget available for fronthaul 
and processing will shrink compared to LTE, which may 
constrain the scale of centralization even further in 5G unless 
the 5G air interface designs a more flexible HARQ mechanism. 

We also observe that to maximize the latency+jitter budget 
available for the fronthaul, the latency+jitter consumed by the 
baseband processing execution should be minimized. We will 
show in Section IV that executing some of the baseband real-
time functions on General Purpose Processor and Linux 
environments can potentially introduce significant jitter in the 
execution time, and provide ways to minimize that. 

III. MULTI-CELL COORDINATION 

To deal with the growth in traffic demand, mobile wireless 
networks are expected to densify by increased cell splitting as 
well as addition of small cell underlays. As the cell sites get 
closer together, interference in the network will significantly 
increase. Further, the additional sites are likely to be more 
poorly planned due to the lack of optimal site placement 
options, as well as the effort required to optimize site 
parameters such as antenna orientation and downtilt. Such sub-
optimal planning will add to the level of interference. To 
combat interference, various forms of multi-cell coordination 
are expected to be increasingly used. These may operate at a 
slow time-scale, e.g. Enhanced Inter-Cell Interference 
Coordination (EICIC) for heterogeneous networks, or at a fast 
time-scale, e.g. Coordinated Scheduling and Dynamic Point 
Selection for downlink, and Joint Reception for uplink [10]. 
LTE standards have been adding support for fast-time-scale 
Coordinated Multi-Point (CoMP) transmission and reception, 
such as richer channel state information feedback from user 
equipment. Performance analysis of multi-cell coordination 
schemes has shown that the latency of the information 
exchange between cells and the bandwidth available for 
coordination are key aspects which impact the multi-cell 
coordination performance [11][12].  

In Cloud RAN, depending on the functional split, the layer 
at which coordination happens (i.e. Layer 1 (Physical Layer) or 
Layer 2 (MAC Scheduler)) may be in the central site or at cell 
sites, depending on the functional split, and correspondingly 
the multi-cell coordination may operate within the centralized 
site or in a distributed manner among the cell sites.  

We observe that even when the relevant parts of the 
baseband involved in multi-cell coordination (e.g. Physical 
Layer or MAC/Scheduler) are centralized, coordination 
between cells can be accomplished in a decentralized manner 
within the central complex. That is, instead of bringing all the 
relevant information (e.g. users’ channel conditions relative to 
the different cells) together into a common central processor, it 
is possible to achieve coordination in a decentralized manner 
by exchanging appropriately chosen metrics among 
coordinating cells. The baseband of the coordinating cells may 
be in a centralized location, but even within the centralized 
complex, the algorithm architecture can still be decentralized. 

We propose the following framework for decentralized 
algorithm architecture. The framework is illustrated in Figure 4 
for the case where coordination happens at layer-2 Scheduler, 
e.g. for Coordinated Scheduling or Dynamic Point Selection.  
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Figure 4. Decentralized algorithm architecture for multi-cell 
coordination. 

 
In this example of the proposed framework for Scheduler-

based coordination, each cell has its own Scheduler, which is 
instantiated at the cell site in the case of a distributed RAN and 
as a separate entity (e.g. a virtual machine) in the case of Cloud 
RAN. In Step 1, the Scheduler derives certain metrics which 
provide a concise representation of the operation of the 
Scheduler within that cell, with possibly separate metrics 
derived by the cell for each coordinating neighbor. For 
example, for Dynamic Point Selection with a Proportionally 
Fair (PF) Scheduler [13], the metric may be the maximum or 
average of the per-user PF metrics of the users within the cell, 
or in the case of Coordinated Scheduling, it may be a Benefit 
Metric quantifying the benefit to the cell if a given neighbor 
were to mute [14]. In Step 2, the Scheduler of each cell 
exchanges this metric with an appropriate set of neighbor cells. 
Each cell has its own local Decision-making Function, which 
in Step 3 uses its local information about its own users together 
with the metrics received from neighbors in Step 2 to make a 
decision on its coordination action (e.g. whether to mute on 
certain resources for Coordinated Scheduling, or whether to 
transfer a user to another cell for Dynamic Point Selection, 
etc). In Step 4 each cell communicates its decision to the 
relevant neighbors. In Step 5, each cell then performs its local 
scheduling to allocate its resources among the users that are to 
be transmitted from that cell. This decentralized algorithm 
architecture enables a very scalable framework that gracefully 
adapts to increasing density of cells, and works the same way 
regardless of whether the coordination is within the central site 
or distributed among the cell sites. 

