
Studying of Multi-dimensional Based
Replica Management in Object Storage System∗

Zhipeng Tan, Dan Feng, Fei He, Ke Zhou
Key Laboratory of Data Storage System, Ministry of Education

School of Computer, Huazhong University of Science and Technology,
Wuhan 430074, Hubei, China

Corresponding authors: zhipengtan@163.com

Abstract: The Object-based Storage System (OBS) has been proposed as a
novel information storage technology in adaptation to the explosive growth in
information quantity under the next-generation internet. The OBS treats all
storage devices (OSD) and data information as objects, hence, the issues like
reducing access delay over WAN, saving limited bandwidth and enhancement
of data validity become problems related to the overall performance of OBS. To
address these problems, we have the replica-based OBS, which brings forward
a new issue on how to manage these replicas. In this paper, we present a
multi-dimensional replica management scheme, and study the object searching
performance within this mode. We deliver the optimal tree & improved
one-path tree on the basis of similarity searching, with detailed replica indexing
algorithm and emulation tests. The result of these experiments justifies their
better performance in contrast to normal similarity-based indexing algorithm,
with lower system cost.

Key Words: Multi-dimensional Architecture; Optimal tree; One-path tree;
Replica management; Searching

1 Introduction

In the last few years, object storage system is a research hotspot and it is the key
technology for next generation network storage. In the object storage system, object is
the base unit of management. Object storage system provides geographically
distributed storage resources for large-scale data-intensive applications that generate
large data objects. However, ensuring efficient and fast access to such huge and
widely distributed data objects is hindered by the high latencies of the Internet. To
address these problems we introduce a set of object replication management services

∗It was supported by the National Basic Research Program of China (973 Program) under

Grant No. 2004CB318201.
Tan Zhipeng is a Ph.D candidate in Department of Computer Science, Huazhong University of
Science & Technology. He is interested in computer architecture、information storage and
database technology etc..
Feng dan is a professor of Huazhong University of Science & Technology. She is interested in
computer architecture、mass information storage and disk array etc..

and protocols that offer high data availability, low bandwidth consumption, increased
fault tolerance, and improved scalability of the overall system. Replication decisions
are made based on a cost model that evaluates data access costs and performance
gains of creating each replica. Replication technology is applied in the filed of grid、
data grid、and distributed system. Although there are some research results about
replication, there is no research of replication about object storage system. Our study
investigates the usefulness of creating replicas to distributed object among the various
nodes in the object storage system. The main aims of using replication are to reduce
access latency and bandwidth consumption. Replication can also help in load
balancing and can improve availability by creating multiple copies of the same object.
Since the numerous replicas are redundantly stored, the number of which soars when
the amount of object storage nodes and data objects increase, how to manage these
replicas becomes an important problem for object storage system. In the object
storage system, one of the simplest rules for managing replicated object is where read
operations on an object are allowed to read any replica, and write operations are
required to write all copies of the object. The rule is termed as read-one & write-all.
In this paper, we provide a multi-dimensional-based replica management to control
replicas, and the experiments prove its effectiveness to advance performance of object
storage system with replication.

The rest of the paper is organized as follows: First, we will give related work in
the Section 2; then delivers a Multi-dimensional replica management model of object
storage system in section 3; section 4 discusses the implementation of
multi-dimensional replica management model; in section 5, the performance of the
Multi-dimensional replica management model is analyzed in terms of object
availability. At last, we will conclude in section 6.

2 Related Work

Replication has been studied extensively and various distributed replica management
strategies have been proposed in the literatures[1, 2, 3]. In the context of object storage
technology, replication is mostly used to reduce access latency and bandwidth
consumption. But replication will bring large numbers of replicas on the object
storage system. Consequently, it is an important matter that how these replicas are
managed. There are some researches about the size of the object replication in the
grid[8], the placement of object replicas and the selection of consistency algorithms.
The replica management system decides when to create and where to place a replica.
These decisions are made based on a cost model that evaluates the maintenance cost
and access performance gains from creating each replica. The estimates of costs and
gains are influenced by many factors, such as run-time accumulated read/write
statistics, the chosen consistency algorithm, run-time measured network latency,
response time, bandwidth, and replica’s size[8]. These parameters are changing during
the program execution, so they need to be measured at runtime and fed to an
optimization procedure that minimizes object access costs by dynamically changing
the replicas number and placement.

