
A Genetic Feature Selection Algorithm for
Anomaly Classification in Mobile Networks

Márton Kajó and Szabolcs Nováczki
Nokia Networks, Budapest, Hungary

{marton.kajo, szabolcs.novaczki}@nokia.com

Abstract— The operators of big mobile networks rely on
operation support systems (OSS) to help in the setup and
management of these expansive networks. Automating some
functions in the OSS could reduce operation costs and increase
efficiency. One such function is the diagnosis of abnormal
behavior in the network’s systems stemming from incorrect
settings, insufficient network capabilities, software or hardware
malfunction. This paper presents a system that can detect and
classify such anomalous behavior with the data provided by
logging functions in currently existing OSS. We show that it is
possible to detect complex user defined states in the network
from seemingly not closely related indicators with the use of
classification algorithms. The presented system implements a
wrapping feature selection algorithm that can select the most
important performance indicators for the classification task.
The system was tested with four different classifiers, the KNN
(K-Nearest Neighbors), CART (Classification And Regression
Trees), SVM (Support Vector Machine) algorithms and a Neural
Network. We show in this paper how feasible the concept is,
and how well these classifiers performed on data provided by a
mobile network.

Keywords: OSS, Genetic Algorithm, Feature Selection,
KNN, CART, SVM, Artificial Neural Network

I. INTRODUCTION

Operation support systems provide diverse information

about the network in the form of Key Performance Indicators

(KPI) that can be used for simple fault detection. However,

more complex network states that do not necessarily represent

erroneous behavior are hard to recognize from a single

indicator. State recognition using more than one indicator

requires the design of multi-dimensional classification rules,

a task that can be carried out autonomously by classification

algorithms. The logical step is to use these algorithms to

process the data provided by the OSS to extract information

that identifies various network states. This information could

later be used for optimization or reconfiguration of the

network. The goal of our research was to see whether such

an automatically generated multi-dimensional classification

system can be used for anomalous state diagnosis in mobile

networks.

Classification algorithms have seen a great surge in

utilization in the recent years, as more and more applications

implement voice or image recognition. These algorithms

are now used in different areas, such as medical diagnostic

systems or big data analysis. While the performance of these

algorithms is constantly improving as more effective versions

are developed, computational constraints still plague the

user. As a general rule, classification algorithms have a hard

time functioning in high-dimensional spaces, a phenomenon

commonly referred to as the curse of dimensionality [1]. For

this reason, it is usually beneficial to use a dimensionality

reduction technique, such as feature selection, when using a

classification algorithm on high-dimensional data. Since the

OSS provides information from all aspects of the network,

it is highly likely that some, or most of the information

is irrelevant to the current use case. The aim of feature

selection is to reduce the dimensionality of the feature space

by eliminating features (dimensions) that contain irrelevant

or redundant information. By using only the most important

features, the classification algorithms can function faster and

create simpler, more precise classification rules.

Selecting the optimal subset of dimensions for classification

from a high-dimensional space is an NP-complete problem [2],

and is unsolvable by exhaustive search. Such computationally

intractable problems can be solved with the use of genetic

algorithms. These algorithms mimic an evolutionary process

in their search, and can find a suitable solution in less than

polynomial time [3]. We present a genetic algorithm in this

paper that, combined with a classification algorithm, can

select the most important KPIs to detect a given network state.

Previous research in mobile network anomaly detection

conducted by Nokia [4] used a single class SVM as classifier,

where the main goal was the identification of cell-service

performance degradation. Similar work consists of [5], where

a Naive Bayesian classifier diagnosed dropped calls, and [6],

where a neural network combined with competitive learning

was used for fault detection. In all of these, the KPIs given

to the detection systems were hand picked by the researchers.

The system presented in this paper can automatically select the

most important KPIs for the given classification task, which

makes it easy to adapt to different diagnostics tasks, and does

not require expert knowledge of the network.

