A Cross-layer Signaling and Middleware
Platform for Multi-interface Mobile Devices

Yung-Chien Shih!, Kai-Cheng Hsu?, and Chien-Chao Tseng!

! Department of Computer Science, National Chiao Tung University,
1001 Ta Hsueh Rd., Hsinchu, Taiwan 300, ROC
2 WiMAX Development Team, MediaTek Inc.,
No. 1, Dusing Rd., Hsinchu Science Park, Hsinchu, Taiwan 300, ROC
ycshih@csie.nctu.edu.tw, mojahsu@gmail.com, cctseng@cs.nctu.edu.tw

Abstract. This paper presents a middleware platform approach to pro-
vide Cross-layer Signaling and Network Event Notification mechanisms
for network-aware applications. Because a mobile device may be equipped
with multiple network interfaces to attach different network as it moves,
a network-aware application running on the mobile device must react
promptly to the changes of network environment. In order for the applica-
tions to detect network changes, the proposed middleware platform pro-
vides APIs for setting up network configuration and acquiring low-layer
statuses. Therefore, an application can detect network changes promptly
via Network Event Notification mechanism. We also use two network-
aware applications, namely a Mobility Manager and a Modified Kphone,
as examples to demonstrate the effectiveness of our middleware platform.

Key words: Middleware, Cross-layer Signaling, Network Event Notifi-
cation, Network-aware Application, Handover

1 Introduction

With the advance in wireless techniques, mobile devices, such as Personal Digital
Assistant (PDA), smart phone, and tablet PC, has become a popular electronic
product recently. A mobile device may be equipped with multiple wireless net-
work interfaces, such as WLAN, GPRS, or 3G adaptors, to attach to different
networks as it moves. Therefore, an application running on the mobile device
may visit different networks and encounters the changes in bandwidth, delays,
or IP addresses. In order to tackle network fluctuations, network-aware appli-
cations that can adapt themselves to the changes in network environment have
now become a major research topic in recent years.

A network-aware application may need to issue system calls periodically to
retrieve lower-layer statuses, such as IP addresses, entries of routing table, and
connectivity of network adaptors. However, the network statuses normally do
not change frequently. Periodical system calls with short intervals may waste
system resources for getting the same information. On the other hand, with long
intervals between system calls, the applications can not react to the changes of
network environment promptly.

2 Cross-layer Signaling and Middleware Platform

Furthermore, a mobile device with multiple network interfaces needs a mo-
bility manager to monitor statuses of network adaptor and perform handover
decision accordingly. In order to acquire the statuses and conduct a handover,
a mobility manager needs to use system calls to communicate with underlying
network protocol stacks, such as link layer, network layer, or transport layer.
However, the use of system calls is not only error-prone but also not portable.

In order to solve above problems, we proposed a software platform for the
development of network-aware applications. The platform adopts a middleware
[1] approach and provides Application Programming Interfaces (APIs) for the
application to use Cross-layer Signaling Mechanism. Based on the mechanism,
an application can interact with the lower-layer network protocols to acquire
network statuses and manage network interfaces. Besides, the platform also pro-
vides an Event Notification Mechanism for an application to register interested
events of network changes so that the middleware can notify the application
immediately when an event of interest occurs.

We also use network-aware applications, namely a Mobility Manager and
a Modified Kphone [2], as two examples to demonstrate the effectiveness of
out proposed platform. The Mobility Manager can monitor statuses of multiple
network interfaces simultaneously and perform handover decision accordingly.
The Modified Kphone is a Voice over IP (VoIP) application with a new handover
decision module that can interact with our proposed platform.

The rest of this paper is organized as follows. In Section 2, we describe previ-
ous research on middleware and cross-layer design. Then in Section 3, we present
the architecture of our middleware platform, including a Cross-layer Signaling
Mechanism and an Event Notification Mechanism. We show the two examples of
network-aware applications through our proposed platform in Section 4. Finally,
Section 5 concludes the paper.

2 Related Work

The handover issues of a mobile device with multiple interfaces are popular
research topic recently. Although Mobile IP [3] mechanism can achieve hetero-
geneous handover, a mobile device cannot perform the handover smoothly. A
reason of this problem is that an application cannot acquire promptly the un-
derlying statuses, such as network link up, link down or wireless signal strength,
because each network protocol layer works independently with each other. There-
fore, in recent years, several researchers have proposed middleware or cross-layer
mechanism for the upper-layer application to acquire the statuses of the lower-
layer protocols.