To ensure scalability, we use both hierarchical and flat propagation graphs
spanning the overall set of replicas to overlay replicas on the object storage system
and minimize inter-replica communication costs. For the hierarchical topology, we
introduce a modified fat-tree structure with redundant interconnections connecting its
nodes; closer the node is to the root, more interconnections it has. The fat-tree was
originally introduced by Leiserson[12] to improve the performance of interconnection
networks in parallel computing systems. The hierarchical distribution is well suited
for multi-tier applications, while the ring topology suits best for the multiple server or

peer replica applications. For our flat topology we use the ring one. In the
peer-to-peer model, any replica can synchronize with any other replica, and any
update can be applied at any accessible replica. The peer model has been
implemented in many systems such as Ficus[1], Rumor[2] , Roam[6] ,Bayou[7],and
Locus[12]. In the hierarchical model, the replicas are placed at different levels, and
communicate with each other in a client-server like scheme. This model has been
realized in replication systems such as Coda[10]. To further exploit the properties of
both topologies, we use a hybrid topology in which both the ring and fat-tree replica
organizations can be combined into multi level hierarchies. This approach improves
both the data availability and the reliability of the ring topology and allows for a
scalable expansion of the hierarchical distribution. Both the ring and fat-tree
connection graphs represent virtual connections between the grid nodes that hold
replicas of the same object. Depending on the topology, each node is aware of its
neighbors or direct ancestors and children.

As stated above there is no detailed study of management for object replications,
which provides an interesting field for exploitation, and in this paper we study the
management of object replications specially and analyze performance of object
storage with replications. Multi-dimensional-based Replica Management Mechanism
should be propitious to find the replication object. First, the replications are placed
according to the multi-dimensional replica management model, but when the
searching of replication, the structure of multi-dimensional can be transformed
structure of tree. The transform is easy. The experiment proved this way is effective
for replication management.

3 Multi-dimensional Replica Management Model

In object storage system, there are attributes and operations of object defined, which
are judged as two dimensions, while at the same time, we can add more characteristic
dimensions to every object, so a Multi-dimensional data structure of replicas can be
given according to these attributes. Within three Multi-dimensional data structure,
replicas are logically organized into a box with four planes. Figure 1 is an example of
the box that consists of four planes with the black circle represents a copy at location
A, B, C, … , and X. The Multi-dimensional data structure restricts the number of
replicas in each plane, i.e., if l denotes the length (column) of the plane, and w is the
width (row) of the plane, then each plane consists l×w replicas. Of course we can get
new box from other dimensional data structure, the box must not have four planes
only.

Fig.1: A box of replicas by three Multi-dimensional data structure

Definition1: A pair of replicas that can be constructed from a hypotenuse edge
in a box-shape structure are called hypotenuse replicas. For the Multi-dimensional
replication management structure, reading operations on a replication object are
executed by acquiring a read quorum that consists of any hypotenuse replicas. In the
Figure1, replicas {V,C},{I,P},{X,A}, or {G,R} are hypotenuse replicas from which it
is sufficient to execute a read operation. Since each pair of them is hypotenuse
replicas, read operation can be executed if one of them is accessible. If W is a set of
write quorums which consists of groups that are sufficient to execute write operations
under a set of hypotenuse replicas, say {V,C}, then from Figure 1, we have

W={{V,C,I,A,G,B},{V,C,I,A,G,E},{V,C,I,A,G,H},{V,C,I,R,X,K},{V,C,I,R,X,
M},{V,C,I,R,X,O},{C,V,P,A,G,J},{C,V,P,A,G,I},{C,V,P,A,G,N},{C,V,P,R,X,Q},{C
,V,P,R,X,T},{C,V,P,R,X,W}}.

Of course, there is weakness of the Multi-dimensional replication management
structure——that is, if all store nodes in a column of each plane are unavailable, the
write quorum can not be constructed. For example, when
{{B,E,H},{K,M,O},{Q,T,W}, and {J,L,N}} are unavailable, the write operation is
suspended even if all the other store nodes are available or accessible. So in this paper,
we mainly discuss how to search the replicas needed in object storage system that has
plentiful amount of object replicas by Multi-dimensional replication management
structure.

