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Abstract—The automatic verification of Configuration Man-
agement (CM) changes is an important step towards a highly-
optimized Self-Organizing Network (SON). A verification mecha-
nism operates in three steps: based on the CM changes it divides
the network into verification areas, assesses those by using an
anomaly detection algorithm, and generates CM undo requests
for the abnormally performing ones. To successfully fulfill those
tasks, it has to sample the network for a certain time period,
called an observation window. However, if the mechanism is timed
improperly, it may generate too many false positive undo requests
and may even prevent SON functions from reaching their set
goals.

To overcome this issue, we calculate for each cell a Cell
Verification State Indicator (CVSI). It is based on the deviation
from the expected performance and is updated using exponential
smoothing. A verification area continuously reporting low CVSI
values is considered as degraded and processed by the verification
mechanism. The presented approach is evaluated in a simulated
environment and compared it with other verification strategies.
The results show that we are able to get a better result when we
consider the CVSIs instead of the absolute performance values
of the areas.

I. INTRODUCTION

The Self-Organizing Network (SON) concept as we know
it today has been developed to deal with the complex nature
of standards like Long Term Evolution (LTE) and LTE-
Advanced. The main idea behind it is to optimize the oper-
ation of the network, supervise the configuration and auto-
connectivity of newly deployed Network Elements (NEs), and
enable automatic fault detection and resolution [1]. A SON-
enabled network is, therefore, managed by a set of autonomous
SON functions performing specific network management tasks.
Those functions are designed as control loops, which monitor
Performance Management (PM) and Fault Management (FM)
data, and based on their goals, change Configuration Man-
agement (CM) parameters. For example, the Coverage and
Capacity Optimization (CCO) function has been developed to
optimize the coverage within a cell by changing the antenna
tilt or the transmission power.

Despite the closed-loop automation of SON functions, there
is a need to verify the combined performance impact of the
deployed CM changes. Therefore, the concept of SON verifi-
cation has been developed [2]-[4]. It is seen as a special type
of anomaly detection that implements a so-called verification
process. The outcome is either to accept the deployed CM
changes or to revert them back to a previous stable state, which
is also known as a CM undo request, or undo request for short.
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The verification process itself operates in three phases: (1) it
divides the network into verification areas according to the
CM changes, (2) runs an anomaly detection algorithm for each
area, and (3) marks the changes for an undo that are most likely
responsible for causing a degradation. Finally, it schedules CM
undo requests for deployment.

Despite the progress made in the development of SON
verification, it still has shortcomings in LTE. In particular, a
verification mechanism experiences difficulties if it is timed
improperly. In order to detect an anomalously performing area,
it has to sample the network for a certain time, also referred
to as an observation window. However, if this window is too
short, a verification mechanism may try to rollback short,
transient performance degradations, and therefore, generate
false positive undo requests. That is, SON functions trying
out different CM parameter settings, which induce temporary
and short performance drops, may get interrupted as they
try reaching their goals. Furthermore, having numerous undo
requests implies that a lot of verification areas require perfor-
mance assessment, which may delay the complete verification
process.

In this paper, we propose an approach that overcomes
those issues. The proposed solution dynamically adapts the
length of the observation duration based on a so-called
Cell Verification State Indicator (CVSI). The latter one is
computed based on exponential smoothing of the deviation
from the expected performance. Further, the factor used to
update the CVSI depends on this deviation as well. The
expected performance itself is an aggregation of the expected
values of Key Performance Indicators (KPIs) a cell reports.
A verification area, whose cells are reporting low CVSIs, is
marked as ready to be further processed by the verification
process. On the contrary, an area consisting of cells having
high CVSIs is skipped by the verification process.