2.1 Middleware

Many researchers has proposed middleware approaches to supporting fast hand-
off in heterogeneous network environment [4], [5], [6], [7], [8], [9]. In the research,

Cross-layer Signaling and Middleware Platform 3

the middleware, provide interaction mechanisms among applications and lower-
layer protocols. Accordingly, the middleware is situated between applications
and the Operating System (OS) as shown in Fig. 1. It hides the complexity
of error-prone system calls, OS APIs, from applications by encapsulating the
complex system calls in into simple middleware APIs to provide high level func-
tions for applications. Therefore, applications need not handle the connectivity
and heterogeneity of the underlying networks. In stead, they can manage the
networks and react to the changes of networks accordingly through middleware
APIs.

Application Application

3 3

Middleware APIs

Middleware

e

Operating System APIs

Operating System

Fig. 1. The design concept of middleware was introduced in some research. The mid-
dleware is implemented between application and operating system, and then it provides
high level functions for application to interact underlying protocol stacks.

If a programmer develops an application via the middleware, there are three
benefits to develop applications via the middleware: easy porting, quick devel-
opment and error avoidance. For application porting, because developing an
application via middleware APIs can hide heterogeneity of OS, programmers
need not modify any program codes when transplanting applications to another
OS. For example, Java Virtual Machine (JVM) is one illustration of the mid-
dleware concept. It allows the same program code to run on different OSs. As
for the application development and error avoidance, since middleware APIs
provide simple interfaces for programmers to acquire and configure statuses of
lower-layer protocols, programmers need not care for the details of system calls.
Consequently, programmers can develop applications quickly and correctly.

Although many proposals adopted middleware concept to perform handover
decision in a heterogeneous network environment, applications can not detect
the changes of network environment immediately. We need other mechanisms to
complete our middleware platform.

4 Cross-layer Signaling and Middleware Platform

2.2 Cross Layer Design

According the report of research [10], traditional network protocol that is used on
mobile devices is not efficient because protocol stacks are working independently
and thus those protocol stacks do not know statuses of other stacks. To solve
the problem, the Cross Layer Feedback method has been mentioned in some
previous work [11], [12]. This method provides an interaction mechanism for a
protocol of a layer to share statuses with one of another layer. For example, a
link layer protocol can share statuses with an application layer protocol and thus
applications can adjust transmission rate according to the link statuses.

Application Layer
- - > § -
Transport Layer o (g3
o QO =] S
SHOHZMH & v M
= [2;) HERE=N
Network Layer < Sllo
- — = = 3 -
=~
Link Layer

Fig. 2. The concept of Cross-Layer Notification Mechanism has been mentioned in
past research. This mechanism allows a network protocol to inform other protocols the
changes of network statuses proactively.

The Cross-Layer Notification Mechanism has been mentioned in past study
[13]. This study suggested that a network protocol need a mechanism to in-
form other protocols about changes of network statuses. Therefore, cross-layer
architecture, shown in Fig. 2, was proposed to satisfy needs of different applica-
tions, such as security, QoS or mobility requirement. For example of wireless link
adaptation, when link quality of current attachment network is changed, the link
layer will notify an application layer program of the link quality of each wireless
adaptor or the transport layer of the maximum transmission rate. Furthermore,
applications can inform the link layer to switch wireless adaptor.

2.3 Driver-Level Network Event Notification

The Driver-Level Network Event Notification Mechanism has been mentioned
in our past research [14]. This mechanism adopted signaling mechanism to no-
tify applications implemented in user space. Furthermore, it also modified OS
scheduling algorithm to eliminate the needs for an application to issue system
calls periodically to retrieve low-layer statuses. Implementation of the mechanism
includes three major parts: (1) Event Notification, (2) Process Management and
(3) Scheduler. In our implementation, before a process in the kernel space returns
to the user space, the mechanism will check whether the registered events of this
process occur or not. If the registered event occurs, the mechanism will call the

Cross-layer Signaling and Middleware Platform 5

corresponding procedure firstly. In this paper, we adopted our proposed event
notification mechanism and then modified some algorithms and data structures
to satisfy requirements of our goal.

3 System Architecture

In this section, we will detail system architecture of the proposed middleware
platform including Cross-layer Signaling and Event Notification mechanisms.

