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Abstract: The Object-based Storage System (OBS) has been proposed as a 
novel information storage technology in adaptation to the explosive growth in 
information quantity under the next-generation internet. The OBS treats all 
storage devices (OSD) and data information as objects, hence, the issues like 
reducing access delay over WAN, saving limited bandwidth and enhancement 
of data validity become problems related to the overall performance of OBS. To 
address these problems, we have the replica-based OBS, which brings forward 
a new issue on how to manage these replicas. In this paper, we present a 
multi-dimensional replica management scheme, and study the object searching 
performance within this mode. We deliver the optimal tree & improved 
one-path tree on the basis of similarity searching, with detailed replica indexing 
algorithm and emulation tests. The result of these experiments justifies their 
better performance in contrast to normal similarity-based indexing algorithm, 
with lower system cost. 
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1  Introduction 

In the last few years, object storage system is a research hotspot and it is the key 
technology for next generation network storage. In the object storage system, object is 
the base unit of management. Object storage system provides geographically 
distributed storage resources for large-scale data-intensive applications that generate 
large data objects. However, ensuring efficient and fast access to such huge and 
widely distributed data objects is hindered by the high latencies of the Internet. To 
address these problems we introduce a set of object replication management services 
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and protocols that offer high data availability, low bandwidth consumption, increased 
fault tolerance, and improved scalability of the overall system. Replication decisions 
are made based on a cost model that evaluates data access costs and performance 
gains of creating each replica. Replication technology is applied in the filed of grid、
data grid、and distributed system. Although there are some research results about 
replication, there is no research of replication about object storage system. Our study 
investigates the usefulness of creating replicas to distributed object among the various 
nodes in the object storage system. The main aims of using replication are to reduce 
access latency and bandwidth consumption. Replication can also help in load 
balancing and can improve availability by creating multiple copies of the same object. 
Since the numerous replicas are redundantly stored, the number of which soars when 
the amount of object storage nodes and data objects increase, how to manage these 
replicas becomes an important problem for object storage system. In the object 
storage system, one of the simplest rules for managing replicated object is where read 
operations on an object are allowed to read any replica, and write operations are 
required to write all copies of the object. The rule is termed as read-one & write-all. 
In this paper, we provide a multi-dimensional-based replica management to control 
replicas, and the experiments prove its effectiveness to advance performance of object 
storage system with replication.  

The rest of the paper is organized as follows: First, we will give related work in 
the Section 2; then delivers a Multi-dimensional replica management model of object 
storage system in section 3; section 4 discusses the implementation of 
multi-dimensional replica management model; in section 5, the performance of the 
Multi-dimensional replica management model is analyzed in terms of object 
availability. At last, we will conclude in section 6.  

2  Related Work 

Replication has been studied extensively and various distributed replica management 
strategies have been proposed in the literatures[1, 2, 3]. In the context of object storage 
technology, replication is mostly used to reduce access latency and bandwidth 
consumption. But replication will bring large numbers of replicas on the object 
storage system. Consequently, it is an important matter that how these replicas are 
managed. There are some researches about the size of the object replication in the 
grid[8], the placement of object replicas and the selection of consistency algorithms. 
The replica management system decides when to create and where to place a replica. 
These decisions are made based on a cost model that evaluates the maintenance cost 
and access performance gains from creating each replica. The estimates of costs and 
gains are influenced by many factors, such as run-time accumulated read/write 
statistics, the chosen consistency algorithm, run-time measured network latency, 
response time, bandwidth, and replica’s size[8]. These parameters are changing during 
the program execution, so they need to be measured at runtime and fed to an 
optimization procedure that minimizes object access costs by dynamically changing 
the replicas number and placement.  