4 Searching of Multi-dimensional-based Replica Management

Multi-dimensional index technology has been recognized as one of the key solutions
to the acceleration of data searching. And there are already numerous
hyper-dimensional index methods, for instance, the R-tree[14]，R*-tree[15] as well as
some variations of the R-tree[14~17], which are all based on space locality, and have
been widely used in GIS(Geology Information System). However, these sorts of space
locality based index methods has their innate confinement, which proves only to be
effective when the following two conditions are met simultaneously: (1) the indexing
object must be able to be denoted by a Eigen-value of hyper-vector space; (2) the
similarity between objects must be measured by the Euclid Distance. As for the need
of quick replica searching in the Object Storage System(OBS) grounded on replicas,
we first institute a measurement of space through multi-dimensional replica
management, and then elicit the distance-based index theory. Unlike the
locality-based index technology, the distance-based one mainly deals with the
comparative distance between replicas, without concerning the relative locality
between them. As some typical models in this kind, one need to look no further than
the M-tree[17], MVP-tree[18] and MB+tree[19], among which the VP-tree and MVP-tree
are two canonical space measurement-based static index architectures, while the
M-tree becomes the leading one to realize the dynamic. Additionally, the M-tree
model has been improved by MB+tree and Slim-trees, for the MB+tree substitutes the
hyper-dimensional index structure by two mono-dimensional index(B+tree &
Block-tree) to avoid the overlapping partition of the data space, while the Slim-trees
adopt a disposal procedure after creating the tree to minimize the total number of
nodes and the cover radius of the data node. Nevertheless, the searching performances
of these distance-based index technologies are primarily depended on the specific data
distribution, and most of which includes some empirical parameters to design the
models(the vantage points in VP-tree, for example), far from the “Optimal Searching
Performance”. For this reason, with the idea of multi-dimensional replica storage
structure under the object storage space, we introduce a brand new distance-based
theory of index structure, the optimal tree and the improved one-path tree, by studying

their establishment and detailed accomplishment of searching, with corresponding
algorithms.

4.1 Similarity searching

We first define the OBS’s storage space as a binary group: M=(D，d), in which D is
the characteristic space of the object, and d is the length measurement under the D.
They together meet the following conditions:

①symmetry：d(x,y) = d(y,x)；
②non-negative：when x ≠ y，0 < d (x,y) < ∞，when x = y，d (x,y)＝0；
③triangle inequality：d(x,y) ≤ d(x,z) + d(z,y).

 From this definition, we conclude that we can only use the 3 conditions defined
above when forming the index structure in the distance-based object storage space, in
contrary to any other assumptions frequently used in Euclid space. Given a OBS,
namely S, and the distance measurement in the object characteristic space, namely d,
and Q-the accessing object replica, normally we would searching the certifiable
replica through the following two ways:
 Threshold-value inquiry-Query(Q，t): given a certain threshold value t, all the
target replicas I in the S that fit d(Q，I)≤t.
 Best-match inquiry-Query(Q，n): possible n candidate replicas that have the
closest distance to the accessing replica in the S.
 When concerning the similarity searching, we can use the triangle inequality to
reduce the times of distance calculation during the Best-match inquiry process to
enhance its efficiency. The detailed method can be described as follows:
 Assume I as a replica in the S, and K={ K1，K2，… ，Kn } is a set of similar
replica objects(-call Ki the key object). By using the triangle inequality, we have:

1

(,) (,) (,)max s s
s m

d I Q d I K d Q K
≤ ≤

≥ − (1)

From (1) we know that, for a random s(1≤s≤n), we have d(I，Q)≥|d(I，Ks)−d(Q，Ks)|,
thus derives a lower bound of the distance between I and Q. Consider a storage
system S={I1，I2， … ，In} and a very small set of similar replica objects K={K1，
K2，… ，Km}. If for any s and t, the distance between Is and Kt, d(Is，Kt), has been
calculated in advance, then for the similarity searching Query(Q，t), it is only needed
to calculate the set {d(Q，K1)，d(Q，K2)， … ，d(Q，Km)}, and it is easy to get the
corresponding lower bound of distance by referring to inequality (1). Apparently, if
we can prove d(Is，Q)>t, then we can eliminate Is from the candidate matching set of
Q. After this kind of filtration, it is only necessary to compute every remaining object
by the linear searching method, and put those that can meet the demand into the
searching result set. In this triangle-inequality based similarity searching strategy, we
can simply exclude those impossible replica candidates with too long distance from
the inquiring replica with the assistance of “distance lower bound”, thus reducing the
times of distance calculation in the query. With this searching algorithm, it only takes
m+u time of distance calculation(u is the number of leaving objects after filtration)
and O(mn) times of simple computation. Obviously, this strategy can save a great deal
of distance calculation to promote the efficiency of similarity searching remarkably,
as long as the prerequisite m+u≤n can be met.