Wrapping feature selection using a genetic algorithm is

not a novel idea. It was first proposed in [7], which used

a neural network as a classifier. [8] compared this wrapper

approach to some well-established filter-type subset selection

algorithms. [9] and [10] used a support vector machine as a

classification algorithm. The primary goal of these researches

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

204



was to improve the classification accuracy by using only the

most important features. We were also interested in whether

the selected features made sense from a network engineering

perspective and could be strongly linked to the measured

network states.

To give a better overview, following are the basic steps to

use the presented system:

1) Create a training dataset by labeling previously mea-

sured data provided by the OSS, or as in our case,

measure a test network set up for the different states.

2) Run the feature selection process with the classification

algorithm of choice.

3) Use the selected features to train the final classifier.

4) Diagnose the network in real time with the trained

classifier.

The rest of the paper is organized as follows: First, we give

a brief overview about classification algorithms in general,

and the four classification algorithms tested to work with

the system (II). After this a short introduction to Genetic

Algorithms (GA) follows, with a more detailed explanation

of how the feature selector incorporates the classification

algorithms (III). Finally, we show the results of testing this

feature selector on data extracted from a mobile network

(IV), and close the paper with a conclusion (V).

II. CLASSIFICATION

A part of machine learning, classification algorithms

realize learning systems that create classification rules by

processing a training dataset. Classification algorithms fall

in the supervised learning category, since they require the

training examples to be labeled according to which class

they belong. The created classification rules can then be used

to predict the class of unlabeled observations. A class can

be any quantifiable property of the observations, such as a

color, or in this case, the state of the network. An everyday

example of a classification algorithms is the spam filtering

mechanism in e-mail software. Here the user manually labels

the incoming e-mails as unwanted, from which the system

learns, and can later filter automatically.

When forming the classification rules, the algorithms some-

times create rules that fit the training data too precisely. This is

undesirable, as the training observations usually contain noisy

data that do not represent the distribution of the classes well.

This phenomenon is called overfitting. A good classification

algorithm is expected to have some degree of generalization

when forming the classification rules. For this reason, most

classification algorithms have a set of parameters that control

the generalization during training.

To figure out the correct setup of the algorithms’

parameters, one can use some form of validation in order to

avoid overfitting the training data. Validation techniques are

designed to test the performance of the classifier using only

the original training data by splitting the data into a test and a

training set. The most commonly used validation techniques

are random sampling and k-fold cross validation. Being able

to measure the performance of the classifier allows the user to

find the optimal set of classifier parameters using a grid search.

The wrapper nature of the feature selector allows it to

work with any type of classification algorithm. Having plenty

of computing power at our disposal, we opted to try out a

number of the most commonly used classification algorithms.

Our choice fell on four algorithms: the K-Nearest Neighbors

(KNN) algorithm, the Classification And Regression Trees

(CART) algorithm, a Support Vector Machine (SVM)

classifier, and an Artificial Neural Network (ANN). All of

these realize different methods to form the classification

rules, and thus have different computational costs and overall

classification accuracy.

A. K-Nearest Neighbors

The KNN is algorithmically the simplest classifier of the

four. The KNN algorithm classifies an unlabeled observation

by searching for the closest K number of neighbors of the

data point in the training set. The classification is then

computed by a majority vote, the assigned class is that which

has the most representatives amongst the neighbors. The

number of neighbors taken into account during the voting

greatly influences the classifier’s tendency to overfit [11]. The

correct K value can be set by an exhaustive grid search. The

KNN algorithm doesn’t have a training phase, but merely

stores the training data, and only requires the parameter K

to be set. This makes training and optimizing the classifier

really fast in the context of the feature selection algorithm.

B. Classification And Regression Trees

The CART algorithm is a decision tree based method [12],

incorporating both regression and classification functions in

a single algorithm. The algorithm creates a decision tree

during its training phase, where every node represents a

binary (yes/no) question about one of the features in the

search space. The tree is built by recursively splitting every

subspace along one of the features, starting with the whole

search space. CART uses the Gini index as a metric to

decide along which feature the split should be. In order to

avoid overfitting the training data, the tree is pruned back

after the building process with a pruning algorithm. The

pruning algorithm decides which nodes to cut by comparing

the lost classification accuracy to the reduction in the tree’s

complexity. The threshold ratio C is the parameter that

controls the pruning, and can be set by a grid search.