To ensure scalability, we use both hierarchical and flat propagation graphs 
spanning the overall set of replicas to overlay replicas on the object storage system 
and minimize inter-replica communication costs. For the hierarchical topology, we 
introduce a modified fat-tree structure with redundant interconnections connecting its 
nodes; closer the node is to the root, more interconnections it has. The fat-tree was 
originally introduced by Leiserson[12] to improve the performance of interconnection 
networks in parallel computing systems. The hierarchical distribution is well suited 
for multi-tier applications, while the ring topology suits best for the multiple server or 



peer replica applications. For our flat topology we use the ring one. In the 
peer-to-peer model, any replica can synchronize with any other replica, and any 
update can be applied at any accessible replica. The peer model has been 
implemented in many systems such as Ficus[1], Rumor[2] , Roam[6] ,Bayou[7],and 
Locus[12]. In the hierarchical model, the replicas are placed at different levels, and 
communicate with each other in a client-server like scheme. This model has been 
realized in replication systems such as Coda[10]. To further exploit the properties of 
both topologies, we use a hybrid topology in which both the ring and fat-tree replica 
organizations can be combined into multi level hierarchies. This approach improves 
both the data availability and the reliability of the ring topology and allows for a 
scalable expansion of the hierarchical distribution. Both the ring and fat-tree 
connection graphs represent virtual connections between the grid nodes that hold 
replicas of the same object. Depending on the topology, each node is aware of its 
neighbors or direct ancestors and children.  

As stated above there is no detailed study of management for object replications, 
which provides an interesting field for exploitation, and in this paper we study the 
management of object replications specially and analyze performance of object 
storage with replications. Multi-dimensional-based Replica Management Mechanism 
should be propitious to find the replication object. First, the replications are placed 
according to the multi-dimensional replica management model, but when the 
searching of replication, the structure of multi-dimensional can be transformed 
structure of tree. The transform is easy. The experiment proved this way is effective 
for replication management. 

3  Multi-dimensional Replica Management Model  

In object storage system, there are attributes and operations of object defined, which 
are judged as two dimensions, while at the same time, we can add more characteristic 
dimensions to every object, so a Multi-dimensional data structure of replicas can be 
given according to these attributes. Within three Multi-dimensional data structure, 
replicas are logically organized into a box with four planes. Figure 1 is an example of 
the box that consists of four planes with the black circle represents a copy at location 
A, B, C, … , and X. The Multi-dimensional data structure restricts the number of 
replicas in each plane, i.e., if l denotes the length (column) of the plane, and w is the 
width (row) of the plane, then each plane consists l×w replicas. Of course we can get 
new box from other dimensional data structure, the box must not have four planes 
only. 

 
Fig.1: A box of replicas by three Multi-dimensional data structure 



Definition1: A pair of replicas that can be constructed from a hypotenuse edge 
in a box-shape structure are called hypotenuse replicas. For the Multi-dimensional 
replication management structure, reading operations on a replication object are 
executed by acquiring a read quorum that consists of any hypotenuse replicas. In the 
Figure1, replicas {V,C},{I,P},{X,A}, or {G,R} are hypotenuse replicas from which it 
is sufficient to execute a read operation. Since each pair of them is hypotenuse 
replicas, read operation can be executed if one of them is accessible. If W is a set of 
write quorums which consists of groups that are sufficient to execute write operations 
under a set of hypotenuse replicas, say {V,C}, then from Figure 1, we have 

W={{V,C,I,A,G,B},{V,C,I,A,G,E},{V,C,I,A,G,H},{V,C,I,R,X,K},{V,C,I,R,X,
M},{V,C,I,R,X,O},{C,V,P,A,G,J},{C,V,P,A,G,I},{C,V,P,A,G,N},{C,V,P,R,X,Q},{C
,V,P,R,X,T},{C,V,P,R,X,W}}. 

Of course, there is weakness of the Multi-dimensional replication management 
structure——that is, if all store nodes in a column of each plane are unavailable, the 
write quorum can not be constructed. For example, when 
{{B,E,H},{K,M,O},{Q,T,W}, and {J,L,N}} are unavailable, the write operation is 
suspended even if all the other store nodes are available or accessible. So in this paper, 
we mainly discuss how to search the replicas needed in object storage system that has 
plentiful amount of object replicas by Multi-dimensional replication management 
structure.    