One key to obtaining efficient performance from multi-cell 
coordination is that each cell should be able to coordinate with 
the right set of neighbors. From a given cell’s perspective, it 
should be able to coordinate with all cells from which it 
receives (or towards which it causes) significant interference. 
In contrast, a design that includes only a subset of a cell’s 
significant interferers within the coordination cluster will be 
suboptimal. Liquid Clusters are an efficient way of structuring 
coordination cluster relationships to capture this notion. As 
illustrated in Figure 5, each cell determines its appropriate set 
of neighbors with whom coordination would be beneficial – 
neighboring cells may determine their own (overlapping, but 
non-identical) Liquid Clusters. Liquid Clusters are thus well 
suited to the decentralized coordination algorithm architecture.  
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Figure 5. Liquid Clusters for multi-cell coordination. 
 

In the context of Cloud RAN, this decentralized algorithm 
architecture enables flexible placement of the coordinating 
cells’ baseband functions (e.g. Schedulers) at any suitable 
location within the cloud where processing resources are 
available. For example, it does not require that the Schedulers 
of coordinating cells be instantiated on the same physical 
server. However, as noted earlier, the latency or bandwidth of 
coordination impacts the achievable gain. In constructing its 
Liquid Cluster, a cell may choose to exclude neighbor cells 
which may be significant from an air interface perspective, but 
due to poor latency or bandwidth available for coordination, 
would not provide enough coordination benefit. So we propose 
that the Cloud RAN should have an optimal placement 
algorithm that decides the mapping or placement of baseband 
functions of the various cells into the processors in the Cloud 
infrastructure so as to maximize the coordination gain, taking 
into account the topology and characteristics (e.g. latency, 
bandwidth) of the network interconnecting the processors and 
the potential implications on Liquid Clusters of the cells.  

For functional splits where the coordination happens within 
the central site, the performance will be impacted by the 
latency of the fronthaul, whereas for other functional splits 
where the same type of coordination is done in a distributed 
manner among the cell sites, the performance will be impacted 
by latency of the backhaul network interconnecting the sites. 
We note here a key insight from [15] that the performance of a 
multi-cell coordination technique in the centralized case, for a 
given latency of fronthaul, will be no better than its 
performance in the distributed case, if the backhaul latency is 
the same as the fronthaul latency in the centralized case.  

IV. REAL-TIME RAN FUNCTIONS ON GPPS/LINUX 

Conventionally, baseband processing has been 
implemented using special purpose processors such as Digital 
Signal Processors (DSPs) and Systems-on-Chip (SOCs), using 
real-time operating systems, due to the tight real-time 
requirements of many baseband functions of 1ms or less. In 
contrast, one of the key drivers for Cloud RAN is to maximize 
the use of General-Purpose Processors (such as those based on 
the Intel x86 Architecture or ARM), using general-purpose 
operating systems like Linux. These GPP platforms have 
traditionally been used for non-real-time functions, and are 
more naturally applicable for baseband functionality without 
tight real-time constraints e.g. PDCP or RRC. For some 
functional splits the real-time portions of the baseband are also 
desired to be centralized, and the question of the suitability of 
GPP/Linux to these functions arises. For Layer-1, functions 
such as turbo coding/decoding are quite heavy and can benefit 
significantly from special instructions or accelerators in terms 
of cost, power consumption, and form factor. Further, in the 

march to 5G, radio standards will likely continue to evolve at 
the edge of capability of dedicated hardware leaving a gap 
between GPP capability and the most critical requirements for 
the physical layer. Due to this, specialized hardware may 
continue to remain suitable for Layer-1. However, for other 
real-time parts of the baseband which are compute heavy, such 
as the RLC/MAC and the Scheduler, GPP/Linux is a realistic 
possibility, and we explore this in the following.  

