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Abstract. In this paper we quantitatively evaluate the security of intru-
sion tolerant systems with preventive maintenance subject to DoS (De-
nial of Service) attacks. More specifically, we develop two semi-Markov
cost models and describe the stochastic behavior of two intrusion toler-
ant systems with different preventive maintenance policies. The optimal
preventive maintenance schedules are analytically derived to minimize
the long-run average costs. We further perform the sensitivity analysis
of the model parameters through numerical experiments. The results ob-
tained here would be also useful to design ubiquitous systems subject to
external malicious attacks.
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1 Introduction

Recently, since a huge number of information systems are connected by public
network like internet and can be accessed by many unspecified people, we of-
ten encounter the serious problems on accidental and malicious threats. Once
the security intrusion happens, it may lead to not only the leak/destruction of
information but also the computer system down. For malicious attackers, if the
access right strengthens, the probability that the security intrusion happens will
decrease, but the utilization on accessibility will be rather lost. Hence, when the
information security systems are designed, it is quite important to take account
of both intrusion detection function and intrusion tolerant function. The for-
mer strengthens the access right against malicious accesses, the latter tolerates
the security intrusion at the minimum risk. In fact, a number of implication
techniques of intrusion tolerance at the architecture level have been developed
for several real systems [13],[14], e.g., distributed systems [1], middleware [15],
database systems [16], server systems [3]. The above approaches are based on the
redundant design at the architecture level on secure software systems. In other
words, these methods can be categorized by a design diversity technique in secure
system design and need much cost for the development. On the other hand, the
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environment diversity technique by the temporal time redundancy is a low-cost
security tolerance technique. The most plausible examples for applying the envi-
ronment diversity technique are ubiquitous systems under unspecified operation
environment. In this paper we focus on the security design of intrusion tolerant
systems with preventive maintenance.

The quantitative evaluation of information security based on modeling is
quite effective to validate the effectiveness of information systems with intrusion
tolerance. Littlewood et al. [6] found the analogy between the security theory
and the traditional reliability theory in assessing the quantitative security of
operational software systems and proposed some quantitative security measures.
Jonsson and Olovsson [5] discussed a quantitative method to study the attacker’s
behavior with the empirical data observed in experiments. Ortalo, Deswarte and
Kaaniche [9] applied the privilege graph and the Markov chain to evaluate the
vulnerability, and derived the mean effort to security failure. Singh, Cukier and
Sanders [11] and Stevens et al. [12] considered probabilistic models to verify
the intrusion tolerant systems against several attack patterns, and explained
theoretically the detection mechanism of system vulnerability. Madan et al. [7],
[8] dealt with an architecture with intrusion tolerance, called SITAR (Scalable
Intrusion Tolerant Architecture) and described the stochastic behavior of the
system by discrete-time semi-Markov process. They also derived the mean time
length to security failure. Imaizumi, Kimura and Yasui [4] considered an intrusion
tolerant system subject to DoS (Denial of Service) attacks (see e.g. [2]) and gave
a continuous-time semi-Markov model. They formulated the long-run average
cost and derived the optimal monitoring time of illegal access for minimizing
it. Recently, VoIP (Voice over IP) network system [10] was modeled by the
continuous-time Markov chains from the viewpoint of security design. In this
way, several stochastic models have been developed with the aim of quantitative
evaluation of information security.

In this paper we focus on the DoS attacks similar to Madan et al. [7], [8]
and Imaizumi, Kimura and Yasui [4], and quantitatively evaluate the security of
intrusion tolerant systems with preventive maintenance. In the DoS attacks, the
attackers detect the vulnerabilities in server applications and make the network
traffic increasing extremely by sending a large amount of illegal dada. To protect
the information assets from such malicious threats, the preventive maintenance
would be useful for tolerating the security faults. The typical example of preven-
tive maintenance is the patch management. If the vendors can know the vulnera-
ble parts in the server applications in advance, they can release the patch before
the malicious attackers detect them. In fact, the full vendors or the computer
emergency response team/coordination center (CERT/CC) are always monitor-
ing the system vulnerabilities reported by benign users or themselves, even after
releasing the applications. More specifically, we develop two semi-Markov cost
models and describe the stochastic behavior of two intrusion tolerant systems
with different preventive maintenance policies. The optimal preventive mainte-
nance schedules are analytically derived to minimize the long-run average costs.
In numerical examples, we derive the optimal preventive maintenance policies
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and their associated ling-run average costs, and further perform the sensitivity
analysis of the model parameters.