The remainder of this paper is organized as follows. Sec-
tion II describes how the verification process is realized today.
In Section III we present the challenges SON verification
still has in LTE. In Section IV we describe our concept,
whereas in Section V we evaluate it in a simulated LTE
environment. Section VI is devoted to the evolution of SON
verification for future standards, like the fifth generation of
mobile communications (5G). Further, our paper includes a
description of the related work in Section VII and a summary
in Section VIIL
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II. VERIFICATION PROCESS

1) Composition of verification areas: A verification area
consists of the reconfigured cell, also called the target cell,
and a set of cells impacted by the CM change(s), also referred
to as a target extension set [5]. The selection of the latter
one is based on the neighbor relations between cells. One
possible way is to take the reconfigured cell and all of its direct
neighbors to which User Equipments (UEs) can be handed
over. Furthermore, if we have SON function activities in the
network, we may define the verification area as the impact
area [6] of the SON function that has been recently active. We
may also enlarge a verification area based on its location [7],
e.g., more cells are added if they are part of known trouble
spots or dense traffic.

2) Detecting anomalies: An anomaly is understood as
”something that deviates from what is standard, normal, or
expected” [8]. In this paper, however, we focus on detect-
ing abnormal cell behavior, i.e., the performance of a cell
has notably degraded. Usually, it is done by profiling [9]
the network behavior, which requires analyzing the network
performance indicators and specifying how the network should
typically behave. For instance, in [4] an anomaly detection
technique for cellular networks is introduced. It is based on
the extended version of the incremental clustering algorithm
Growing Neural Gas (GNG) which partitions the input data
into smaller groups with a similar behavior. The presented
method is able to identify unusual behavior in the time domain.
An example is a cell remaining a whole week in a state that
represents the weekend.

3) Generating CM undo requests: An undo request is
generated for each verification area that has been marked as
degraded. The request itself has three data fields: one that
contains the target cell identifier, another that lists all cell
identifiers of the target extension set, and the requested CM
settings for the target cell. Those settings can be a complete
snapshot of a stable configuration the cell has previously had.
It can also be a partial list, for example, if we rollback changes
made by SON functions.

III. SON VERIFICATION CHALLENGES
A. Consequences of improper timing

Even today, a drop in performance does not necessarily
mean that we are obligated to immediately undo CM changes.
Many of today’s SON functions require not only one step,
but several steps during which they observe whether they have
moved more closely towards achieving their goal. By doing so,
SON functions may induce a temporal performance decrease in
the network. For instance, in LTE the CCO function monitors
the impact of its last deployed antenna tilt or transmission
power change, and corrects that if required [1], i.e., it may try
out different CM settings.

Verification mechanisms, however, observe verification ar-
eas for a fixed time period, also called an observation window.
As shown in Figure 1, the window is split into several time
slots during which PM data is observed and the performance
of the areas is assessed. To detect anomalies, though, the
length of that time window has to be properly set. If we select
a too short one, almost any transient performance decrease
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Figure 2. Inability to see the potential of reaching a better network
performance (dashed lines)

results in the generation of one or more unnecessary undo
requests. In other words, we may fail to find a better network
configuration even when such exists. An example is given in
Figure 2. For the selected observation window, the verification
mechanism forces the performance of the cells to be stuck at
the local optimum by starting generating undo requests, instead
of searching for a better solution by allowing the remaining
changes to be applied.

Of course, we may increase the length of the observation
window, however, the question that arises here is for how long.
On the one hand, the longer the observation window, the more
difficult it becomes to find out which changes have actually
caused a degradation. On the other hand, at some point in time
the verification process has to enter the second time window,
called the correction window (Figure 1). It is used for the
deployment of undo requests and assessing their impact on the
network performance. Simply shifting it is not always possible.
For instance, in a highly populated area we might have the
desire to restore the network performance as fast as possible.

B. Impact of undo requests on the verification process

In general, having several undo requests waiting to be
deployed delays the verification process. It is mainly caused by
verification collisions [2] or, more precisely, the time it takes
to resolve them.