C. Support Vector Machine

The SVM classifier [13] finds the optimal separating

hyperplane between classes in a transformed, high dimensional

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

205



feature space. It works with a soft margin hyperplane that

allows for points in the separating margin and wrongly

classified points in favor of a better generalization. The fitting

of the soft margin hyperplane can be controlled by a cost

parameter. The optimal separating hyperplane can be found

in the transformed space by knowing the inner products

of vectors in that space. These can be calculated using a

kernel function in the original feature space, which allows the

algorithm to avoid the calculation of the whole transformation.

The kernel function we used was the frequently utilized radial

basis kernel function, which requires the kernel’s gamma

parameter to be set. This, and the cost parameter need to

be set by the user carefully, since both can influence the

classifier’s tendency to overfit.

D. Single Hidden Layer Neural Network

Artificial neural networks consist of interconnected nodes

called neurons. These neurons take multiple inputs, sum them,

and create the node’s output with this sum through a sigmoid

activation function. The nodes are organized in layers, with

connections only running between nodes in different layers.

The neural network used in this research is a single hidden

layer network [11] containing three layers: an input layer, a

hidden layer and an output layer. The number of nodes in

the input and output layers are determined by the number

of features and classes used in the classification task. The

number of nodes in the hidden layer however, are up to the

user to set, and can cause the network to overfit. The learning

phase consists of setting the weights of the connections so

that the classification error is minimal on the training set.

This is done through an iterative advanced back propagation

algorithm. The system also has weight decay at each iteration

to evade overfitting. The amount of weight decay and the

number of hidden layer nodes all need to be set by the user

or through exhaustive grid search. Combining this with the

long iterative training phase makes for a really slow to train,

albeit extremely accurate classifier.

III. FEATURE SELECTION USING A GENETIC ALGORITHM

Genetic algorithms (GA) are heuristic search algorithms.

These algorithms use historical data to narrow the search on

the best performing areas of the search space through an

iterative process that resembles natural selection. Genetic algo-

rithms work on a group of potential solutions simultaneously

called a generation, where each individual is represented by a

numerical vector called a chromosome. With each iteration, a

genetic algorithm creates a new batch of chromosomes from

the previous generation’s chromosomes through the genetic

operators of selection, crossover and mutation. For this to

work, each chromosome needs an assigned fitness score that

represents the goodness of the corresponding solution. The

fitness score is calculated via a fitness function. The genetic

algorithm’s tasks are the following at each iteration:

1) Calculate the fitness score for each chromosome.

2) Select the parent chromosomes according to their fitness

scores.

3) Create new chromosomes through crossover by com-

bining the selected parent chromosomes.

4) Mutate some of the new chromosomes.

Genetic algorithms can be easily modified to solve a wide

range of problems by changing the fitness function and the

way a chromosome represents a solution. Originally these

algorithms were invented for optimal subset selection, with

the chromosomes being binary vectors [14]. There now

exist modified versions of genetic operators that can solve

permutation-like problems or can work with real valued

chromosomes. Since our goal was to find an optimal feature

set, the original binary chromosome representation worked

just fine. This way, each of the chromosome’s bits represent

whether or not the assigned feature is included in the set.

This also made the design process easier, since binary

chromosomes have many well researched genetic operators

to choose from.

There are many examples of feature selection systems using

genetic algorithms that implement a filter-like selection, where

the fitness function only uses the training data to calculate the

fitness value, but not the actual classifier [15]. The approach

presented in this paper is a wrapper approach in the sense

that it incorporates the classification algorithm in the fitness

function. With this the chosen features are tailored to the

specific classification algorithm that was used in the search.

End

Best 
parameters

? Yes

Stop?