4  Searching of Multi-dimensional-based Replica Management 

Multi-dimensional index technology has been recognized as one of the key solutions 
to the acceleration of data searching. And there are already numerous 
hyper-dimensional index methods, for instance, the R-tree[14]，R*-tree[15] as well as 
some variations of the R-tree[14~17], which are all based on space locality, and have 
been widely used in GIS(Geology Information System). However, these sorts of space 
locality based index methods has their innate confinement, which proves only to be 
effective when the following two conditions are met simultaneously: (1) the indexing 
object must be able to be denoted by a Eigen-value of hyper-vector space; (2) the 
similarity between objects must be measured by the Euclid Distance. As for the need 
of quick replica searching in the Object Storage System(OBS) grounded on replicas, 
we first institute a measurement of space through multi-dimensional replica 
management, and then elicit the distance-based index theory. Unlike the 
locality-based index technology, the distance-based one mainly deals with the 
comparative distance between replicas, without concerning the relative locality 
between them. As some typical models in this kind, one need to look no further than 
the M-tree[17], MVP-tree[18] and MB+tree[19], among which the VP-tree and MVP-tree 
are two canonical space measurement-based static index architectures, while the 
M-tree becomes the leading one to realize the dynamic. Additionally, the M-tree 
model has been improved by MB+tree and Slim-trees, for the MB+tree substitutes the 
hyper-dimensional index structure by two mono-dimensional index(B+tree & 
Block-tree) to avoid the overlapping partition of the data space, while the Slim-trees 
adopt a disposal procedure after creating the tree to minimize the total number of 
nodes and the cover radius of the data node. Nevertheless, the searching performances 
of these distance-based index technologies are primarily depended on the specific data 
distribution, and most of which includes some empirical parameters to design the 
models(the vantage points in VP-tree, for example), far from the “Optimal Searching 
Performance”. For this reason, with the idea of multi-dimensional replica storage 
structure under the object storage space, we introduce a brand new distance-based 
theory of index structure, the optimal tree and the improved one-path tree, by studying 



their establishment and detailed accomplishment of searching, with corresponding 
algorithms. 

4.1  Similarity searching 

We first define the OBS’s storage space as a binary group: M=(D，d), in which D is 
the characteristic space of the object, and d is the length measurement under the D. 
They together meet the following conditions: 

①symmetry：d(x,y) = d(y,x)； 
②non-negative：when x ≠ y，0 < d (x,y) < ∞，when x = y，d (x,y)＝0；  
③triangle inequality：d(x,y) ≤ d(x,z) + d(z,y). 

 From this definition, we conclude that we can only use the 3 conditions defined 
above when forming the index structure in the distance-based object storage space, in 
contrary to any other assumptions frequently used in Euclid space. Given a OBS, 
namely S, and the distance measurement in the object characteristic space, namely d, 
and Q-the accessing object replica, normally we would searching the certifiable 
replica through the following two ways: 
 Threshold-value inquiry-Query(Q，t): given a certain threshold value t, all the 
target replicas I in the S that fit d(Q，I)≤t. 
 Best-match inquiry-Query(Q，n): possible n candidate replicas that have the 
closest distance to the accessing replica in the S. 
 When concerning the similarity searching, we can use the triangle inequality to 
reduce the times of distance calculation during the Best-match inquiry process to 
enhance its efficiency. The detailed method can be described as follows: 
 Assume I as a replica in the S, and K={ K1，K2，… ，Kn } is a set of similar 
replica objects(-call Ki the key object). By using the triangle inequality, we have: 
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From (1) we know that, for a random s(1≤s≤n), we have d(I，Q)≥|d(I，Ks)−d(Q，Ks)|, 
thus derives a lower bound of the distance between I and Q. Consider a storage 
system S={I1，I2， … ，In} and a very small set of similar replica objects K={K1，
K2，… ，Km}. If for any s and t, the distance between Is and Kt, d(Is，Kt), has been 
calculated in advance, then for the similarity searching Query(Q，t), it is only needed 
to calculate the set {d(Q，K1)，d(Q，K2)， … ，d(Q，Km)}, and it is easy to get the 
corresponding lower bound of distance by referring to inequality (1). Apparently, if 
we can prove d(Is，Q)>t, then we can eliminate Is from the candidate matching set of 
Q. After this kind of filtration, it is only necessary to compute every remaining object 
by the linear searching method, and put those that can meet the demand into the 
searching result set. In this triangle-inequality based similarity searching strategy, we 
can simply exclude those impossible replica candidates with too long distance from 
the inquiring replica with the assistance of “distance lower bound”, thus reducing the 
times of distance calculation in the query. With this searching algorithm, it only takes 
m+u time of distance calculation(u is the number of leaving objects after filtration) 
and O(mn) times of simple computation. Obviously, this strategy can save a great deal 
of distance calculation to promote the efficiency of similarity searching remarkably, 
as long as the prerequisite m+u≤n can be met. 