2 Model 1

2.1 Model Description

Figure 1 depicts the transition diagram of Model 1. Suppose that the server sys-
tem starts operating at time t = 0 with Normal State; G. If attackers or hackers
detect the vulnerability of a server application, the state makes a transition to
Vulnerable State; V , where the transition time from G to V has the continuous
cumulative distribution (c.d.f.) F0(t) with mean µ0 (> 0). Once the malicious
attack by an attacker begins, the system state changes to Attack State; A and
the server operation stops for corrective maintenance, where the transition time
from V to A is given by a random variable having the continuous c.d.f. Fa(t) and
mean µa (> 0). In this phase, if the minor corrective maintenance in a failure
probable state is performed such as data recovery, the system can be recovered
from the failure probable state to the normal one, and can become as good as
new. The transition time from State A to State G is given by the generally dis-
tributed random variable with the c.d.f. Ft(t) and mean µt (> 0). However, the
system state may go to System Failure State; F before completing the minor
corrective maintenance, where the transition time from A to F obeys the c.d.f.
Ff (t) with mean µf (> 0). Since this state is the system down state, the major
recovery operation such as data initialization or system restart has to be carried
out. The completion time to recover the server system from the system failure
state is given by the non-negative continuous random variable with the c.d.f.
Fr(t) and mean µr (> 0).
On the other hand, if the vulnerable state V is detectable by vulnerability

identifiers like a benign user, it may be effective to trigger the preventive mainte-
nance before the vulnerabilities are detected by malicious attackers. As a plausi-
ble scenario on preventive maintenance, suppose that a benign user discovers the
application vulnerability faster than the attackers, and discloses its information
to the full vendor or the CERT/CC as well as his or her personal community.
Then the patch management is an important issue for the vendor. When the de-
velopment period of patch is relatively shorter, is the quick release of the patch
really beneficial? If the vulnerable state is seldom detected, it would be better
to release the patch from the vendor as soon as possible. However, if the similar
vulnerable states may come repeatedly, the frequent release of patches may lead
to the large overhead in operation. Define Preventive Maintenance State; M . If
the preventive maintenance is triggered before the system becomes vulnerable,
the system operation is stopped and the state goes to M from V . Without any
loss of generality, define the transition time from V to A is distributed with the
following c.d.f.:

Fm(t) =

1 (t ≥ t0)0 (t < t0).
(1)
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Fig. 1. Semi-Markov transition diagram of Model 1

This means that the preventive maintenance is performed at every t0 time unit
after the vulnerability is detected (this assumption is relaxed in the latter dis-
cussion). Once the preventive maintenance starts, it completes after the random
time interval with the c.d.f. Fc(t) and mean µc, so that the server system can
be recovered similar to the state just before the vulnerability is detected. In the
scenario of patch management, the time t0 indicates a trigger to begin devel-
oping the patch. The same cycle repeats again and again over an infinite time
horizon. Since the underlying stochastic process is a semi-Markov process, we
can apply the standard technique to study it.