Initialization

Begin

Separate test data

Set parameters

Train classifier

Test accuracy

Crossover

Mutation

Selection

Calculate fitness

No

No

Yes

Fig. 1. The full feature selection algorithm

A. Fitness function and classifier setup

The fitness function’s goal is to incorporate the different op-

timization criteria, and give a numerical value to the goodness

of the chromosome according to these criteria. Our aim was

to use as few features as possible while still maintaining a

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

206



good classification accuracy. We chose the linear combination

of these two variables as our fitness function:

fitness(x) = accuracy(x)× 100− nfeatures(x), (1)

where x is a chromosome, accuracy(x) is the classification

accuracy with the chromsosme, and nfeatures(x) is the number of

features (KPIs) present in the chromosome. The classification

accuracy is measured on a classifier that was trained with the

features represented by the chromosome. The tradeoff between

used features and classification accuracy is represented in

the ratio between the two variables. As it stands here, 1%

gain in classification accuracy justifies the addition of a new

feature. To determine the accuracy of the classifier, uniform

random sampling was used where 10% of the training data was

selected as test data. The classifier was trained on the training

data excluding the test data, and then tested with the remaining

observations. The random sampling and training was repeated

three times, and the final value was the average of accuracies

across the repetitions.

To properly measure the efficiency of a classification

algorithm, one has to set the different parameters of the

classifiers. This was done with a grid search on the classifiers

with faster training phases (KNN and CART) by trying out

every possible combinations of pre-set values. Grid searching

proved to be unfeasible on the algorithms requiring longer

training times (SVM and ANN), since the global runtime

would have been over a year with our equipment. Instead

of grid searching, these algorithms used unoptimized pre-set

parameters that leaned towards overfitting. This resulted in

selected features that separated the classes by the biggest

distance and with as less noise as it was possible, which was

the main goal of feature selection all along. The downside

is that the unoptimized classifiers theoretically allow the

existence of better feature sets, that have worse classification

accuracy with these parameters, than the ones the feature

selector found.

B. Genetic operators

Selection was done with a linear-ranking scheme. Here the

chromosomes are ranked according to their fitness score, and

are chosen as parents proportionally to their rank. Linear-rank

selection is a robust selection scheme that is insensitive to

big differences in the fitness scores [16]. Additionally to this,

we also used elitism with a single individual. This way the

chromosome with the best fitness score gets carried over to the

next generation without any change to it. This ensures that the

best solution found so far cannot get lost through unfortunate

crossover or mutation.

Crossover was done with a uniform crossover operator,

where each gene has the same chance of coming from either

parent. Uniform crossover seems to have better convergence

when having smaller populations [17].

The chance of mutation occurring in a chromosome was

10%. If a chromosome was chosen to mutate, roughly 10%

of its genes were flipped. This is a moderately high chance

of mutation that encourages exploration of the search space

and avoids premature convergence. Mutation also serves to

dislodge the search if it’s stuck at a local maximum.

C. Initialization and stopping

To create the chromosomes in the first generation, a random

uniform distribution was used. Due to computing constraints

in the classifiers, a maximum of 30 features were distributed

in each chromosome. To combat the sparseness of the chro-

mosomes, each generation was made up of 50 individuals,

which together contained an average of 215.85 out of the 216

different KPIs, thoroughly covering the whole search space.

The genetic algorithm stopped if the best chromosome’s

fitness score didn’t improve in the last 250 iterations, or if it

reached the maximum of a 1000 iterations. This stop criteria

was very generous, as early testing showed that convergence

was achieved in roughly 250 iterations, and no GA improved

its best score above 500 iterations.

IV. RESULTS

To generate the training data, an LTE network was used

comprising of a single cell, a base station and a gateway

(Fig. 2). Multiple user equipment (UE) simulated normal

user behavior by downloading files from a remote server. The

throughput demand was varied throughout the tests by setting

up different time intervals that the UEs waited between each

file download. The OSS system connected to this network

was Nokia’s own OSS solution that collected information

from the base station. To generate different network states,

a traffic shaper was used at the gateway that comprised of

a throughput limiter and a buffer before it. The shaper only

tampered with data packets, but not control packets, and only

in the downlink direction. The four states the network was

measured in were the following:

• (N) Normal: All parameters of the transport network

were set to allow for virtually unlimited throughput.