4.2 The partition、Tree structure and Searching

We begin to discuss the partition of object replica set with the multi-dimensional
object replica management structure. As for convenient explanation, we treat the
terms “replica”, “the characteristic vector of replica” as well as “object” and “the
characteristic vector of object” as the same thing, as far as it would not lead to
confusion.

4.2.1 The optimal partition of multi-dimensional replica object set

Definition 2(Optimal partition): assume D as a established multi-dimensional
replica set, and d as a distance measurement under D. Select two sample point C1 and
C2 on a random side of the multi-dimensional object replica management structure.
Partition set D by these two points into two child set D1 and D2, so that for a random
point X aside from C1 & C2, if d(X,C1)≤d(X,C2), then put X into D1;Or else put it into
D2.
 We call it a “Balance Partition” if it fits the condition (1) defined as follow; For
any given positive integer h>0, if the partition meets conditions (1)～(3), then we call
it “Optimal Partition”, and the relevant point C1 and C2 as “Reference Point” to this
partition.

(1) the minimum of abs(|D1|−|D2|)，or the least comparative number of the data
nodes in D1 and D2, in which |•| is the operator in the calculation of set base number.

(2) assumeD′1={X|d(X,C1)−d(X,C2)≤2h∧X∈D2},D′2={X|d(X,C2)−d(X，
C1)≤2h∧X∈D1}, then demand the least number of data nodes in the set
D′1∪D′2 by this partition.

(3) d(C1,C2)>h。
By implementing general optimal methods, such as imitative annealing idea or

heredity algorithm, we can simply apply the “Balance Partition” or “Optimal
Partition” to the replica object set. For a given replica object set, we can employ
balance partition or optimal partition to divide it recursively, and thus establish a
corresponding index structured optimal tree over the multi-dimensional replica object
set. The basic thinking of optimal tree index structure is to adopt a balance or optimal
method to divide the multi-dimensional replica space set I into two child sets, and
recursively divide each child one with the same method, until each child set include
and only include the needed accessing replica. So, the optimal tree is of a binary tree
structure, representing a recursive process of partitioning the replica object space.

4.2.2 The algorithm of the index structured optimal tree establishment

Assume I=(O1,O2，…，On) is data set including n replica objects, and d is a distance
measurement. Then the establishing algorithm of optimal tree can be described as
follows:
 Input: dataset I
 Output: optimal tree V

(1) if |I|=0, then establish a void tree, return.
(2) else,

(2.1) use a balance or optimal partition method to partition dataset I into
two child sets: Dl & Dr(the Reference Points are C1 and C2,
accordingly), and
Dl={Oi⏐d(C1,Oi)≤d(C2,Oi)∧Oi∈I},
Dr={Oj⏐d(C2,Oj)<d(C1,Oj)∧Oj∈I};

(2.2) branch root V with Dl and Dr as the left & right child tree;

(2.3) if Dl or Dr is leaf node, then calculate d(Ci,Oj), put it into leaf-node
distance array Di[j], return.

(3) treat Dl and Dr recursively by using the algorithm above, forming relevant
optimal child tree.

 Theorem 1: Assume D as a replica object set, d is a distance measurement under
D, and D1 & D2 are two child sets derived from balance or optimal partition, both of
which are dimension-decreased replica object sets, and C1 and C2 are sample points to
D1 & D2. Consider similarity inquiry Query(q,t)(q is the demanded inquiring replica, t
is the threshold value). We have, if d(q,C1)≤d(q,C2), then if there exists a point x∈D2
to let d(x,C1)−d(x,C2)≤2t stand, we must search D1 and D2 to execute similarity
inquiry Query(q,t); if not exists, the Query(q,t) only needs to search D1. Similarly, if
d(q,C2)≤d(q,C1), then if there exists a point x∈D1 to let d(x,C2)−d(x,C1)≤2t stand, we
must search D1 and D2 to execute similarity inquiry Query(q,t); if not exists, the
Query(q,t) only needs to search D2.
 Prove: In the first circumstance d(q,C1)≤d(q,C2), because d is a distance
measurement, and by the definition of it we can conclude the following two
inequalities:

d(q,C1)+d(C1,x)≥d(q,x),
d(q,C1)+d(q,x)≥d(C1,x)，derivable from the two inequalities.
d(q,C1)≥|d(q,x)−d(C1,x)|，(2)

and d(q,C2)≤|d(q,x)+d(C2,x)|。(3)
From (2),(3) we have, d2(q,C1)≥[d(q,x)−d(C1,x)]2 , and

d2(q,C2)≤[d(q,x)+d(C2,x)]2.
According to the assumption condition d(q,C1)≤d(q,C2), we have:

[d(q,x)−d(C1,x)]2≤[d(q,x)+d(C2,x)]2,
⇒ −2d(q,x)d(C1,x)+d2(C1,x)≤2d(q,x)d(C2,x)+d2(C2,x),
⇒ 2d(q,x)[d(C1,x)+d(C2,x)]≥d2(C1,x)−d2(C2,x),
⇒ d(q,x)≥(d(C1,x)−d(C2,x))/2. (4)

From (4) we know, if d(x,C1)−d(x,C2)>2t exists, then d(q,x)>t. That is to say, if there
is a random x in D2 that leads to d(x,C1)−d(x,C2)>2t, then x could not be a inquiry
candidate. Hence, we only need to search D1 to execute Query(q,t). Or else, if there
exists a point x∈D2 leading to d(x,C1)−d(x,C2)≤2t, then we are not sure whether d(q,x)
is smaller than the threshold value. In this case, D1 and D2 need to be scanned at the
same time to execute Query(q,t). Similarly, the conclusion stands in the second
circumstance.
 Inference 1: Assume the same condition as Theorem 1, then:

 (1) When d(q,C1)≤d(q,C2), if d(q,C2)−d(q,C1)≤2t stands, then we must scan D1
and D2 to execute Query(q,t); Or else, we only need to scan D1;

(2) When d(q,C2)≤d(q,C1), if d(q,C1)−d(q,C2)≤2t stands, then we must scan D1
and D2 to execute Query(q,t); Or else, we only need to scan D2;

Prove: In the 1st circumstance d(q,C1)≤d(q,C2), let d ′=d(q,C2)−d(q,C1), then to
any x∈D2, suppose d(x,C1)−d(x,C2)=d>0(see Definition 1). By the triangle inequality,
we can have:

d(q,x)>d(x,C1)−d(q,C1), d(q,x)>d(q,C2)−d(x,C2), thus derives,
2d(q,x)>[d(x,C1)−d(x,C2)]+[d(q,C2)−d(q,C1)]=d＋d ′,

To be more concise: d(q,x)>(d+d ′)/2。
 If d′=d(q,C2)−d(q,C1)>2t, then d(q,x)>(d+d ′)/2≥t+d/2>t. From this can we

conclude, the x∈D2 has been excluded from the candidate matching list of q.
According to x’s random nature, Query(q,t) only needs to scan D1.

 If d′=d(q,C2)−d(q,C1)≤2t, we can not guarantee d(q,x)>t, which means that we
must scan D1 and D2 to execute Query(q,t). Similarly, the conclusion stands in
the 2nd circumstance.

4.2.3 The searching over index structured optimal tree

With Inference 1, we can deliver the searching algorithm of optimal tree as follows:
Optimal tree searching algorithm
Input: optimal tree V
Output: searching outcome set result

(1) Select current node;
(2) If current node is a leaf node, then to each data node Pi in the leaf node,

(2.1) Select distance array D1 and D2;
(2.2) If max{|d(q,C1)−D1[i]|,|d(q,C2)−D2[i]|}>t, then Pi is a non-matching

candidate; Or else, compute the d(q,Pi), if d(q,Pi)≤t, then add it into result.
(2.3) return;