Define the one-step transition probability of Model 1 and its Laplace-Stieltjes
transform (LST) by Qij(t), i, j ∈ {G, V,A, F,M}, i 6= j and qij(s) =

R∞
0
exp{−s

t}dQij(t), respectively. Then it is evident to obtain

qGV (s) =

Z ∞
0

exp{−st}dF0(t), (2)

qV M (s) =

Z ∞
0

exp{−st}F a(t)dFm(t), (3)

qV A(s) =

Z ∞
0

exp{−st}Fm(t)dFa(t), (4)

qAG(s) =

Z ∞
0

exp{−st}F f (t)dFt(t), (5)

qAF (s) =

Z ∞
0

exp{−st}F t(t)dFf (t), (6)

qF G(s) =

Z ∞
0

exp{−st}dFr(t), (7)

qMG(s) =

Z ∞
0

exp{−st}dFc(t), (8)
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where in general ψ(·) = 1− ψ(·).
Next we define the recurrent time distribution from State G to State G again

by HGG(t). Then the LST of the recurrent time distribution is given by

hGG(s) =

Z ∞
0

exp{−st}dHGG(t)

= qGV (s)qV A(s)qAG(s) + qGV (s)qV A(s)qAF (s)qF G(s)
+qGV (s)qV M (s)qMG(s). (9)

Suppose that the system state is G at time t = 0 with probability one. We define
the transition probability from G to j ∈ {G,V,A, F,M} at an arbitrary time
t (> 0) and its LST by PGj(t) and pGj =

R∞
0
exp{−st}dPGj(t), respectively.

Then, we have

pGG(s) = qGV (s)/hGG(s), (10)

pGV (s) = qGV (s)
³
qV A(s)− qV M (s)

´
/hGG(s), (11)

pGA(s) = qGV (s)qV A(s)
³
qAG(s)− qAF (s)

´
/hGG(s), (12)

pGF (s) = qGV (s)qV A(s)qAF (s)qF G(s)/hGG(s), (13)

pGM (s) = qGV (s)qV M (s)qMG(s)/hGG(s). (14)

It is not so easy to take the inversion of the above LSTs in Eqs.(10)—(14) . Instead,
by taking the limitation, we can derive the limitting transition probability Pj =
limt→∞ pG,j(t), j ∈ {G, V,A, F,M}, i.e.,

PG =
µ0

µ0 +
R t0

0
F a(t)dt+αFa(t0)+βFa(t0)+µcF a(t0)

, (15)

PV =

R t0

0
F a(t)dt

µ0 +
R t0

0
F a(t)dt+αFa(t0)+βFa(t0)+µcF a(t0)

, (16)

PA =
αFa(t0)

µ0 +
R t0

0
F a(t)dt+αFa(t0)+βFa(t0)+µcF a(t0)

, (17)

PF =
βFa(t0)

µ0 +
R t0

0
F a(t)dt+αFa(t0)+βFa(t0)+µcF a(t0)

, (18)

PM =
µcF a(t0)

µ0 +
R t0

0
F a(t)dt+αFa(t0)+βFa(t0)+µcF a(t0)

, (19)

where

α =

Z ∞
0

tF t(t)dFf (t) +

Z ∞
0

tF f (t)dFt(t), (20)

β = µr

Z ∞
0

F t(t)dFf (t). (21)

In Eqs.(20) and (21), α and β imply the mean transition time from State A
to the subsequent state and the mean transition time from State A to State G
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through State F , respectively. From the results above, the semi-Markov model
here is ergodic and the related stationary measures like the long-run average cost
exist.

2.2 Optimal Preventive Maintenance Policy

Define the following cost parameters:

cm (> 0): preventive maintenance cost per unit time
ct (> 0): minor recovery cost per unit time
cr (> 0): major recovery cost per unit time.
Then, the long-run average cost for the steady state in Model 1, C1(t0), is for-
mulated by

C1(t0) = lim
t→∞

E[total cost during (0, t]]

t
= cmPM + ctPA + crPF = Uc1(t0)/T1(t0), (22)

where

Uc1(t0) = cmµcF a(t0) + ctαFa(t0) + crβFa(t0), (23)

T1(t0) = µ0 +

Z t0

0

F a(t)dt+ αFa(t0) + βFa(t0)+µcF a(t0). (24)

We make the following parametric assumptions:

(A-1) cmµc < ctα+ crβ,
(A-2) β > µc.