3.1 Middleware Platform and Cross-layer Signaling

System architecture of proposed middleware platform can be divided into two
major parts that include user space and kernel space. The middleware was im-
plemented in user space and between application layer and underlying network
layers and provided APIs for the network-aware applications, such as mobility
manager and modified Kphone, to interact with underlying stacks of network
protocol as shown in Fig. 3. For interaction between different network protocol
stacks, the proposed middleware platform must provide Cross-layer Signaling
Mechanism including statuses of underlying stacks acquisition, control messages
dispatch and events notification for the applications. Therefore, the APIs are
divided into three kinds including control, query and event interfaces. The con-
trol interface is used to notify underlying protocol stacks of changing statuses,
such as adding or deleting entries of routing table, changing default gateway
or attachment Access Point (AP). The query interface is used to acquire spe-
cific status of underlying protocol stacks, such as wireless signal strength, TP
address configurations or data transmission rate. The event interface allows the
network-aware application to register interesting events and get event notifica-
tion mmediately when an interesting event occurs. Our implementation of event
interface will be detailed in next subsection.

On the other hand, because the middleware must help the network-aware
applications to interact with underlying protocol stacks, control and query mes-
sages received from applications need to translate into corresponding system
calls. Therefore, we implemented the system call functions in proposed middle-
ware, called Middleware Core, to interact with specific protocol layer located
in kernel space. This part adopts cross-layer signaling design to order specific
layer to do something and acquire statuses of specific layer. For example, an
application can acquire wireless signal strength of WLAN adaptor or configure
IP address directly. Furthermore, the Middleware Core will maintain some data
structures, such as registered event tables and event queues, for applications to
query or use.

To adopt proposed middleware platform, complex system calls can be re-
duced to simple APIs and thus an application can easy to use. Furthermore, to
acquire and configure low-layer statuses via the Middleware APIs, a network-
aware application can be developed quickly and error-less, and thus application
developer can pay attention more to design handover policies.

6 Cross-layer Signaling and Middleware Platform

———p» Control and Notification Message
<):"> Data Query (statuses acquisition)

Network-aware Applications

Mobility Modified Other Network-aware
Manager Kphone Applications

bl

Middleware APIs

Middleware Core

LA A fap o userspace
Kernel Space
¥ Operating System APIs
] ‘ TCP ’ UDP
v ‘ 1P
Driver Adapter

Driver Driver Driver Driver

802.3 802.11 802.16
Ethernet WLAN GPRS WiMAX

Fig. 3. The proposed middleware platform can be divided into two main parts: user
space and kernel space. The middleware was implemented between the network-aware
applications and underlying protocol stacks located in kernel space. Therefore, the Mid-
dleware APIs allow the network-aware applications to acquire and configure statuses
of underlying protocol stacks.

3.2 Network Event Notification Mechanism

The event interface includes two kinds of method to notify the network-aware
applications: synchronous and asynchronous process. In the synchronous process,
a network-aware application must use Middleware API to initiate one or more
than one event queues, and then register those queues and interesting events,
called registered event, in Middleware Core as shown in Fig. 4. To illustrate this
process, in the example program of synchronous process, an application must
use the win_event_init function call and configure the parameter as “NULL” to
initiate an event queue. Therefore, the application can use the win_event_register
function call to register interesting events in Middleware Core, and then the
Middleware Core will maintain a Registered Event Table including all interesting
events of the application, such as LINK_UP, LINK_DOWN and NETDV_UP in
Registered Event Table 1. When an event occurs, the Middleware Core will check
all of Registered Event Tables and then push the event to corresponding event
queues. Finally, the application can use win_check_event function call to poll
event queues periodically.

In the asynchronous process, an application must create an event handler to
prepare for event notifications. Using this process, the application can get event
notification immediately when an event occurs. For example, an event handler
that is named for “my_event_handler” must be created firstly, and then the
application uses win_init_event function call and configures the parameter as the

Cross-layer Signaling and Middleware Platform 7

polling polling

LINK_UP IP_CHANGE

Network-aware Application

T ananQ ang
Z ananQ Wan3

Event Handler 1 |—| Event Handler 2 |

T event push

LINK_UP IP_CHANGE

Application Layer

Middleware Core

event push

uoneoynbu |

uopealnpu

DEFAULT_GATEWAY

LINK_DOWN " CHANGE

NETDV_UP

Registered Event Table 1~ Registered Event Table 2

Fig. 4. There are two kinds of process of Event Notification Mechanism including
synchronous and asynchronous. In the synchronous process, the Middleware Core will
push event to event queue when an interested event occurs. On the other hand, in the
asynchronous process, the Middleware Core will notify event handler when an interested
event occurs and then the network-aware application can know the occurrence of an
event immediately.

handler name to initiate asynchronous process as shown in example program
of asynchronous process. Therefore, the application can use win_event_register
function call to register interesting events similarly. The Middleware Core will
dispatch event notification to corresponding event handlers when an event oc-
curs so the application knows event occurrence and the corresponding handler
procedure will run immediately.