(3) if current node is a internal node, then
(3.1) compute the distance d(q,C1) and d(q,C2);
(3.2) if d(q,C1)≤d(q,C2), meanwhile d(q,C2)−d(q,C1)≤2t, then recursively scan

its left & right child trees; or else, recursively scan the left child tree.
(3.3) if d(q,C2)≤d(q,C1), meanwhile d(q,C1)−d(q,C2)≤2t, then recursively scan

its left & right child trees; or else, recursively scan the right child tree.
 It is easy to discover from the searching algorithm of optimal tree that, the
optimal tree, a distance based multi-dimensional space index structure, can really
advance the speed of similarity searching, while the query efficiency of which would
not decrease noticeably as the dimension grows. However, because the optimal tree is
also of binary searching structure, the level of the tree can be considerable to
high-capacity dataset, let alone the cost of recursive searching the child ones which
may influence the total performance. To better implement the optimal tree strategy, a
feasible way is to deduct the height of the tree to fulfill the aim of reducing the
computation of distance. Another possible way that may contribute to the
improvement is to ensure the one-way down searching during the query process,
without the cost of scanning branches back and forth. Theoretically, this could double
the overall performance of searching. With this idea in mind, we deliver a modified
optimal tree index structure: the one-path tree.

4.2.4 Improved indexing one-path tree

Definition 3(Redundant Storage): Assume D, D1, D2, C1 and C2 has use the same
definition as Definition 1. Suppose D′1={x|d(x,C1)−d(x,C2)≤2h∧x∈D2},
D′2={x|d(x,C2)−d(x,C1)≤2h∧x∈D1}, put the data nodes in D1′ and D2′ into D1 and D2
overlappingly, thus we have two extended subset D1 and D2 , or D1 = D1∪ D′1, D2
= D2∪ D′2. We call the partition above “Redundant Storage”. In a storage system like
replica-based OBS, which contains a large number of replicas, it naturally results in
redundant storage. And in the multi-dimensional replica management mechanism,
replica objects on sides formed by different dimensions have dissimilar redundancy,
while replicas on various sides tend to have less redundancy or they are totally
different object’s replicas.
 It is easy to discover from Def 2 that, we would get two overlapping extended
subsets after a redundant segmentation, with their redundancy determined by
parameter h and the particular replica distribution. In the terms of redundant storage,
we can use the inequality d(C1,x)-d(C2,x)>2h or d(C2,x)-d(C1,x)>2h to remove those
replicas which are too distant to become a matching candidate. Although the method
described here are probabilistic, we can still assure its correctness on similarity
searching. Thus can we deduce theorem 2.

Theorem 2: Assume D, D1, D2, D1 , D2 , C1 and C2 has use the same definition
as Definition 3. And to any given user Query(q,t), we have h≥t, then it leads to the

following: if d(q,C1)≤d(q,C2), then Query(q,t) only need to search D1 ; or else,
Query(q,t) only need to search D2 .

Prove: Suppose d(q,C1), d(q,C2). From Def 2 we know, in order to prove that
“Query(q,t) only need to search D1 ”, the only necessity is to prove that to a any
given x∈D2, if x∉ D1 , then x can not be a matching candidate of q. On the other hand,
from Def 3 we acquire that, if x ∉ D1 , x∈D2, then d(x,C1)−d(x,C2)>2h. By referring to
the proving method of “Inference 1”, we have
d(q,x)>(d+d ′)/2(d, d ′ takes the same meaning as in Infer 1).

Thus derives: d(q,x)>h+d/2>h≥t, thereby, d(q,x)>t. So x is not a matching
candidate of q, which in another word indicates that it only takes Query(q,t) to
scrutinize D1 .

Similarly can we prove, if d(q,C2)<d(q,C1), then Query(q,t) only needs to
search D2 .

Definition 4(one-path tree): Assume I as a Image characteristic vector set,
select parameter§, and utilize some certain optimal partition method in separate the
OBS multi-dimensional replica set into two subsets DL and DR. Then use redundant
storage strategy to extend the two sub ones so that DL = DL ∪ DL′, DR = DR ∪ DR ′.
Use the same recursive partition and disposition regarding every single extended
subclass (DL & DR), until each of the two includes and only includes the designated
number of data nodes or, the subsets are “small enough”. If the replica object subset
DL(DR) satisfies DL′ = DR (DR′ = DL), then DL(DR) can be considered small enough.
We call this binary tree architecture through replica object space partitioning the
one-path tree.

There is immanent similarity between the one-path tree and the optimal one.
And according to Theorem 2, the similarity searching based on one-path tree index
structure can be relatively simple, which only takes a single path searching along the
one-path tree. Consequently the efficiency of tree searching is boosted prominently.