The Scheduler and MAC have to execute a certain set of 
actions in every TTI (1ms in LTE, and expected to be even 
smaller in 5G). The operating environment has to be able to 
initiate the tasks every TTI with very low latency, and ensure 
completion of the execution with very low variability 
(execution jitter). The Linux kernel typically does not ensure 
either of these. Special low-latency versions and real-time 
patches of the kernel are possible, but they typically 
compromise throughput performance to ensure real-time 
response, and also violate the desire to have generic 
environments for RAN and other functions.  

Instead of using linux kernel interrupts to wake up tasks 
every TTI, an alternative paradigm is to use a “run-to-
completion” execution model. Tasks (e.g. Scheduler or MAC 
operation for a given TTI) wait in queues, and a “dispatcher” is 
prioritizes the next task to be executed and provides it to one of 
multiple software instances. For low-latency dispatching, 
software instances poll the dispatcher for tasks, rather than 
using linux kernel interrupts. The software instance executes 
the provided task, and on finishing (“run-to-completion”) goes 
back to check for the next task. A benefit of such a model is the 
automatic load-balancing of tasks across multiple processor 
cores. Open Event Machine [15] is an open-source framework 
for a user-space run-to-completion model, and is a suitable 
basis for real-time RAN baseband functions.  

The linux kernel, however, does not necessarily guarantee 
uninterrupted access of any particular software instance to the 
underlying CPU core. This can cause significant variability in 
the execution time. To understand the performance challenges 
that a real-time application such as Scheduler or MAC faces, 
we consider a simple CPU-bound application that iteratively 
repeats some set of operations (e.g. arithmetic operations), and 
examine its execution jitter i.e. variability in the execution time 
of an iteration of the operation. Ideally the execution time of an 
iteration should be constant, but in real-world scenarios, 
significant variability is observed, as shown in Figure 6.  
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Figure 6. Variability in execution time on Linux. 
 

Figure 6 shows observations on an Intel Xeon E5-2695v2 
running Linux with kernel version 3.13.04-20-generic. Typical 
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execution time of an iteration is around 18us. However, for a 
significant fraction of iterations, the maximum execution time 
spikes to greater than 300 microseconds. Considering the LTE 
TTI of 1 ms, and especially in 5G where the TTI is expected to 
be much smaller, such variability in the execution time of 
Scheduler or MAC would result in unacceptably high missed 
TTI deadlines. We identify below potential causes of and 
solutions for this variability.  

 Linux kernel scheduler can migrate a process across cores. 
To mitigate this, the RAN function process can be “pinned” to 
a specific CPU core (“affinity”). The Linux kernel may 
schedule other processes or kernel tasks on the core on which 
the RAN function is running, due to which the RAN function 
may not get continuous access to the core. To mitigate this, the 
CPU core on which the application is running can be “isolated” 
from other processes or kernel tasks.  This can be 
accomplished by either the isolcpus boot parameter, or 
cgroups. The Linux kernel may service soft IRQs on the same 
core as the desired application. Interrupt redirection can 
mitigate this, e.g. by configuring the irqbalance daemon which 
would otherwise service interrupts across all CPU cores. In 
extreme cases, the fact that the linux kernel scheduler sends a 
“tick” to each CPU core itself can cause some variability in the 
application execution. If the RAN function is run inside a 
virtual machine (VM), the actual physical CPUs (pCPUs) of 
the host on which the VM’s virtual CPUs (vCPUs) are 
executed may change, adding further variability. Pinning 
specific vCPUs to pCPUs can mitigate this. System 
Management Interrupts (SMIs) initiated from the BIOS can 
take control of the processor away from the OS. These can 
result in unpredictable outage for RAN real-time functions. 
Their impact may be mitigated by disabling them. SMI 
behavior, frequency and impact is dependent on the server 
OEM, so it is essential that server OEMs allow proper control 
of the SMIs to the OS or hypervisor. 