4.2  The partition、Tree structure and Searching   

We begin to discuss the partition of object replica set with the multi-dimensional 
object replica management structure. As for convenient explanation, we treat the 
terms “replica”, “the characteristic vector of replica” as well as “object” and “the 
characteristic vector of object” as the same thing, as far as it would not lead to 
confusion. 

4.2.1  The optimal partition of multi-dimensional replica object set 

Definition 2(Optimal partition): assume D as a established multi-dimensional 
replica set, and d as a distance measurement under D. Select two sample point C1 and 
C2 on a random side of the multi-dimensional object replica management structure. 
Partition set D by these two points into two child set D1 and D2, so that for a random 
point X aside from C1 & C2, if d(X,C1)≤d(X,C2), then put X into D1;Or else put it into 
D2.
 We call it a “Balance Partition” if it fits the condition (1) defined as follow; For 
any given positive integer h>0, if the partition meets conditions (1)～(3), then we call 
it “Optimal Partition”, and the relevant point C1 and C2 as “Reference Point” to this 
partition. 

(1) the minimum of abs(|D1|−|D2|)，or the least comparative number of the data 
nodes in D1 and D2, in which |•| is the operator in the calculation of set base number. 

(2) assumeD′1={X|d(X,C1)−d(X,C2)≤2h∧X∈D2},D′2={X|d(X,C2)−d(X，
C1)≤2h∧X∈D1}, then demand the least number of data nodes in the set 
D′1∪D′2 by this partition. 

(3) d(C1,C2)>h。 
By implementing general optimal methods, such as imitative annealing idea or 

heredity algorithm, we can simply apply the “Balance Partition” or “Optimal 
Partition” to the replica object set. For a given replica object set, we can employ 
balance partition or optimal partition to divide it recursively, and thus establish a 
corresponding index structured optimal tree over the multi-dimensional replica object 
set. The basic thinking of optimal tree index structure is to adopt a balance or optimal 
method to divide the multi-dimensional replica space set I into two child sets, and 
recursively divide each child one with the same method, until each child set include 
and only include the needed accessing replica. So, the optimal tree is of a binary tree 
structure, representing a recursive process of partitioning the replica object space. 

4.2.2  The algorithm of the index structured optimal tree establishment 

Assume I=(O1,O2，…，On) is data set including n replica objects, and d is a distance 
measurement. Then the establishing algorithm of optimal tree can be described as 
follows: 
 Input: dataset I 
 Output: optimal tree V 

(1) if |I|=0, then establish a void tree, return. 
(2) else, 

(2.1) use a balance or optimal partition method to partition dataset I into 
two child sets: Dl & Dr(the Reference Points are C1 and C2, 
accordingly), and  
Dl={Oi⏐d(C1,Oi)≤d(C2,Oi)∧Oi∈I}, 
Dr={Oj⏐d(C2,Oj)<d(C1,Oj)∧Oj∈I}; 

(2.2) branch root V with Dl and Dr as the left & right child tree; 



(2.3) if Dl or Dr is leaf node, then calculate d(Ci,Oj), put it into leaf-node 
distance array Di[j], return. 

(3) treat Dl and Dr recursively by using the algorithm above, forming relevant 
optimal child tree. 

 Theorem 1: Assume D as a replica object set, d is a distance measurement under 
D, and D1 & D2 are two child sets derived from balance or optimal partition, both of 
which are dimension-decreased replica object sets, and C1 and C2 are sample points to 
D1 & D2. Consider similarity inquiry Query(q,t)(q is the demanded inquiring replica, t 
is the threshold value). We have, if d(q,C1)≤d(q,C2), then if there exists a point x∈D2 
to let d(x,C1)−d(x,C2)≤2t stand, we must search D1 and D2 to execute similarity 
inquiry Query(q,t); if not exists, the Query(q,t) only needs to search D1. Similarly, if 
d(q,C2)≤d(q,C1), then if there exists a point x∈D1 to let d(x,C2)−d(x,C1)≤2t stand, we 
must search D1 and D2 to execute similarity inquiry Query(q,t); if not exists, the 
Query(q,t) only needs to search D2.
 Prove: In the first circumstance d(q,C1)≤d(q,C2), because d is a distance 
measurement, and by the definition of it we can conclude the following two 
inequalities: 