The throughput limiting bottleneck was the LTE radio

interface in this case, where a 15dB attenuation was

present, which limited the overall throughput to about

30Mb/s.

• (L) Long buffer: In this case the shaper limited the

passing data flow to 1Mb/s, while the buffer in the

shaper was set to 1MB, which artificially delayed the

passing packets up to 8 seconds. This delay and the

throughput limit put a serious strain on the TCP flow

control, resulting in a highly reduced overall throughput.

• (S) Short buffer: In this case the shaper limited the

throughput to 20Mb/s, and the connected buffer was set

to 28KB. While this did not result in a great throughput

reduction, the small buffer frequently caused incoming

packets to be tail dropped, further reducing the connec-

tions performance.

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

207



U
se

rE
qu

ip
m

en
t

(la
pt

op
sw

/ L
TE

 d
on

gl
e)

ShaperData

Measurements

LTE BTS
Transport
Network

SAE Gateway
Remote Server

OSS Server

Fig. 2. The topology of the test network

• (D) Discard: Here the input buffer did not limit the

throughput, but randomly discarded 5% of the incoming

packets. As in the short buffer case, this also reduced

the connections performance by forcing them to resend

packets.

These four states formed the classes that the classifier

algorithms had to distinguish. Each of the four states made

up 1/4 of the total of 850 training observations. The 216

KPIs logged in the base station were averaged across 15

minute time intervals. The shaper was deliberately set up

in the gateway, so that the collected information and the

cause of the states were in separate network components.

The classes are hard to distinguish solely on the achieved

throughput, since the generated throughput demand varied

during all the measurements. For reference a CART classifier

properly optimized and trained on a single KPI corresponding

to the logged throughput values could only achieve 65%

classification accuracy on the training dataset.

The feature selector was written using the R1 statistical

computing language. The R language is widely used by statis-

ticians and data miners, with available packages for most of

the common algorithms and functions. For the KNN classifier,

the CLASS2 built in package was used, the CART algorithm

came from Brian Ripley’s rpart3 package, the e10714 package

implemented the SVM classifier, the K-fold cross validation

and random sampling methods, and finally the neural network

came from the nnet5 package. The genetic algorithm used the

framework from the GA6 package. All of these packages are

open source, which made putting together the feature selector

a simple task.

A. Comparison of the classifiers in the feature selector

The feature selector was run 100 times with each of the

classification algorithms. Table I shows the statistical values

of the runs with optimized classifiers (KNN and CART).

The biggest difference was in the time it took to run the

1https://www.r-project.org/
2https://cran.r-project.org/web/packages/class/
3https://cran.r-project.org/web/packages/rpart/
4https://cran.r-project.org/web/packages/e1071/
5https://cran.r-project.org/web/packages/nnet/
6https://cran.r-project.org/web/packages/GA/

TABLE I
STATISTICAL INFORMATION OF USING THE FEATURE SELECTOR WITH THE

OPTIMIZED KNN AND CART CLASSIFIERS

KNN CART

Min Avg Max Std. dev. Min Avg Max Std. dev.

Runtime 0h15m 0h30m 1h2m 0h8m 48h22m 84h55m 166h56m 26h46m

Iterations 268 380.19 761 100.75 268 393 742 118.80

Accuracy 98.82 99.64 100 0.2678 98.59 99.54 99.88 0.2301

nfeatures 2 2.47 3 0.5016 2 2.35 3 0.4793

TABLE II
STATISTICAL INFORMATION OF USING THE FEATURE SELECTOR WITH THE

UNOPTIMIZED SVM AND NEURAL NETWORK CLASSIFIERS

SVM ANN

Min Avg Max Std. dev. Min Avg Max Std. dev.