Taken together, these mechanisms have the effect of 
creating an essentially dedicated environment for RAN 
functions, free from interruptions, on an otherwise non-real-
time processor-shared system like Linux. Using all these 
mechanisms, Figure 7 shows the performance of the example 
application above running on the same CPU and OS as in 
Figure 6, on the host Linux (black line) and in a virtual 
machine with the same guest kernel (red line).  
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Figure 7. Cumulative Distribution Function (CDF) of execution jitter 
on Linux. 

It is seen that large spikes are eliminated, execution time 
never exceeds 60ms, and is largely below 30us. We conclude 
that for LTE TTI of 1ms, the potential variability introduced by 
a generic linux environment can be brought to a tolerable range 
of 30 to 60us. However, we note that for even shorter 5G TTIs, 
such variability may still pose problems. 

V. POOLING AND ELASTIC SCALING 

A key objective for Cloud RAN is to enable dynamic right-
sizing of the processing resources based on the workload. In 
this section, we take a look at design considerations for 
mechanisms pooling across cells, load-balancing, and elastic 
scaling, which are important for achieving this objective. 

A conventional view is that Cloud RAN will consist of a 
set of virtualized entities (e.g. Virtual Machines or Containers), 
each serving one cell (a “virtualized cell”), as illustrated in 
Figure 8, each using its own CPU cores. In the figure, “L2” 
represents the RAN Layer-2 functions PDCP/RLC/MAC, 
“Sch” stands for Scheduler, “Trs” represents the Transport 
module that terminates GTP tunnels towards the gateway, and 
“L3” represents the Radio Resource Control (RRC) signaling. 
As noted earlier, Layer-1 (PHY) functions may possibly be not 
virtualized, and hence are not shown below, but the following 
concepts apply as well to Layer-1 if virtualized.  
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Figure 8. Conventional view of Cloud RAN virtualized cells 
 

In principle processor pooling can be achieved among these 
per-cell VMs by sharing access to physical CPU cores via a 
hypervisor such as KVM/Linux. However, because some of the 
RAN functions of each cell have real-time constraints, a 
generic processor-sharing hypervisor will not be able to ensure 
that each cell’s functions will meet their deadlines in each TTI. 
Further, more careful configuration is needed to ensure low 
execution jitter as discussed in the previous section. Moreover, 
each additional virtual machine can bring overheads e.g. 
memory consumption and guest kernel overhead. So having 
separate VMs for each cell may not be the best, especially for 
low-traffic cells. In the following we propose a different 
structure for the RAN that involves decomposing and 
reassembling the RAN functions across cells to yield an 
efficient overall structure that aims to maximize pooling 
(statistical multiplexing) gains in terms of processor 
allocations, while assuring deadlines are met. 

We observe that some RAN functions operate on one user 
at a time (per-user operations), while others operate on a cell 
context at a time (per-cell operations). For example, the PDCP, 
RLC, and MAC operations are per-user operations. The PDCP 
layer performs ciphering and header compression, and when 
processing any given packet, it only needs to access the context 
of the user that the packet belongs to (e.g. bearer state, 
ciphering key, sequence numbers, etc), regardless of the cell to 
which the user is connected. In contrast, other functions such 
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as the Scheduler are per-cell functions, because a cell’s 
Scheduler has to consider the state of all the users in the cell 
(e.g. channel state and scheduling metrics of all users, and the 
resources available to the cell) in order to make optimal 
resource allocations. Figure 9 shows an illustration of per-user 
and per-cell functions of the RAN. 
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Figure 9. Per-cell and Per-user operations in RAN. 
 