d(q,C1)+d(C1,x)≥d(q,x), 
d(q,C1)+d(q,x)≥d(C1,x)，derivable from the two inequalities. 
d(q,C1)≥|d(q,x)−d(C1,x)|，(2) 

and d(q,C2)≤|d(q,x)+d(C2,x)|。(3) 
From (2),(3) we have, d2(q,C1)≥[d(q,x)−d(C1,x)]2  , and 

d2(q,C2)≤[d(q,x)+d(C2,x)]2. 
According to the assumption condition d(q,C1)≤d(q,C2), we have: 

[d(q,x)−d(C1,x)]2≤[d(q,x)+d(C2,x)]2,  
⇒ −2d(q,x)d(C1,x)+d2(C1,x)≤2d(q,x)d(C2,x)+d2(C2,x),  
⇒ 2d(q,x)[d(C1,x)+d(C2,x)]≥d2(C1,x)−d2(C2,x),  
⇒  d(q,x)≥(d(C1,x)−d(C2,x))/2.             (4) 

From (4) we know, if d(x,C1)−d(x,C2)>2t exists, then d(q,x)>t. That is to say, if there 
is a random x in D2 that leads to d(x,C1)−d(x,C2)>2t, then x could not be a inquiry 
candidate. Hence, we only need to search D1 to execute Query(q,t). Or else, if there 
exists a point x∈D2 leading to d(x,C1)−d(x,C2)≤2t, then we are not sure whether d(q,x) 
is smaller than the threshold value. In this case, D1 and D2 need to be scanned at the 
same time to execute Query(q,t). Similarly, the conclusion stands in the second 
circumstance. 
 Inference 1: Assume the same condition as Theorem 1, then: 

 (1) When d(q,C1)≤d(q,C2), if d(q,C2)−d(q,C1)≤2t stands, then we must scan D1 
and D2 to execute  Query(q,t); Or else, we only need to scan D1; 

(2) When d(q,C2)≤d(q,C1), if d(q,C1)−d(q,C2)≤2t stands, then we must scan D1 
and D2 to execute  Query(q,t); Or else, we only need to scan D2; 

Prove: In the 1st circumstance d(q,C1)≤d(q,C2), let d ′=d(q,C2)−d(q,C1), then to 
any x∈D2, suppose d(x,C1)−d(x,C2)=d>0(see Definition 1). By the triangle inequality, 
we can have: 

d(q,x)>d(x,C1)−d(q,C1), d(q,x)>d(q,C2)−d(x,C2), thus derives, 
2d(q,x)>[d(x,C1)−d(x,C2)]+[d(q,C2)−d(q,C1)]=d＋d ′, 

To be more concise: d(q,x)>(d+d ′)/2。 
 If d′=d(q,C2)−d(q,C1)>2t, then d(q,x)>(d+d ′)/2≥t+d/2>t. From this can we 

conclude, the x∈D2 has been excluded from the candidate matching list of q. 
According to x’s random nature, Query(q,t) only needs to scan D1. 

 If d′=d(q,C2)−d(q,C1)≤2t, we can not guarantee d(q,x)>t, which means that we 
must scan D1 and D2 to execute Query(q,t). Similarly, the conclusion stands in 
the 2nd circumstance. 



4.2.3  The searching over index structured optimal tree 

With Inference 1, we can deliver the searching algorithm of optimal tree as follows:  
Optimal tree searching algorithm 
Input: optimal tree V 
Output: searching outcome set result 

(1) Select current node; 
(2) If current node is a leaf node, then to each data node Pi in the leaf node, 

(2.1) Select distance array D1 and D2; 
(2.2) If max{|d(q,C1)−D1[i]|,|d(q,C2)−D2[i]|}>t, then Pi is a non-matching 

candidate; Or else, compute the d(q,Pi), if d(q,Pi)≤t, then add it into result. 
(2.3) return; 