Runtime 5h56m 13h1m 23h38m 4h42m 21h11m 42h54m 94h41m 16h28m

Iterations 270 500.75 1000 186.36 268 325.38 582 83.97

Accuracy 98.35 99.62 100 0.3541 99.05 99.97 100 0.1314

nfeatures 3 3.74 5 0.5794 2 2.11 3 0.3144

algorithms; using a state of the art Intel Xeon processor with

no parallelization, all the feature selectors using the KNN

finished in an hour, whilst with the CART algorithm it took

almost a week. This big difference is caused partly by the

more possible values for the C parameter the CART algorithm

was tested on than the K values for the KNN algorithm, and

partly by the time required to build the CART classification

tree. Though CART is faster during testing when evaluating

unlabeled observations, the extra training time still makes this

classifier an order of magnitude slower here than the KNN.

Table II shows the statistical values of the runs using

unoptimized classifiers (SVM and ANN). Since these algo-

rithms required multiple parameters to be set, the runtime

reduction by not finding the correct combinations via grid

search was considerable. Running the feature selector with

the ANN classifier and optimization enabled would have taken

an estimated 400 days with our hardware. The outlier of the

two is the SVM algorithm, which preferred to use more KPIs

than all the the other classifiers. Since the SVM works in a

high-dimensional space through the kernel function anyway,

it can use more features in the original feature space without

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

208



suffering from dimensionality. While the capability does not

necessarily mean preference, with our measurement data the

SVM could only achieve a good classification accuracy by

using more KPIs than the other algorithms. This also meant

that the SVM classifier had the overall lowest fitness score on

average.

96

97

98

99

100

0 50 100 150 200 250

0

10

20

30

0 50 100 150 200 250

KNN
CART
SVM
NN

Iterations

N
um

be
r o

f u
se

d
K

PI
s

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 [%

]

Fig. 3. The first 250 iterations of the genetic algorithm. Shown here is the
best candidate’s classification accuracy (upper), and the number of KPIs used
in it (lower). The values are averaged across the 100 individual runs for all
the classification algorithms.

The SVM and CART algorithms were capable of handling

a larger number of dimensions before invoking the curse

of dimensionality. This effect can be observed on the first

few iterations (Fig. 3 upper), where these algorithms have

better classification accuracy compared to the KNN or ANN

classifiers. Unfortunately this advantage does not matter that

much in the outcome, since after the first few iterations the

classifiers only had to work on a couple of KPIs (Fig. 3

lower). All of the classifiers were able to achieve a close to

perfect classification accuracy due to the training data not

being very noisy. For one, this probably stems from the test

environment not representing a real network perfectly, and not

containing as much noisy measurement generating behavior,

mostly because the radio channels were not disturbed by

time-varying fading effects. With this in mind, we still believe

that compared to other classification tasks in medicine or

image recognition, measurement data from mobile networks

does not contain as much noise because of the strong

connections between the network’s mechanisms, and can be

classified with a simpler classifier with good accuracy. Hence,

the KNN algorithm was perfectly sufficient in the context of

the feature selector and performed much faster than the other

algorithms.

B. KPIs chosen by the feature selector
The results provided by the KNN algorithm were in line

with our expectations, with the classifiers not overly preferring

a single KPI. Out of the 216 KPIs, 58 different ones were

chosen at least once, with the most frequent KPI being

represented in 28% of the outcomes. This same KPI was also

chosen the most times by the SVM and ANN classifiers, which

makes us believe that it indeed contains valuable information

regarding the different network states. The distribution of the

chosen KPIs can be seen on the right side of figure 4. The

KPIs referenced in this paper mean the following:

• KPI1 is proportional to the amount of retransmitted

packages.

• KPI2 is proportional to the amount of Transmit Time

Intervals (TTI) where at least one user was active on the

radio interface.