A collision occurs when at least two verification areas share
common anomalous cells, i.e., the corresponding two undo
requests impact two overlapping sets of cells. An example for
such an event is given in Figure 3. The neighbors of cell 1
as well as cell 3 are 2 and 4, and the neighbor of cell 5 is
cell 4. For simplicity reasons, let us assume that a single CM
parameter has been changed within cells 1, 3, and 5. If we
compute the verification area by taking the reconfigured cell
and its direct neighbors, and cells 2 and 4 degrade, we will
have three overlapping verification areas. As a result, we have
an uncertainty which changes to accept and which to rollback.

To eliminate this uncertainty, the verification process cre-
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Figure 3. Verification collision problem

ates a deployment plan which assigns each undo request to
a correction window time slot. The plan itself must have
the properties of being (1) collision-free and (2) degradation-
aware. The first property implies that undo requests assigned
to the same correction window slot are not in collision with
each other. The second property ensures that the deployment
order maximizes the probability of returning the network
performance to the expected state as quickly as possible. That
is, undo requests for CM changes that are most likely causing
a degradation are allocated to the first time slot.

Nevertheless, it might not always be possible to guarantee
that the plan is collision-free due to the lack of available
correction window time slots. In such a case, the verification
process has to group undo requests while minimizing the
probability of rolling back changes that did not harm the
network performance [2].

IV. CONCEPT
A. Verification state of a cell

Each cell is supplied with a state value, also referred to
as a Cell Verification State Indicator (CVSI). On the one
hand, a cell reporting a high CVSI is more likely to accept
intermediate optimization steps, which may lead to temporarily
reduced performance. On the other hand, a cell reporting a low
CVSI is seen as ready for verification. That is, it is unlikely
to see further optimization steps that would lead to a better
performance.

To compute a CVSI, we model the behavior of each cell
as an anomaly vector a = (aj,as,...,a,) that is element
of R™. The value of n equals | K|, where K is the set of KPIs
that allow us to determine the cell performance status. Each
element aj, € R, where k € [1;n], represents the deviation of
a KPI from the expected value, also known as a KPI anomaly
level. To calculate it, we define a training phase during which
we collect samples p; . .. p; for each given KPI, where ¢ marks
a training period. During this phase the network has to show an
expected behavior. Then, we measure the current value of the
KPI, denoted as p;1. The collected data, i.e., Dy ... p¢, Prt1, 1S
standardized by computing the z-score of each data point. The
KPI anomaly level is the z-score of p,;;. The z-score itself
represents the distance between the given point and the sample
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mean in units of the standard deviation. It is negative when the
raw score is below the mean, and positive when above.

To give an example suppose that a cell has reported a
Handover Success Rate (HOSR) of 99.9 %, 99.9 %, 99.1 %,
99.7 %, 99.8 %, and 99.6 % during the training phase.
Moreover, let us assume that 90.2 % is the current HOSR.
After normalizing the samples, we get the following outcome:
0.44, 0.44, 0.21, 0.38, 0.41, 0.35, and —2.26. The cell HOSR
anomaly level is —2.26, which is the z-score of last data point.

An important remark should be made here. In general,
we can distinguish between success KPIs (e.g., HOSR) and
failure KPIs (e.g., handover ping-pong rate, call drop rate).
As a result, a negative z-score is an indication for a drop in
performance only in the case of success KPIs. For failure KPIs
we would require a positive z-score to state a performance
decrease. Thus, to keep things consistent, we negate the z-
score of failure KPIs.

Next, we aggregate all elements a; of a vector a into one
single z-score that represents the overall cell performance. We
compute that value by taking the arithmetic average of all a;,
as defined in Equation 1. The outcome is denoted as x;, where
t € Ny marks the time.