Assumption (A-1) means that the sum of both mean recovery costs from the
failure probable state and the system failure state is always greater than the
mean preventive maintenance cost. Also, Assumption (A-2) implies that the
mean time to recover the system after a system failure is always greater than the
mean time required by the preventive maintenance. These two assumptions are
needed to motivate the optimal preventive maintenance policy considered here.
Then, we can characterize the optimal preventive maintenance policy minimizing
the long-run average cost in Model 1 as follows.

Theorem 1: (1) Suppose that the c.d.f. Fa(t) is strictly IFR (Increasing Fail-
ure Rate) under the assumptions (A-1) and (A-2). Define the non-linear
function:

qc1(t0) = (ctα+ crβ − cmµc)ra(t0)T1(t0)
−{1 + (α+ β − µc)ra(t0)}Uc1(t0), (25)

where ra(t) = (dFa(t)/dt)/F a(t) is the failure rate.
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(i) If qc1(0) < 0 and qc1(∞) > 0, then there exists a unique optimal pre-
ventive maintenance time t∗0 (0 < t∗0 < ∞) satisfying qc1(t

∗
0) = 0. The

minimum long-run average cost is then given by

C1(t
∗
0) =

(ctα+ crβ − cmµc)ra(t
∗
0)

1 + (α+ β − µc)ra(t∗0)
. (26)

(ii) If qc1(0) ≥ 0, then t∗0 = 0, i.e., it is optimal to trigger the preventive
maintenance just after the vulnerability is detected. Then the minimum
long-run average cost is given by

C1(t
∗
0) = C1(0) =

cmµc

µ0 + µc
. (27)

(iii) If qc1(∞) ≤ 0, then t∗0 → ∞, i.e., it is optimal not to perform the
preventive maintenance even after the vulnerability is detected. Then
the minimum long-run average cost is given by

C1(t
∗
0) = C1(∞) = ctα+ crβ

µ0 + µa + α+ β
. (28)

(2) Suppose that the c.d.f. Fa(t) is DFR (Decreasing Failure Rate) under
the assumptions (A-1) and (A-2). If C1(0)<C1(∞), then t∗0 = 0 otherwise
t∗0 →∞.

Proof: Differentiating the function C1(t0) with respect to t0 and setting it equal
to zero imply qc1(t0) = 0. Further differentiation of qc1(t0) yields

qc1(t0)

dt0
=
dra(t0)

dt

n
(ctα+ crβ − cmµc)T1(t0)− (α+ β − µc)Uc1(t0)

o
.(29)

If Fa(t) is strict IFR, from the assumptions (A-1) and (A-2), it is obvious
that the right-hand-side of Eq.(29) takes a positive value for an arbitrary
t0 and that the function qc1(t0) is an increasing function of t0. From this,
the long-run average cost C1(t0) is a quasi-convex function of t0, so that
if qc1(0) < 0 and qc1(∞) > 0, then there exists a unique optimal solution
t∗0 (0 < t∗0 < ∞) which satisfies qc1(t

∗
0) = 0. In the cases of qc1(0) ≥ 0

and qc1(∞) ≤ 0, the long-run average cost C1(t0) becomes increasing and
decreasing in t0, and the optimal solution is given by t

∗
0 = 0 and t∗0 → ∞,

respectively. If Fa(t) is DFR, the long-run average cost C1(t0) is a quasi-
concave function of t0, and the result is trivial.

3 Model 2

3.1 Model Description

In Model 1 it was assumed that the vulnerable state V could be detectable
by the vulnerability identifiers and that the development of the patch could be
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Fig. 2. MRGP transition diagram of Model 2.

started after the time t0 measured from the vulnerable state V elapsed. However,
this assumption can not be always validated, because the vendor can not know
the detection timing of vulnerabilities by malicious attackers. To resolve this
problem, we consider another stochastic model referred as Model 2 in Fig.2. That
is, the preventive maintenance is triggered at the periodic time interval measured
from State G. In Fig.2, the circles and the square denote regeneration points and
a non-regeneration point, respectively, so that the underlying stochastic process
is reduced to a Markov regenerative process (MRGP) which belongs to the wider
class than the semi-Markov processes.