(3) if current node is a internal node, then 
(3.1) compute the distance d(q,C1) and d(q,C2); 
(3.2) if d(q,C1)≤d(q,C2), meanwhile d(q,C2)−d(q,C1)≤2t, then recursively scan 

its left & right child trees; or else, recursively scan the left child tree. 
(3.3) if d(q,C2)≤d(q,C1), meanwhile d(q,C1)−d(q,C2)≤2t, then recursively scan 

its left & right child trees; or else, recursively scan the right child tree. 
 It is easy to discover from the searching algorithm of optimal tree that, the 
optimal tree, a distance based multi-dimensional space index structure, can really 
advance the speed of similarity searching, while the query efficiency of which would 
not decrease noticeably as the dimension grows. However, because the optimal tree is 
also of binary searching structure, the level of the tree can be considerable to 
high-capacity dataset, let alone the cost of recursive searching the child ones which 
may influence the total performance. To better implement the optimal tree strategy, a 
feasible way is to deduct the height of the tree to fulfill the aim of reducing the 
computation of distance. Another possible way that may contribute to the 
improvement is to ensure the one-way down searching during the query process, 
without the cost of scanning branches back and forth. Theoretically, this could double 
the overall performance of searching. With this idea in mind, we deliver a modified 
optimal tree index structure: the one-path tree.  

4.2.4  Improved indexing one-path tree 

Definition 3(Redundant Storage): Assume D, D1, D2, C1 and C2 has use the same 
definition as Definition 1. Suppose D′1={x|d(x,C1)−d(x,C2)≤2h∧x∈D2}, 
D′2={x|d(x,C2)−d(x,C1)≤2h∧x∈D1}, put the data nodes in D1′ and D2′ into D1 and D2 
overlappingly, thus we have two extended subset D1  and D2 , or D1  = D1∪ D′1, D2  
= D2∪ D′2. We call the partition above “Redundant Storage”. In a storage system like 
replica-based OBS, which contains a large number of replicas, it naturally results in 
redundant storage. And in the multi-dimensional replica management mechanism, 
replica objects on sides formed by different dimensions have dissimilar redundancy, 
while replicas on various sides tend to have less redundancy or they are totally 
different object’s replicas. 
 It is easy to discover from Def 2 that, we would get two overlapping extended 
subsets after a redundant segmentation, with their redundancy determined by 
parameter h and the particular replica distribution. In the terms of redundant storage, 
we can use the inequality d(C1,x)-d(C2,x)>2h or d(C2,x)-d(C1,x)>2h to remove those 
replicas which are too distant to become a matching candidate. Although the method 
described here are probabilistic, we can still assure its correctness on similarity 
searching. Thus can we deduce theorem 2. 

Theorem 2: Assume D, D1, D2, D1 , D2 , C1 and C2 has use the same definition 
as Definition 3. And to any given user Query(q,t), we have h≥t, then it leads to the 



following: if d(q,C1)≤d(q,C2), then Query(q,t) only need to search D1 ; or else, 
Query(q,t) only need to search D2 . 

Prove: Suppose d(q,C1), d(q,C2). From Def 2 we know, in order to prove that 
“Query(q,t) only need to search D1 ”, the only necessity is to prove that to a any 
given x∈D2, if x∉ D1 , then x can not be a matching candidate of q. On the other hand, 
from Def 3 we acquire that, if x ∉ D1 , x∈D2, then d(x,C1)−d(x,C2)>2h. By referring to 
the proving method of “Inference 1”, we have  
d(q,x)>(d+d ′)/2(d, d ′ takes the same meaning as in Infer 1). 

Thus derives: d(q,x)>h+d/2>h≥t, thereby, d(q,x)>t. So x is not a matching 
candidate of q, which in another word indicates that it only takes Query(q,t) to 
scrutinize D1 . 

Similarly can we prove, if d(q,C2)<d(q,C1), then Query(q,t) only needs to 
search D2 . 

Definition 4(one-path tree): Assume I as a Image characteristic vector set, 
select parameter§, and utilize some certain optimal partition method in separate the 
OBS multi-dimensional replica set into two subsets DL and DR. Then use redundant 
storage strategy to extend the two sub ones so that DL = DL ∪ DL′, DR = DR ∪ DR ′. 
Use the same recursive partition and disposition regarding every single extended 
subclass (DL & DR), until each of the two includes and only includes the designated 
number of data nodes or, the subsets are “small enough”. If the replica object subset 
DL(DR) satisfies DL′ = DR ( DR′ = DL ), then DL(DR) can be considered small enough. 
We call this binary tree architecture through replica object space partitioning the 
one-path tree. 