KPI 2KPI4

KPI1

KPI3

KPI 4

CART KNN

Fig. 4. Bundling graphs of the KPI sets chosen by the feature selector using the KNN (right) and CART (left) classifiers. A rectangle represents one occurence
of a KPI, with connecting lines running to other KPIs that were present in that same set. The same KPIs are grouped together on the edge, the different KPI
groups are separated by larger spaces.

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

209



• KPI3 is proportional to the total amount of transmitted

packages.

• KPI4 is proportional to the mean length of the RLC

(Radio Link Control) layer’s buffer queue.

It is important to note that these KPIs were usually not

chosen together, with the classifier instead preferring one

of the other, lesser represented KPIs in combination with these.

The CART classifier proved to be problematic by including

the same KPI (KPI4) in 98% of its indicator sets (Fig. 4 left).

This could mean that KPI4 can separate the classes really

well, but the same KPI was underrepresented in the other

algorithm’s results (for example using the KNN algorithm),

which makes this suspicious. Further inspection of the clas-

sification rules generated by the CART algorithm revealed

that this KPI was special because it allowed for a relatively

precise split of the classes with separators perpendicular to

this feature, which was preferred by the CART algorithm.

None of the other features’ use created a distribution where

the optimal separating planes were so parallel or perpendicular

to the features. This preference unfortunately masks the real

information value of the indicators, but provides a valuable

lesson; each classification algorithm can prefer different KPIs

depending on its mechanics, and only the KPI sets acquired

with the same classification algorithm are optimized for that

specific classifier.

KPIa

K
PI
b

D

S

L

N

Fig. 5. Classification map of a neural network. The symbols represent the
training points of different states, and the corresponding colors represent what
state an unlabeled measurement would be classified as in the area.

Training with any of the frequently chosen combinations

of KPIs and optimizing the required parameters through 10-

fold cross validation the classification accuracy for both the

KNN and CART classifiers were above 98%. The results from

using the SVM and ANN classifiers will not be presented

here such in detail, because we feel that by leaving out the

parameter optimization process the chosen KPI sets might not

represent the best solutions. Still, as can be seen on Fig. 3, the

unoptimized ANN classifier had the best accuracy during the

feature selection process. This also carried over to the final

classifier, where training with two of the most frequently cho-

sen and using proper optimization the classification accuracy

of the neural network was 99.88% on the training set. The

classification map of this classifier can be seen on figure 5.

V. CONCLUSION

In this paper we presented a diagnosis system for mobile

networks that uses machine learning techniques to identify

anomalous states in the network. The system can select the

most important performance indicators so that the classifica-

tion can be done faster and with higher accuracy. Since the

classification rules are generated through a learning algorithm,

the system can identify multiple user defined states.

As our research shows, even the simplest classification

algorithms can provide great accuracy in identifying complex

states in a mobile network. In fact, though the more com-

plex classification algorithms did provide better classification

accuracy by some degree, we feel that in this case the gain

did not warrant the increased runtime. Our advice for anyone

trying out a wrapper feature selector is to experiment with a

fast and simple classification algorithm first. It is also worth

mentioning that the more complex the classifier, the more

research someone needs to figure out how to properly use

it.

The presented system is independent of the network, the

OSS and the provided KPIs. As long as the classifiers can

differentiate the network states with the data provided, the

diagnosis system should potentially work on any network.

The key componenet in making this algorithm work well

as an anomaly detector is supplying the system with expert

knowledge about the anomalies. This translates to creating

a good training data set for the feature selection algorithm.

This can be either generated through measurements on a test

network or simulation, or created in real time by labeling

measurements from previously identified anomalous network

states. After running the feature selection algorithm on the

training data, the trained classifiers are ready to use in real

time for anomaly detection. The detected states could then

be used in network optimization or expansion tasks by the

operator, or in self-optimization and self-healing tasks by the

network itself.