Based on this, we propose a structure called Horizontal 
Aggregation for per-user functions, where instead of having 
separate VMs for each cell, we have a set of VMs each of 
which is capable of serving any user from any cell. Thus, for 
example, we can have a set of VMs each of which is capable of 
performing PDCP/RLC/MAC functions for any user from any 
cell. Users can then be assigned to the PDCP/RLC/MAC VMs 
in a load-balancing fashion – e.g. new users are assigned to a 
VM on arrival based on the user or traffic distribution across 
the VMs. Within a given VM, the processing of different users’ 
packets can be efficiently load-balanced across multiple vCPUs 
using the Event Machine model [15]. On any given physical 
server, it is enough to have only one PDCP/RLC/MAC VM to 
minimize VM overhead, though one may choose to have more 
than one to limit impacts of VM failure. Further, it is also 
possible to ensure that the real-time functions (e.g. MAC) meet 
their deadlines by treating the RLC/MAC tasks within the 
PDCP/RLC/MAC as higher priority compared to the non-real-
time PDCP, e.g. with queues of different priorities in Open 
Event Machine. Horizontal Aggregation thus efficiently 
achieves pooling gains by allowing mixing of users across 
cells, and efficiently sharing between real-time and non-real-
time functions. 

Even for per-cell operations such as Scheduler, it is not 
necessary to have separate VMs per cell. One can conceive of a 
structure wherein a VM with a certain number of vCPUs can 
serve the Schedulers of a group of cells. When a new cell is 
added to the network, the cell’s Scheduler is assigned to one of 
the existing Scheduler VMs in a load-balancing fashion. To 
ensure that all cells’ Schedulers assigned to a given VM meet 
their deadlines, the number of vCPUs (and corresponding 
mapping to pCPUs) must be dimensioned to be sufficient to 
ensure adequate processing resources. We also note here that 
the decentralized algorithm architecture for multi-cell 
coordination discussed in Section III allows a flexible mapping 
of cells’ Schedulers to VMs. The Schedulers of different cells 
can coordinate with other cells across the virtual interconnect 
(e.g. virtual or physical switches), and a cell has flexibility to 
include other cells in its liquid cluster regardless of whether 
those cells are mapped to the same VM or not. 

Thus, by decomposing the RAN functions of the various 
cells and reassembling them into VMs for per-cell and per-user 
operations, we reach a flexible structure that allows the right 
type of pooling and scalability for each RAN function, as 
illustrated in Figure 10. 
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Figure 10. Flexible structure for Cloud RAN based on decomposing 
and reassembling the RAN functions. 

 
 We note that the total processing resources consumed by 
each type of function should be further dynamically modified 
based on the workload, a concept known as elastic scaling 
which was introduced in [15].  It was noted there that RAN 
functions may have non-real-time bottlenecks as well as real-
time bottlenecks. For example, for the Layer-2 
(PDCP/RLC/MAC), non-real-time bottlenecks may be 
quantified by the number of queued packets awaiting PDCP 
processing, while real-time bottlenecks may be quantified by 
the frequency of missed deadlines by the RLC/MAC. An 
algorithm for elastic scaling was proposed in [15], which takes 
into account both the real-time and non-real-time bottlenecks. 
We note one implication of elastic scaling based on the real-
time bottleneck in the context of the constraint introduced by 
the LTE HARQ on the processing latency and fronthaul 
latency+jitter noted in Section II. Even if the workload does 
not change, if the fronthaul jitter or latency increases, that will 
result in a real-time bottleneck for the processing resulting in 
increased frequency of missed deadlines. Elastic scaling would 
then trigger to increase the amount of processing available, so 
as to finish the same workload in less time with more 
processors, thus automatically counteracting the increase in the 
fronthaul latency+jitter. 

 We propose a framework for Elastic Scaling to enable 
hyper-scale for RAN, by adapting both the number of cores 
used by of each VM, as well as adapting the number of VMs to 
exploit the availability of additional physical servers, while 
ensuring that both real-time and non-real-time bottleneck 
metrics meet targets. The framework is illustrated in Figure 11.  
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Figure 11. Combining scale-up and scale-out for RAN. 
 