In the kernel level, we adopted the Driver-level Network Event Notification
Mechanism that is developed by our research partner and mentioned in Section 2
to support our Event Notification Mechanism. Furthermore, we had added novel
events, such as ROUTING_TABLE_CHANGE, to extend the notification mech-
anism so the middleware platform can be used to help network-aware application
that it gets interesting event notifications correctly and immediately.

An Ezxample Program of Synchronous Process

event_descriptor = win_event_init (NULL);
Win_event_register(event_descriptor, NETDEV_UP) ;

Win_event_register(event_descriptor, IP_CHANGE) ;

if (win_check_event (event_descriptor, wevent)
== R_HAVE_EVENT) {

8 Cross-layer Signaling and Middleware Platform

An Example Program of Asynchronous Process

void my_event_handler(struct win_event* wevent) {
printf (Event Happen!!\n);
}

int main() {

event_descriptor = win_event_init(my_event_handler) ;
win_event_register(event_descriptor, NETDEV_UP);
win_event_register(event_descriptor, IP_CHANGE);

4 Network-aware Application

Based on our middleware platform, a program developer can develop a network-
aware application quickly and easily. In this section, we will demonstrate two
network-aware applications including Mobility Manager and Modified Kphone.

4.1 Mobility Manager

A mobility manager for mobile device should include three major functions:
display of network status, network configuration and handover policy. Therefore,
we implemented the Mobility Manager application that used Middleware APIs
to acquire and configure statuses of underlying protocol stacks. For example, in
the Fig. 5, wireless signal strength of APs can be displayed on a single graphic
interface. Furthermore, a user of mobile device can use a graphic configuration
interface to set attachment AP and choose acquisition method of IP address as
shown in Fig. 6.

APListDialog

WIN - 32%
wireless_b 40%

Fig. 5. This graphic interface will display wireless signal strength of APs that a mo-
bile device can attach. For example, this figure displays three signal strengths of AP
including WL1, WIN and wireless_b.

For mobile device handover, we need to know the changes of network envi-
ronment and then mobile device chooses another network to attach according

Cross-layer Signaling and Middleware Platform 9

0 wifio [>]

~Wireless Setting
Current AP

| s | [s [@]
1D CnH-inq

[O static @ DHCP |

— Static IP Setting
P | |
Netmask |—|
Default [|
Gateway |

| OK ‘ ‘ Cancel |

Fig. 6. This graphic interface allows user of mobile device to configure current attach-
ment AP and choose acquisition method of IP address, such as static or DHCP.

user preference if current attachment network is unreachable or low quality. In
our implementation, the Mobility Manager allows user to choose manual or au-
tomatic handover and to assign preferred interface as shown in Fig. 7. User can
configure a profile of handover policy that records when handover can be per-
formed and what something is needed to do in handover, if the Mobility Manager
be configured automatic handover mode.

|'-- Handoff Configuration il

Handoff Decision
@ Manual (O Auto

Preferred Interface

Fig. 7. User of a mobile device can use this graphic interface to choose manual or
automatic handover and to assign preferred interface.

In summary, a mobile device can acquire network statuses, such as current
IP address and signal strength of APs, and configure those network statuses
easily if the Mobility Manager application runs on this mobile device. Further-
more, the mobile device can make handover decision automatically according

10 Cross-layer Signaling and Middleware Platform

network environment changes, such as link quality or reachable network, and
user preference.

4.2 Modified Kphone

The Modified Kphone is another example of network-aware application that is
sourced from a VoIP application called Kphone and is modified to perform han-
dover via the Middleware APIs. We need to program some new procedures to
make handover decision because the original Kphone application cannot support
handover. In the Kphone communication, a Mobile Node (MN) and a Correspon-
dent Node (CN) are transmitting voice data via Real-time Transport Protocol
(RTP) packets to another. We need to ensure that Synchronization Source Iden-
tifier (SSRC) in RTP header is identical when the MN changes its IP address
because same SSRC in RTP header implies same connection between MN and
CN.