REFERENCES

[1] E. Keogh and A. Mueen, “Curse of dimensionality,” in Encyclopedia
of Machine Learning, C. Sammut and G. Webb, Eds. Springer
US, 2010, pp. 257–258. [Online]. Available: http://dx.doi.org/10.1007/
978-0-387-30164-8\ 192

[2] S. Davies and S. Russell, “Np-completeness of searches for smallest
possible feature sets,” in AAAI Symposium on Intelligent Relevance.
AAAI Press, 1994, pp. 37–39.

[3] K. A. De Jong and W. M. Spears, “Using genetic algorithms to
solve np-complete problems,” in Proceedings of the Third International
Conference on Genetic Algorithms. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1989, pp. 124–132. [Online]. Available:
http://dl.acm.org/citation.cfm?id=93126.93172

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

210



[4] G. Ciocarlie, U. Lindqvist, S. Novaczki, and H. Sanneck, “Detecting
anomalies in cellular networks using an ensemble method,” in Network
and Service Management (CNSM), 2013 9th International Conference
on, Oct 2013, pp. 171–174.

[5] R. Barco, V. Wille, and L. Dı́ez, “System for automated diagnosis
in cellular networks based on performance indicators,” European
Transactions on Telecommunications, vol. 16, no. 5, pp. 399–409,
2005. [Online]. Available: http://dx.doi.org/10.1002/ett.1060

[6] G. A. Barreto, J. C. Mota, L. G. Souza, R. A. Frota, L. Aguayo,
J. S. Yamamoto, and P. E. Macedo, “A new approach to fault
detection and diagnosis in cellular systems using competitive
learning.” [Online]. Available: http://www.laps.ufpa.br/aldebaro/classes/
04mineracao2sem/seminarios/sbrn2004-cellular-fault.pdf

[7] J. Yang and V. Honavar, “Feature subset selection using a genetic
algorithm,” 1997. [Online]. Available: http://ieeexplore.ieee.org/stamp/
stamp.jsp?arnumber=671091

[8] R. Kohavi and G. H. John, “Wrappers for feature subset selection,” 1997.
[Online]. Available: http://ai.stanford.edu/∼ronnyk/wrappersPrint.pdf

[9] J. Sepulveda-Sanchis, G. Camps-Valls, E. Soria-Olivas, S. Salcedo-Sanz,
C. Bousono-Calzon, G. Sanz-Romero, and J. Marrugat de la Iglesia,
“Support vector machines and genetic algorithms for detecting unstable
angina,” in Computers in Cardiology, 2002, Sept 2002, pp. 413–416.

[10] D. R. Eads, D. Hill, S. Davis, S. J. Perkins, J. Ma, R. B. Porter,
and J. P. Theiler, “Genetic algorithms and support vector machines
for time series classification,” pp. 74–85, 2002. [Online]. Available:
http://dx.doi.org/10.1117/12.453526

[11] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, ser. Springer Series in Statistics. New York, NY, USA:
Springer New York Inc., 2001.

[12] L. Breiman, Classification and regression trees. Belmont, Calif:
Wadsworth International Group, 1984.

[13] C. J. C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121–167, Jun.
1998. [Online]. Available: http://dx.doi.org/10.1023/A:1009715923555

[14] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning, 1st ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1989.

[15] P. Lanzi, “Fast feature selection with genetic algorithms: a filter
approach,” in Evolutionary Computation, 1997., IEEE International
Conference on, Apr 1997, pp. 537–540.

[16] T. Blickle and L. Thiele, “A comparison of selection schemes used in
genetic algorithms,” Gloriastrasse 35, CH-8092 Zurich: Swiss Federal
Institute of Technology (ETH) Zurich, Computer Engineering and Com-
munications Networks Lab (TIK, Tech. Rep., 1995.

[17] W. M. Spears and V. Anand, “A study of crossover operators in genetic
programming,” in Proceedings of the 6th International Symposium
on Methodologies for Intelligent Systems, ser. ISMIS ’91. London,
UK, UK: Springer-Verlag, 1991, pp. 409–418. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646353.691341

19th International ICIN Conference - Innovations in Clouds, Internet and Networks - March 1-3, 2016, Paris.

211