4.2.5 Searching on one-path tree

Input: one-path tree
Output: searching outcome set result

 (1) If current node is a leaf node, then for every data point Pi in the leaf node,
(1.1) Select the distance array and store D1 & D2;
(1.2) If max{|d(q,C1)−D1[i]|，|d(q,C2)−D2[i]|}>t, then Pi is a non-matching

candidate(drop it without compute the distance); or else, compute d(q,Pi). If d(q,Pi)≤t,
then put it into the result.

(1.3) return
(2) if current node is an internal node, then

(2.1) if d(q,C1)≤d(q,C2), search the left child tree recursively;
(2.2) if d(q,C2)<d(q,C1), search the right child tree recursively;

5 Experiment and Evaluation

In the experiment, we mainly focus on the analysis and comparison of replica-based
Object Storage System. We use the two indexing structures: the optimal tree and
improved one-path tree, to search for replica object, while recording the searching
performance, system cost, access delay queue and I/O flow rate corresponding to the
variation of the total amount of replicas and the dimensions of replica management.

The three indexing structure, similarity searching, the optimal tree and improved
one-path tree, are all realized by the standard C language under the Linux platform. In

10 20 30 40 50
0

10

20

30

40

50

60

70

80

90
 One-path tree
 Optimized tree
 Simple tree

R
re

sp
on

se
 ti

m
e(

m
s)

(a)Number of object replicas

Fig.2.Influence of Performance by Replicas

Fig.3. Influence of Performance by Dimensions

the experiment, we study the OBS with 100 storage nodes, and 1000 objects inside.
To any object under study, the tested numbers of replicas are 10, 20, 30, 40, 50, which
are stored in different nodes. We observe the variation in the searching response time
and expense of searching under the three architectures, as well as the access queue
generated, with an increasing replicas tendency. Additionally, we observe the three
aspects listed above under different replica management dimensions as 2D, 3D, 4D,
and 5D. We assume that objects searched are extant object-replicas. The results
manifest that the one-path tree has the best searching performance, especially to those
queries within a large range.

Figure 2 shows the pattern in the 3 searching architectures: when the
object-replica increases, the system response time and system cost drop down, with
even shorter waiting queue. It is obvious that the improved one-path tree takes the
lead in comparison to the other two.

Figure 3 reveals that when the management dimension increases, the system’s
reaction time and its consumption, along with the access queue are all increasing
consequently.However, the positive effects the multi-dimensional mechanism plays
on replica management are evident, at which we would later be discussed in other
special papers. In conclusion, the experiment proves that the performance of
improved one-path tree is the best structure in comparison to normal similarity
searching and optimal tree.

6 Conclusion

In the object storage system, managing such huge amounts of objects in a centralized
manner is almost impossible due to extensively increased data access time. So object
replication is a key technique to manage large object in a distributed manner. By its
nature, we can achieve better performance (access time) by replicating object in
geographically distributed object stores. In object storage system, user’s job may
probably require the access to large number of objects, and if the required objects are
replicated in the node in which the job is executed, the job is able to process object
without any communication delay. However, if required objects are not in the site,
they should be fetched from the other nodes. Object fetch takes very long time
because the size of a single replica may reach giga-byte scale in some applications
while the network bandwidth between nodes is limited. As a result, job execution time
becomes lengthy due to delay of fetching replicas over Internet. So searching object is
the key factor in replica-based object storage system. In this paper, we advance a
model of multi-dimensional based replica management model, and study the
searching of object within this model. On the ground of similarity search, we advance
optimal tree and improved optimal tree——one-path tree. And the paper gives two
kinds of index algorithm under two tree structures, and then tests the algorithm with
imitation. At the same time, there are problems emerged on the replicas in the object
storage system, such as the placement of replicas、consistency of replicas、
granularity of replicas and so on, which would be discussed in other papers.

Reference

1．R. Guy, J. Heidmenn, W. Mak, T. Page Jr., G. Popek, and D. Rothmeier, ”Implementation of
the Ficus Replicated File system,” Proceedings of the summer Usenix Conference, 1990.

2．R. Guy, P. Reiher, D. Ratner, M. Gunter, W. Ma, and G. Popek, ”Rumor: Mobile Data
Access Through Optimistic Peer-to-Peer Replication,” Workshop on Mobile Data Access,
November 1998.