However, as well known, the MRGP can be translated to the usual semi-
Markov process by changing the definition of the underlying states. Figure 3
illustrates the translated semi-Markov transition diagram of the MRGP in Fig.2,
where we define two new states:

Normal State; G
0

Preventive Maintenance State; M
0

and the Stieltjes convolution operator by ‘∗’, i.e.,

F0 ∗ Fa(t) =

Z t

0

F0(t− x)dFa(x). (30)

Similar to the previous discussion, we define the one-step transition probabil-
ity and its LST by Qij(t), i, j ∈ {G0

, A, F,M
0}, i 6= j and qij(s) =

R∞
0
exp{−st}

dQij(t), respectively. Then it is immediate to see that

qG0 A(s) =

Z ∞
0

exp{−st}Fm(t)dG(t), (31)

qAG0 (s) =

Z ∞
0

exp{−st}F f (t)dFt(t), (32)

qG0 M 0 (s) =

Z ∞
0

exp{−st}G(t)dFm(t), (33)
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Fig. 3. Translated semi-Markov transition diagram of Model 2.

qM
0
G

0 (s) =

Z ∞
0

exp{−st}dFc(t), (34)

qAF (s) =

Z ∞
0

exp{−st}F t(t)dFf (t), (35)

qF G0 (s) =

Z ∞
0

exp{−st}dFr(t), (36)

where G(t) = F0(t) ∗ Fa(t).
For the recurrent time distribution from State G0 to State G0 again,HG0 G0 (t),

we obtain the LST:

hG0 G0 (s) =

Z ∞
0

exp{−st}dHG0 G0 (t)

= qG0 M 0 (s)qM 0 G0 (s) + qG0 A(s)qAG0 (s)
+qG0 A(s)qAF (s)qF G0 (s). (37)

Given the initial state G
0
at time t = 0, the LSTs of transition probabilities

PG0 j(t), j ∈ {G
0
, A, F,M

0} at an arbitrary time t (> 0) are given by

pG0 G0 (s) =
³
qG0 A(s)− qG0 M 0 (s)

´
/hG0 G0 (s), (38)

pG0 A(s) = qG0 A(s)
³
qAG0 (s)− qAF (s)

´
/hG0 G0 (s), (39)

pG0 F (s) = qG0 A(s)qAF (s)qF G0 (s)/hG0 G0 (s), (40)

pG0 M 0 (s) = qG0 M 0 (s)qM 0 G0 (s)/hG0 G0 (s). (41)

In a fashion similar to Model 1, it can be seen that the limitting transition
probabilities Pj = limt→∞ pG0 ,j(t), j ∈ {G

0
, A, F,M

0} are given by

PG
0 =

R t0

0
G(t)dtR t0

0
G(t)dt+ αG(t0) + βG(t0) + µcG(t0)

, (42)

PA =
αG(t0)R t0

0
G(t)dt+ αG(t0) + βG(t0) + µcG(t0)

, (43)
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PF =
βG(t0)R t0

0
G(t)dt+ αG(t0) + βG(t0) + µcG(t0)

, (44)

PM 0 =
µcG(t0)R t0

0
G(t)dt+ αG(t0) + βG(t0) + µcG(t0)

. (45)

3.2 Optimal Preventive Maintenance Policy

In Model 2, the long-run average cost C2(t0) is formulated as

C2(t0) = lim
t→∞

E[total cost during (0, t]]

t
= cmPM

0 + ctPA + crPF = Uc2(t0)/T2(t0), (46)

where

Uc2(t0) = cmµcG(t0) + ctαG(t0) + crβG(t0), (47)

T2(t0) =

Z t0

0

G(t)dt+ αG(t0)+βG(t0)+µcG(t0). (48)

We give the following result to characterize the optimal preventive maintenance
policy for Model 2, without the proof.