 Elastic Scaling can add vCPUs to an existing VM, called 
scale-up. This can happen either by “vCPU hot-swap”, or 
bringing already-initialized but idle vCPUs into service. As 
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noted in Section IV, to ensure low execution jitter for real-time 
functions, a VM’s vCPUs may have to be pinned to suitably 
isolated physical CPUs, and this action may have to be 
dynamically undertaken when the elastic scaling logic decides 
to add a vCPU to a VM. Elastic Scaling can also add a new 
VM to perform a given function, called scale-out, e.g. when no 
more pCPUs are available on existing VM hosts to allow 
adding vCPUs to those VMs, elastic scaling can start a new 
VM on another server with available pCPUs, load-balancing 
across VMs by assigning users (for per-user functions) or cells 
(for per-cell functions) across the VMs. When all physical 
server CPU resources are used up, operators can simply 
provision one more server. Our framework for Elastic Scaling 
thus effectively utilizes both scale-up and scale-out to achieve 
hyper-scale for RAN, as illustrated in Figure 11. 

VI. VIRTUALIZED INFRASTRUCTURE MANAGEMENT AND 

ORCHESTRATION 

 A key objective of Cloud RAN is increase automation in 
the deployment and lifecycle management of RAN functions. 
The ETSI Network Functions Virtualization (NFV) industry 
specifications group has developed a reference architectural 
framework [18] to formalize the adaptation of datacenter cloud 
management technologies such as virtualized infrastructure 
management (VIM) and orchestration for Virtualized Network 
Functions (VNFs), including RAN. In this section, we examine 
how the needs of real-time RAN functions and the framework 
for pooling and elastic scaling discussed in earlier sections 
compares with the NFV framework. The NFV reference 
architectural framework  is shown in Figure 12. 
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Figure 12. NFV reference architectural framework. 
 

 The Virtualized Infrastructure Manager (VIM) interacts 
with the hypervisor of a compute node to manage, initiate, and 
terminate VMs. A VNF can consist of one or more VMs, also 
known as VNF Components or VNFCs. The VNF Manager 
interacts with the VM instances in a possibly application-
specific manner, and has an interface to the VIM to take 
actions on VMs. The Orchestrator is expected to take a system-
wide view to determine the right actions to take across multiple 
VNFs, and also has an interface to the VIM to take actions on 
VMs. The VIM, VNF Manager, and Orchestrator are together 
referred to as MANO (Management and Orchestration) 

components. A common industry software which can serve as 
a VIM is OpenStack which is often used in data centers in the 
Information Technology (IT) industry to deploy and manage 
VMs in a cloud infrastructure. 

 We propose the following methodology for using NFV 
architectural framework to facilitate Cloud RAN operations 
such as the addition of a new cell, as illustrated in Figure 13.  
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2. Gather info about Compute Nodes 
Transport network status, usage

 

Figure 13. Framework for using the NFV architecture framework for 
addition of a cell. 

 
 Before a cell can be added, certain pre-requisites may have 
to be first put in place, e.g. installing transport connectivity 
such as fiber between the Cloud RAN and radio heads etc. 
Depending on the functional split, certain baseband 
functionality of the cell may have to reside at the cell site as 
well. So we propose a broader definition of the NFV 
infrastructure to include not just the centrally hosted processing 
resources but the processing resources at the cell sites as well, 
and potentially also the transport network interconnecting the 
cell site to the centrally hosted processing. In our framework, 
the NFV MANO components gather information (on a periodic 
or event-driven basis) regarding the usage and status of the 
NFV infrastructure and transport network. When the operator 
management console (OSS/BSS) requests the addition of a new 
cell, the NFV MANO components have to translate this 
directive into a set of actions in the NFV infrastructure. In the 
context of the horizontal aggregation structure we proposed in 
Section V, the MANO components have to decide whether 
existing VM instances are already suitable in terms of 
resources and placement to host the functions for the new cell, 
or whether elastic scaling needs to be invoked to scale-up (add 
vCPUs/pCPUs to existing VMs) or scale-out (create new 
VMs). Once this placement and scaling decision is made, the 
VIM APIs are used to direct the NFV infrastructure compute 
nodes to take the appropriate actions on the VMs, as well as 
reconfigure the transport connectivity.  