1 n
pla) =—> ax e))
k=1

Finally, we compute the CVSI 7 by applying exponential
smoothing, as follows:

70 = X0 2)
n=axt+(1—a)r_1, t>0 3)

Here, o € [0;1] is the smoothing factor, and 7, the CVSI
measured at time ¢. The latter one is a simple weighted average
of the current observation x,; and the previous smoothed CVSI
T¢—1. Further, we call « the state update factor that determines
the impact of the current y; on the overall 7;. Its selection
depends on x;, more precisely, the range X, falls in. In general,
we distinguish between the following three intervals:

e x| € [0;1), ie., the cell is up to one standard
deviation away from the expected performance.

e |x¢ €[1;2),i.e., the cell is between one and two stan-
dard deviations away from the expected performance.

e |x¢| €[2;00), i.e., the cell is more than two standard
deviations away from the expected performance.

Typically, the more unexpected and unusual the behavior of a
cell is, the higher the impact on the resulting CVSI has to be.

B. Dynamically adapting the observation window

Since a verification mechanism assesses verification areas,
we need to define as a next step when an area is ready to
enter the verification process. For this purpose, let us denote
the set of all cells as X and the set of all verification areas as V.
Furthermore, let us define an extraction function f. that returns
the cells of a verification area, i.e., fo: V — P(X)\ {&}. An
area v € V is considered at time ¢ as ready for verification
if and only if |f€%v)| SWlr(6), < T, where 74(0) is the
CVSIL of acell o € f.(v) and T a verification threshold.
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C. Example

In Figure 4 we give an example of our concept. For
simplicity reasons, let us assume that the verification area
consists of one cell and that the threshold 7" equals —1.25. The
example starts with an increase of the cell’s performance, i.e.,
an increase of the z-score, which also causes the CVSI to rise.
This behavior can be monitored between time ticks 1 and 4.
Then, we have a sudden decrease of the z-score which also
affects the cell’s CVSI. As we can see, the very low z-score at
time tick 5 and 6 leads to a rapid CVSI fall, however, it does
not cross the threshold. Hence, the SON functions have the
opportunity to stabilize the cell. Their impact can be observed
at time tick 10, where we have a z-score of 0.033.

Until time tick 31, we can monitor similar z-score and
CVSI changes. However, the CVSI does not fall below the
threshold which allows the functions fulfill their optimization
goal. They always manage to produce a z-score where it is
supposed to be, namely near zero. At time tick 32 and 33,
though, the performance drop leads the CVSI to fall below T
As a result, the observation is interrupted and the area is
assessed by the verification process. In this particular example,
undo requests have been generated which positively affect the
z-score (time tick 34-36).

However, if we had not used the CVSI and had taken raw
z-score instead, we would have processed the area immediately
after the first degradation at time tick 5 which could have gen-
erated unnecessary undo requests. In other words, we would
have prevented the functions from achieving their optimization
objective.

V. EVALUATION
A. Simulation environment

The simulation environment, called the SON Simulation
System (S3) [5], consists of an LTE radio network simulator
and a SON function coordinator [10]. In addition, the Mo-
bility Robustness Optimization (MRO), Remote Electrical Tilt
(RET), and Transmission Power (TXP) functions, as specified
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in [1], are deployed. A verification mechanism implementing
the concept introduced in Section IV is active as well.

The LTE simulator, as part of the SON simulator/emu-
lator suite [11], performs continuous simulation by tracking
the changes in the network over time. The simulation time
is divided into time slices, called simulation rounds, each
corresponding to 100 minutes in real time. At the beginning
of a round, the simulator configures the network as defined
by the CM parameter setup. At the end of a round, cell PM
data is exported which is fed into the deployed SON functions
as well as the verification mechanism. During a simulation
round, 1500 uniformly distributed users follow a random walk
mobility model (speed of 6 km/h) and actively use the mobile
network over an area of 50 km?. The network covering the area
is an LTE macro cell network consisting of 32 cells. The carrier
frequency is set to 2000 MHz whereas the channel bandwidth
is set to 20 MHz. Furthermore, a handover occurs immediately
when a UE crosses the hysteresis threshold of 2.0 dB. A radio
link failure is detected based on a signal-to-interference-plus-
noise ratio comparison to a threshold of —6.0 dB.