Theorem 2: (1) Suppose that the c.d.f. Fa(t) is strictly IFR under the assump-
tions (A-1) and (A-2). Define the non-linear function:

qc2(t0) = (ctα+ crβ − cmµc)r0a(t0)T2(t0)
−{1 + (α+ β − µc)r0a(t0)}Uc2(t0), (49)

where r0a(t) = (dG(t)/dt)/G(t) is the failure rate.
(i) If qc2(0) < 0 and qc2(∞) > 0, then there exists a unique optimal pre-
ventive maintenance time t∗0 (0 < t∗0 < ∞) satisfying qc2(t

∗
0) = 0. The

minimum long-run average cost is then given by

C2(t
∗
0) =

(ctα+ crβ − cmµc)r0a(t
∗
0)

1 + (α+ β − µc)r0a(t∗0)
. (50)

(ii) If qc1(0) ≥ 0, then t∗0 = 0 and the minimum long-run average cost is
given by

C2(t
∗
0) = C2(0) = cm. (51)

(iii) If qc2(∞) ≤ 0, then t∗0 → ∞ and the minimum long-run average cost
is given by

C2(t
∗
0) = C2(∞) = ctα+ crβ

µ0 + µa + α+ β
. (52)

(2) Suppose that the c.d.f. Fa(t) is DFR under the assumptions (A-1) and
(A-2). If C2(0)<C2(∞), then t∗0 = 0 otherwise t∗0 →∞.
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Table 1. Dependence of parameters (k,λ) on the long-run average cost.

Model 1 Model 2
(k,λ) t0 →∞ t∗0 C1(t

∗
0) reduction (%) t∗0 C2(t

∗
0) reduction (%)

(2,5) 119.3280 0.0105 8.7717 92.6491 45.5572 49.6777 58.3689
(2,10) 113.3180 0.0421 8.7709 92.2600 48.2156 47.2078 58.3406
(2,15) 107.8850 0.0949 8.7695 91.8714 50.8743 44.9717 58.3151
(3,5) 116.2460 0.3344 8.7606 92.4637 53.1873 38.2400 67.1041
(3,10) 107.8850 0.9586 8.7397 91.8991 57.6474 35.4980 67.0964
(3,15) 100.6460 1.7782 8.7124 91.3435 62.1078 33.1228 67.0898
(4,5) 113.3180 1.2623 8.7245 92.3009 60.5449 31.6771 72.0459
(4,10) 102.9490 3.2492 8.6515 91.5963 67.0879 28.7700 72.0541
(4,15) 94.3177 5.6576 8.5651 90.9189 73.6312 26.3515 72.0609

In Section 2 and Section 3, we derived the optimal preventive policies for re-
spective models with aperiodic and periodic preventive maintenance schedules,
respectively. In the following section, we calculate numerically the optimal pre-
ventive schedules and their associated long-run average costs, and compare them
quantitatively. Also, we perform the sensitivity analysis of model parameters and
investigate the effect of preventive maintenance policy in the intrusion tolerant
system.

4 Numerical Examples

Suppose that the c.d.f. Fa(t) is given by the gamma distribution with shape
parameter k (> 0) and scale parameter λ (> 0):

Fa(t) = t
k−1 exp{−t/λ}

Γ (k)λk
(53)

and that the other transition probabilities are given by the exponential distri-
butions, where the other model parameters are assumed as µ0 = 168，µf = 4，
µc = 3，µt = 5, cr = 2500, cm = 500 and ct = 750.

Table 1 presents the dependence of distribution parameters (k,λ) on the opti-
mal preventive maintenance policies and their associated long-run average costs.
From this result, it would be effective to perform the preventive maintenance
based on the optimality criterion. Comparing the case without the preventive
maintenance, the effect of 91%∼92% (60%∼70%) cost reduction in Model 1
(Model 2) was found in each parameter setting. On the other hand, when Model
1 is compared with Model 2, Model 1 could reduce the 75%∼85% average cost
more than Model 2. This is a natural conclusion because the vulnerable states
are always detectable in Model 1 but not in Model 2. For instance, if the ven-
dors or the CERT/CC could detect the vulnerabilities more quickly than the
malicious attackers, they will be able to reduce the operation cost effectively.
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