In our implementation of Modified Kphone, we divided handover procedure
into four steps as shown in Fig. 8. First, a MN receives a network event notifi-
cation, such as wireless signal strength below a threshold, and then it triggers
network layer handover that includes changing attachment network, acquiring a
new IP address and configuring default gateway. Second, the MN uses the new
IP address and original SSRC to send Re-invite message to CN. Third, the CN
will change destination IP address of sending packets according source IP ad-
dress of received packet and the SSRC when it receives the Re-invite message.
Finally, the CN will send ACK message to the MN and thus an application layer
handover is completed.

MN CN

EEER
RTP acets
N —
fosss ’EE&E@&?% \ |Fourth Stepl

Fig. 8. The handover procedure of Modified Kphone can be divided into four steps.
If a network event notification be sent to Modified Kphone and it decides to perform
handover, this handover procedure that includes first, second, third and fourth step
will be run.

Cross-layer Signaling and Middleware Platform 11

In summary, our Modified Kphone application can perform handover quickly
and correctly because the middleware platform can provides layer-2 trigger and
some detail statuses for an application. Furthermore, a program developer can
pay attention more to design of handover policies as a result of the middleware
platform provides several mechanisms for the developer to implement applica-
tions.

5 Conclusion

In this paper, we designed and implemented a middleware platform that in-
cludes Cross-layer Signaling and Network Event Notification mechanisms. The
middleware was implemented in user space and then it provided Middleware
APIs for applications to configure and acquire statuses of underlying protocol
stacks. Based on Cross-layer Signaling mechanism, control and query messages
can order each protocol stack to do something directly. Beside, the Network
Event Notification can help application that it is aware of changes of network
environment immediately.

We also demonstrated two examples of network-aware application that in-
clude Mobility Manger and Modified Kphone. Those examples illustrated two
kinds of Event Notification method and how to use in our middleware platform.
According our illustration, if a network-aware application is developed via our
middleware platform, this application can be developed quickly and easily.

In future works, we will continue to extend novel network events when a
new type of network adaptor is created. Furthermore, we consider developing a
handover analysis tool via the middleware platform and then the tool can help
programmer to determine cause of handover delay.

References

1. Bakken, D.: Middleware. http://www.eecs.wsu.edu/~bakken/middleware.pdf

Kphone Project, http://sourceforge.net/projects/kphone

3. Perkins, C.: IP Mobility Support for IPv4. IETF RFC3344, Nokia Research Center,
August (2002)

4. Sun, J., Riekki, J., Jurmu, M., Sauvola, J.: Adaptive Connectivity Management
Middleware for Heterogeneous Wireless Networks. In: IEEE Wireless Communica-
tions, December (2005)

5. Sun, J., Tenhunen, J., Sauvola, J.: CME: a middleware architecture for network-
aware adaptive applications. In: Proceedings 14th IEEE PIMRC2003, Beijing,
China (2003)

6. Hawick, K.A., James, H.A.: Wireless Issues for a Mobility Management Middle-
ware. In: CCN2002, August (2002)

7. Tian, Y., Frank, S., Tsaoussidis, V., Badr, H.: Middleware Design Issues for Appli-
cation Management in Heterogeneous Networks. In: Networks 2000 (ICON 2000)

8. Li, B., Nahrstedt, K.: A Control-Based Middleware Framework for Quality of Ser-
vice Adaptations. In: IEEE Journal of Selected Areas in Communication, 17(9):
pp. 1632-1650 (1999)

o

12

10.

11.

12.

13.

14.

Cross-layer Signaling and Middleware Platform

Kreller, B., Park, A.S.B., Meggers, J., Forsgren, G., Kovacs, E., Rosinus, M.,
Siemens A.G.: UMTS: A Middleware Architecture and Mobile API Approach. In:
IEEE Personal Communications, April (1998)

George, X., George, C.P.: Internet Protocol Performance over Networks with Wire-
less Links. In: IEEE Network, 13(4): pp. 55-63 (1999)

Clark, D.D.: The Structuring of Systems using Upcalls. In: ACM Symposium on
Operating Systems, pp. 171-180 (1985)

Cooper, G.H.: The Argument for Soft Layer of Protocols. In: Tech. Rep. Tr-300,
Massachussets Institute of Technology, Cambridge, May (1983)

Carneiro G., Ruela, J., Ricardo, M.: Cross-Layer Design in 4G Wireless Terminals.
In: IEEE Wireless Communications, 11(2): pp. 7-13, April (2004)

Chou., T.J.: Design and Implementation of Driver-Level Network Event Notifica-
tion Mechanism in Linux. In: Thesis in Wireless Internet Lab., National Chiao
Tung University, Hsinchu, Taiwan (2005)