B. Parameter selection

The training period ¢ for computing a KPI anomaly level
lasts a simulation round. The training data is collected during
a separate test run, lasting 70 rounds, during which optimal
network settings are used. In addition, the KPIs we consider
for computing the anomaly vector are the HOSR, the Channel
Quality Indicator (CQI), and the handover ping-pong rate, as
specified in [1]. It should be noted that the CQI is calculated
as the weighted harmonic mean of the CQI channel efficiency.
The efficiency values are listed in [12].

Furthermore, a verification area consists of the target cell
and its direct neighbors. An area is considered as potentially
degraded when the CVSI of one cell falls in the range
(—o00; —2.0]. The verification threshold T is set to —1.75
whereas the state update factor o depends on x; as follows:
a=0.21if |x;] €[0;1), a = 0.4 if |x;] € [1;2], and o = 0.8
if [x:| € [2;00).
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C. Compared strategies

The idea of the simulation case study is not only the detec-
tion of a degradation and finding out which CM change was
the trigger for this to happen, but mainly to observe the impact
of the CVSI concept on the overall network performance.
Furthermore, we are interested in the comparison between
the introduced approach and other verification approaches that
do not utilize the CVSI concept. In particular, we take into
consideration the Graph Coloring (GC)-based method, outlined
in [5], and the Constraint Optimization (CO)-based approach
described in [2]. The first one uses minimum graph coloring
to identify the sets of cells whose configuration can be safely
rolled back. Two undo requests are called safe if and only if
the corresponding verification areas are not participating in a
verification collision. Note that his strategy takes the frequency
of the used colors as the main criteria while selecting the
execution order, i.e., the requests having the most frequently
used color are scheduled at first place. The second approach
makes use of constraint optimization techniques to identify
which requests can be merged together in case we have an
insufficient number of correction window slots. To do so, it
utilizes constraint softening based on the KPI anomaly levels
of the impacted cells.

D. Results

To perform the evaluation, we have selected nine cells and
changed their coverage by using obsolete data. In particular,
four cells have a tilt degree of 0.0, two cells a degree of 1.0,
one cell a degree of 3.0, and two cells a degree of -4.0. In
addition, their transmission power is set to the maximum of
46 dBm. As stated in [1], in reality we might get supplied
with obsolete data since the environment may change from
the assumptions made when the network was initially planned
and set up. Typical causes are the construction or demolition
of buildings, insertion and deletion of base stations, and season
changes. As a result, the coverage can be reduced compared
to what we could achieve with optimal settings.

Those obsolete settings are applied before starting a test
run. In total, we have seven test runs, during each of which we
let the SON functions try reaching their optimization goal. In
particular, the coverage functions are changing the physical cell
borders at first, which is later followed by an MRO adjustment
of the handover parameters. Those functions, however, can
be interrupted by the verification mechanism if it decides
to generate an undo request, i.e., it has the highest priority.
Furthermore, a test run lasts 12 rounds and the verification
mechanism is allowed to observe the performance impact of
the changes after the third simulation round.

During the test runs, we managed to spot two cells (having
the ID 2 and 6) on which the optimization functions put their
highest focus on. The resulting verification areas included five
and six cells, respectively. Furthermore, the areas shared two
cells, thus, creating the potential for verification collisions.
In Figure 5 we have plotted the average KPI anomaly level
of the two areas, impacted by the changes. Our observations
show that the SON functions tried out different CM changes
in order to achieve their goal. In particular, the RET function
started to adjust the antenna tilt, which was followed by a Cell
Individual Offset (CIO) adjustment by MRO. Those changes,
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though, induced temporal performance drops which resulted
in the generation of undo requests during the CO and GC
evaluation. As a result, the average KPI anomaly level of
both areas fluctuates until round 12 and never reaches zero,
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as presented in Figure 5(a) and 5(b).