There is immanent similarity between the one-path tree and the optimal one. 
And according to Theorem 2, the similarity searching based on one-path tree index 
structure can be relatively simple, which only takes a single path searching along the 
one-path tree. Consequently the efficiency of tree searching is boosted prominently. 

4.2.5  Searching on one-path tree 

Input: one-path tree 
Output: searching outcome set result 

 (1) If current node is a leaf node, then for every data point Pi in the leaf node, 
(1.1) Select the distance array and store D1 & D2; 
(1.2) If max{|d(q,C1)−D1[i]|，|d(q,C2)−D2[i]|}>t, then Pi is a non-matching 

candidate(drop it without compute the distance); or else, compute d(q,Pi). If d(q,Pi)≤t, 
then put it into the result. 

(1.3) return 
(2) if current node is an internal node, then 

(2.1) if d(q,C1)≤d(q,C2), search the left child tree recursively; 
(2.2) if d(q,C2)<d(q,C1), search the right child tree recursively; 

5  Experiment and Evaluation 

In the experiment, we mainly focus on the analysis and comparison of replica-based 
Object Storage System. We use the two indexing structures: the optimal tree and 
improved one-path tree, to search for replica object, while recording the searching 
performance, system cost, access delay queue and I/O flow rate corresponding to the 
variation of the total amount of replicas and the dimensions of replica management. 

The three indexing structure, similarity searching, the optimal tree and improved 
one-path tree, are all realized by the standard C language under the Linux platform. In  
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the experiment, we study the OBS with 100 storage nodes, and 1000 objects inside. 
To any object under study, the tested numbers of replicas are 10, 20, 30, 40, 50, which 
are stored in different nodes. We observe the variation in the searching response time 
and expense of searching under the three architectures, as well as the access queue 
generated, with an increasing replicas tendency. Additionally, we observe the three 
aspects listed above under different replica management dimensions as 2D, 3D, 4D, 
and 5D. We assume that objects searched are extant object-replicas. The results 
manifest that the one-path tree has the best searching performance, especially to those 
queries within a large range. 

Figure 2 shows the pattern in the 3 searching architectures: when the 
object-replica increases, the system response time and system cost drop down, with 
even shorter waiting queue. It is obvious that the improved one-path tree takes the 
lead in comparison to the other two. 

Figure 3 reveals that when the management dimension increases, the system’s 
reaction time and its consumption, along with the access queue are all increasing 
consequently.However, the positive effects the multi-dimensional mechanism plays 
on replica management are evident, at which we would later be discussed in other 
special papers. In conclusion, the experiment proves that the performance of 
improved one-path tree is the best structure in comparison to normal similarity 
searching and optimal tree. 

6  Conclusion 

In the object storage system, managing such huge amounts of objects in a centralized 
manner is almost impossible due to extensively increased data access time. So object 
replication is a key technique to manage large object in a distributed manner. By its 
nature, we can achieve better performance (access time) by replicating object in 
geographically distributed object stores. In object storage system, user’s job may 
probably require the access to large number of objects, and if the required objects are 
replicated in the node in which the job is executed, the job is able to process object 
without any communication delay. However, if required objects are not in the site, 
they should be fetched from the other nodes. Object fetch takes very long time 
because the size of a single replica may reach giga-byte scale in some applications 
while the network bandwidth between nodes is limited. As a result, job execution time 
becomes lengthy due to delay of fetching replicas over Internet. So searching object is 
the key factor in replica-based object storage system. In this paper, we advance a 
model of multi-dimensional based replica management model, and study the 
searching of object within this model. On the ground of similarity search, we advance 
optimal tree and improved optimal tree——one-path tree. And the paper gives two 
kinds of index algorithm under two tree structures, and then tests the algorithm with 
imitation. At the same time, there are problems emerged on the replicas in the object 
storage system, such as the placement of replicas、consistency of replicas、
granularity of replicas and so on, which would be discussed in other papers. 
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