3．T. Page, R. Guy, J. Heidemann, D. Ratner, P. Reiher, A. Goel, G. Kuenning, and G.
Popek, ”Perspectives on Optimistically Replicated, Peer-To-Peer Filing,” Software -
Practice and Experience, Dec. 1997.

4．K. Ranganathan and I. Foster, ”Identifying Dynamic Replication Strategies For a High
performance Data Grid,” Proceedings of the International Grid Computing Workshop,
Denver, November 2001.

5．K. Ranganathan and I. Foster, ”Design and Evaluation of Replication Strategies for a High
Performance Data Grid,” International Conference on Computing in High Energy and
Nuclear Physics, Beijing, September 2001.

6．D. H. Ratner, ”Roam: A Scalable Replication System for Mobile and Disconnected
Computing,” PhDThesis, University of California, Los Angeles, Los Angeles CA, January
1998.

7．D. Terry, M. Theimer, K. Peterson, A. Demers, M. Spreitzer, and C. Hausen, ”Managing
Update Conflicts in Bayou, a Weakly Connected Replicated Storage System,” Proceedings
of the fifteenth Symposium on Operating systems Principles, pp 49-70 ACM, October 1983.

8．S. Vazhkudai, S. Tuecke, I. Foster, ”Replica Selection in the Globus Data Grid,” Proceedings
of the First IEEE/ACMInternational Conference on Cluster Computing and the Grid
(CCGRID 2001), pp. 106-113, IEEE Computer Society Press, May 2001.

9．M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, G. Alonso, ”Understanding Replication in
Databases and Distributed Systems,” Proceedings of the 20th International Conference on
Distributed Computing Systems (ICDCS’2000).

10．M. Satyanarayanan, J. Kister, P. Kumar, M. Okasaki, E. Siegel, and D. Steere, ”Coda: A
Highly Available File System for a Distributed Workstation Environment,” IEEE
Transactions on Computers, 39(4):447- 459, April 1990.

11．G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and G. Thiel, ”Locus: A
Network Transparent High Reliability Distributed System,” Proceedings of the Eighth
Symposium on Operating Systems Principles, pp 169-177 ACM, December 1981.

12．C. H. Leiserson, ”Fat-Trees: Universal Networks for Hardware-Efficient Supercomputing,”
IEEE Transactions on Computers, vol. C-34, no. 10, pp. 892-901, October 1985.

13．Guttman A. R-Trees: A dynamic index structure for spatial searching. In: Yormark B, ed.
Proc. of the ACM SIGMOD Conf. Boston,1984. 47~57.

14．Berkmann N, Krigel HP. Schneider R, Seeger B. The R*-tree: An efficient and robust
access method for points and rectangles. In:Hector GM, Jagadish HV, eds. Proc. of the
ACM SIGMOD Conf. Atlantic, 1990. 322~331.

15．Katayama N, Satoh S. The SR-tree: An index structure for high-dimensional nearest
neighbor queries. In: Peckham J, ed. Proc. Of the ACM SIGMOD Conf. Tucson, 1997.
369~380.

16．White DA, Jain R. Similarity indexing with the SS-tree. In: Stanley YWS, ed. Proc. of the
12th Int’l Conf. on Data Engineering. New Orleans: IEEE Computer Society, 1996.
516~523.

17．Ciaccia P, Patella M, Zezula P. M-tree: An efficient access method for similarity search in
metric spaces. In: Jarke M, Carey MJ, Dittrich KR, Lochovsky FH, Loucopoulos P, Jeusfeld
MA, eds. Proc. of the 23rd VLDB Conf. Athens: Morgan Kaufmann Publishers, 1997.
426~435.

18．Bozkaya T, Ozsoyoglu M. Distance-Based indexing for high-dimensional metric spaces. In:
Peckham J, ed. Proc. of the ACM SIGMOD Conf. on Management of Data. Tucson, 1997.
357~368.

19．Ishikawa M, Chen H, Furuse K, Yu JX, Ohbo N. MB+tree: A dynamically updatable metric
index for similarity search. In: Lu HJ, Zhou AY, eds. Proc. of the 1st Int’l Conf. on Web
Age Information Management. Lecture Notes in Computer Science 1846, Springer-Verlag,
2000. 356~373.