Interestingly, the executed CM changes have the lowest
impact on the CVSI approach. As we can see, it was able to
provide the highest anomaly level result, i.e., it gave us the best
network performance among all used verification strategies.
The reason why the CVSI based method manages to perform
like that is presented in Figure 6. After simulation round 4, the
CVSIs of the areas simply do not fall below the threshold T'.
As a result, they are not further assessed by the verification
mechanism and are let to be optimized by the SON functions.

VI. EVOLUTION OF SON VERIFICATION

The SON concept as it is today will be much further
developed, especially in future standards like the fifth gen-
eration of mobile communications (5G). In 5G, advanced
SON techniques will not only apply to physical NEs, but will
enable operators to, for instance, balance load in a multi-radio-
access technology environment, and support traffic steering
as well as dynamic spectrum allocation [13]. Moreover, we
will have a wider variety of use cases [14], e.g., broadband
access in dense areas, higher user mobility, and extreme real-
time communications, which may result in having a much
higher number of deployed SON functions in the network. As
a consequence, the assessment of the combined performance
impact of changes triggered by SON functions will become
more challenging. Hence, the question arises of how much a
verification mechanism needs to change and which parts will
remain as they are.

In general, the structure of a verification mechanism will
resemble the one we currently have. As outlined in Figure 7, it
realized as a central entity that collects CM and PM data from
the network. Internally, it forwards the gathered information
to a verification area resolver as well as an anomaly level
assessor. Those two components implement the first two steps
of the verification process as described before. In addition,
the concept introduced in Section IV is implemented by the
anomaly level assessor, i.e., we will still need a functionality
that prevents unnecessary verification areas to be assessed by
the verificaiton process. Should, however, we find an area
with a low CVSI, the undo request assembler is triggered.
This component implements the last step of the verification
process, i.e., creating a deployment plan having the properties
of being collision-free and degradation-aware, as discussed in
Section II.

Exactly, this last step is where we see the highest potential
for a change in a 5G deployment. In such an environment
base stations will start having a range similarly to commonly
used Wi-Fi routers [15]. Consequently, verification areas will
get larger and include more entities requiring verification,
which creates a potential for more area overlaps and collisions.
Therefore, the scope of the verification process will no longer
solely include verification areas, but form so-called undo
collision domains. A collision domain is a section of the
mobile network where verification collisions have taken place,
i.e., areas being in a verification collision are part of such a
domain. Areas that are not participating in collisions form their
own collision domain.

Furthermore, a verification mechanism will extend its ca-
pabilities, besides assessing verification areas and generating
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undo requests. In our opinion, it needs a much more active
interaction with the functions. In this paper, we presented a
way of timing a verification mechanism, in particular, when
to complete the observation period. Further, several strategies
have been introduced that target anomaly detection [3], [9],
[16], [17] as well as methods that deal with the deployment
of undo requests [2], [5]. However, what we certainly do not
do is to involve the SON functions into the undo decision
making process. Therefore, we see the interaction with the
deployed functions as an important part in the workflow of a
5G verification strategy. In order to meet the ultra-reliability
requirements listed in [14], it would need to reliably negotiate
all required verification parameters with all involved functions.
A possible way of doing that is presented in Figure 8, where we
have depicted communication flow as a three-way handshake.

After detecting areas with low CVSIs, the verification
mechanism contacts the SON functions of each collision
domain over a verification interface by sending an initiation
message. It serves the purpose to notify the functions within the
verification areas about the spatial scope of the verification pro-
cess. There are, however, two cases between which we would
need to differentiate. The first one is when the verification
mechanism notifies functions that are operating in a collision
domain comprised of more than one verification area. In such
a case, it will need to include not only the list of impacted cells
and marked CM parameters for an undo, but also a parameter
indicating the time required for resolving the collisions. In
the second case, i.e., a collision domain consisting of a single
verification area, it will send the same message, but without
the duration parameter.