 We observed in Section IV that in order to ensure low 
execution jitter for real-time RAN functions on GPP/Linux 
compute nodes, a series of actions may be needed to create the 
appropriate environment. These include pinning of guest VM 
vCPUs to underlying physical CPUs, suitably isolating the 
pCPUs to prevent other processes from taking time away from 
the real-time RAN functions, etc. Further, certain RAN 
functions such as the Layer-1 may need to be instantiated on 
non-GPP hardware. These requirements are key to RAN 
virtualization, and do not exist in conventional IT datacenter 
VIM tools such as OpenStack. Thus we propose that in Step 5 
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in Figure 13, the VIM APIs that are used to instantiate the 
RAN functions in the NFV Infrastructure need to have suitable 
facilities to execute these actions on demand, taking the type of 
hardware (GPP or non-GPP) into account.  

 We proposed in Section III that the decision on placement 
of certain functions for the new cell, such as the Scheduler, 
should take into account the relationships between cells for 
multi-cell coordination or carrier aggregation and potential 
implications of the network topology interconnecting the 
processors on the Liquid Clusters of various cells. We further 
note that there are also real-time timing and bandwidth 
requirements between the different functions of a cell, such as 
Scheduler, RLC/MAC, and PHY, which may force constraints 
on the relative placement of these functions. Moreover, the 
possible need to place the PHY on certain dedicated, non-
virtualized hardware may further constrain the placement of 
functions such as the MAC and Scheduler which interact with 
the PHY. We propose that the VNF Manager or Orchestrator 
jointly optimize the placement incorporating these constraints. 

 We also propose a joint optimization for the elastic scaling 
and placement decisions. As noted in Section IV, in order to 
ensure low execution jitter for real-time RAN functions, it may 
be necessary to pin a guest VM’s vCPUs to suitably isolated 
pCPUs on the host. If either scale-up or scale-out is needed, the 
placement decision needs to take into account the availability 
of suitably isolated and unused pCPUs, and this results in the 
scaling and placement decisions becoming a joint optimization. 

VII. CONCLUSION 

 In this paper, we investigated key challenges in achieving 
the objectives of Cloud RAN, and proposed solutions. In 
Section II, we examined some implications of functional splits, 
wherein all or a portion of the baseband functionality is 
centralized. We pointed out that the LTE HARQ loop limits the 
achievable scale of centralization for functional splits where 
the HARQ loop is terminated in the central site, and identified 
a complex tradeoff that underlies the choice of functional split. 
In Section III, we examined the architecture of multi-cell 
coordination algorithms, proposing that they should be 
designed to have a decentralized algorithm which will 
maximize the flexibility of placement of RAN functions within 
the RAN cloud as well as the benefit from multi-cell 
coordination. In Section IV, we took a deeper look from a 
software perspective at achieving real-time performance 
suitable for RAN functions with GPP/Linux and virtualization, 
proposing various techniques to improve the execution jitter. In 
Section V, we proposed a flexible structure, based on 
decomposing the RAN functions of the various cells and 
reassembling them into per-cell and per-user components, that 
allows the right type of pooling and scalability for each RAN 
function. We showed how elastic scaling can help achieve 
hyper-scale for RAN, exploiting both scaling-up of existing 
VMs by adding cores as well as scaling out to additional 
servers. In Section VI, for the application of cloud management 
technologies such as VIM and orchestration for RAN 
functions, we proposed a framework to translate radio-network 
management actions such as addition of a cell into interactions 
between the virtualized management and orchestration 

functions and the compute infrastructure. We proposed that 
special needs for RAN due to real-time constraints and a mix 
of GPP and non-GPP hardware require extensions to the APIs. 
We also proposed a joint optimization of the placement and 
elastic scaling of RAN functions, taking into account the 
interconnect between processors, multi-cell coordination 
relationships between cells, timing constraints between RAN 
functions, and special operations needed to assure low 
execution jitter for real-time RAN functions. 
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