Upon reception of such a message, each function will
respond with either a verification-accept or with a verification-
decline message. By sending an accept message, the replying
SON function is declaring its decision not to interfere as
the CM undo deployment is taking place within the collision
domain. However, a function may also decline the planned
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undo process if it needs some additional steps to reach its
target. Thereby, functions will be obligated to inform the
verification mechanism about the CM parameters they are
optimizing as well as the estimated time for achieving their
objective.

After receiving all replies, the verification mechanism
would send either a verification-start or a verification-release
message to the functions for each collision domain. In case all
functions have reported that they will freeze their operation for
the suggested time, a start message is will be sent, which will
be later followed by the first set of undo requests. However, if
a function has reported that it is on the way of achieving its
objective, the verification function will be obligated to notify
the remaining functions within the domain about the expected
duration of this process.

VII. RELATED WORK

In [18], a CM scoring method is proposed for the SON
verification use case. It introduces a mechanism that assesses
the CM changes made to cells over a certain time period.
It categorizes them to zones based on their impact on the
performance. For instance, if a CM change causes an abnormal
cell behavior, it is assigned to a so-called red zone. Depending
to which zone it has been assigned to, it is positively or nega-
tively rated. However, the scoring itself is a simple procedure
that either adds or subtracts a zone-dependent value from the
overall one. Thus, changes continuously getting positive scores
need many negative scores in order to be considered for a
rollback. In other words, some anomalies may retain for a
long time period, simply because they may not be immediately
visible in the overall score.

The concept of pre-action SON coordination [6] can be
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seen as an alternative strategy to SON verification. Today,
it is implemented as a pessimistic strategy that makes use
of rules required for the detection and resolution of known
conflicts between active SON function instances. However,
it prevents conflicting functions from getting active, rather
than observing the network performance after the deployment
of CM changes. A typical example of such conflicts is the
operation on shared CM parameters within the same physical
area. Another example is when the activity of one function
affects the input measurements of another one.

In [3], an anomaly detection and diagnosis framework
has been introduced. It attempts to verify the effect of CM
changes by monitoring the state of the network. The framework
operates in two phases: (1) it detects anomalies by using topic
modeling, and (2) performs diagnosis for any detected anomaly
by using Markov Logic Networks (MLNs). In the latter case
it makes use of probabilistic rules to differentiate between
different causes. The proposed solution does not address the
presented problems.

VIII. CONCLUSION

In today’s Self-Organizing Networks (SONSs), the verifica-
tion of Configuration Management (CM) changes is important
step towards achieving an optimal network performance. Ap-
proaches that aim to verify such changes usually operate in
three phases. At first, the network is divided into verification
areas, then, those areas are assessed by an anomaly detection
algorithm, and finally CM undo requests are generated for the
abnormally performing ones. Those requests return the poorly
performing areas to a previous stable configuration.

However, if the observation window length of the verifica-
tion mechanism is not correctly set, for example, by observing
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the network for a too short period, it may prevent the deployed
optimization functions from reaching their optimization goal.
A too short observation window leads to a cautious verification
strategy, which may produce a high number of false positive
undo requests. Those requests can also delay the verification
process since they might be part of a verification collision.
Collisions occur when the corresponding verification areas
share anomalous cells, in which it is difficult to determine,
which change caused the degradation and should be rolled
back. Resolving such collisions is a time-consuming process
which may violate the requirement for availability, reliability
and efficiency in a current as well as in a future network
generation.

To overcome this issue, we present an approach that allows
us to dynamically select the observation period. We supply
each cell with a Cell Verification State Indicator (CVSI) that
defines whether it is ready for verification. The CVSI a cell has
is computed by using exponential smoothing as well as how
much its current performance deviates from the expectations.
Furthermore, the factor based on which the CVSI is updated,
depends on how far the performance of the cell is from the
expected value.

The evaluation of the concept has been carried out in a
simulated environment. We compare our approach with two
other verification strategies: one that is based on minimum
graph coloring and another that utilizes constraint softening.
The results show that the CVSI method is able to successfully
detect cells that a currently being optimized and prevent them
from being further processed by the verification process. This
effectively led to a better network performance.
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