Assured-Timeliness Integrity Protocols for
Distributable Real-Time Threads with in
Dynamic Distributed Systems

Binoy Ravindran', Edward Curley!, Jonathan S. Anderson', and
E. Douglas Jensen?

! Department of Electrical and Computer Engineering
Virginia Tech, Blacksburg Virginia, 24061, USA
{binoy, alias, andersoj}@vt.edu
2 The MITRE Corporation
Bedford, Massachusetts, 01730, USA

jensen@mitre.org

Abstract

Networked embedded systems present challenges for designers composing dis-
tributed applications with dynamic, real-time, and resilience requirements. We
consider the problem of recovering from failures of distributable threads with
assured timeliness in dynamic systems with overloads, and node and (perma-
nent/transient) network failures. When a failure prevents timely execution, the
thread must be terminated, requiring detecting and aborting thread orphans and
delivering exceptions to the farthest, contiguous surviving thread segment for
possible resumption, while optimizing system-wide timeliness. A scheduling algo-
rithm (HUA) and two thread integrity protocols (D-TPR and W-TPR) are pre-
sented and shown to bound orphan cleanup and recovery times with bounded loss
of best-effort behavior. Implementation experience using the emerging Distributed
Real-Time Specification for Java (DRTSJ) demonstrates the algorithm/protocols’
effectiveness.

1 Introduction

In distributed systems, action and information timeliness is often end-to-end—
e.g., a causally dependent, multi-node, sensor to shooter sequential flow of exe-
cution in network-centric warfare systems [1]. Designers and users of distributed
systems often need to dependably reason about (specify, manage, predict) end-
to-end timeliness. Many emerging such systems are being envisioned to be built
using ad hoc network systems—e.g., those without a fixed infrastructure , having
dynamic node membership and network topology changes, including mobile, ad
hoc wireless networks [2].

Maintaining end-to-end properties (e.g., timeliness, connectivity) of a con-
trol or information flow requires a model of the flow’s locus in space and time

that can be reasoned about. Such a model facilitates reasoning about, and re-
solving the contention for resources that occur along the flow’s locus. The dis-
tributable thread abstraction which first appeared in the Alpha OS [3] and later
in MK7.3 [4], OMG’s Real-Time CORBA 1.2 [5], and Sun’s emerging Distributed
Real-Time Specification for Java (DRTSJ) [6] provide such a model as first-class
programming and scheduling abstractions. A distributable thread (see Figure 1)
is a thread of execution with a globally unique identity that extends and retracts
through local and remote objects, carrying its execution context (e.g., scheduling
parameters) as it transits node boundaries [5]. This context is used in resolving
resource contention among threads with the objective of maximizing a partic-
ular scheduling objective. We focus on distributable threads (hereafter, simply
threads) as our end-to-end control flow/scheduling abstraction.

During overload it is impossible to
meet time constraints for all threads:
the demand exceeds the supply. A dis-
tinction must be made between ur-
gency and importance in order to se-
lect which activities to execute and
when (During underloads, such a dis-
tinction generally need not be made—
e.g., if all time constraints are dead-
lines, then EDF [7] can meet all dead-
lines, and no selection must be made.)
Traditional deadlines do not capture . oo
this distinction, thus we consider the Fig. 1. Distributable Threads
time/utility function (or TUF) model [8] that specifies the utility of completing
a thread as a function of its completion time. In this paper, we specify a deadline
as a binary-valued, downward “step” shaped TUF. A thread’s TUF decouples
its importance (X-axis) and urgency (Y-axis).

DT1 1-Way DT2
Invocation

e

Object A Object B Object C Object D

When thread time constraints are expressed with TUFs, the scheduling op-
timality criteria are based on maximizing accrued utility—e.g., maximizing the
total thread accrued utility. Such criteria are called wtility accrual (or UA) cri-
teria, and sequencing (scheduling, dispatching) algorithms that optimize UA
criteria are called UA sequencing algorithms (e.g., [9,10]).

Our Contributions. When nodes fail, threads may be divided into several
pieces. Segments of a thread that are disconnected from its node of origin (called
the thread’s root), are called orphans. When threads fail and cause orphans,
application-supplied exception handlers must be released for execution on the
orphan nodes. Such handlers may have time constraints themselves and will com-
pete for their nodes’ processor along with other threads. Under a termination
model, when handlers execute (not necessarily when they are released), they will
abort the associated orphans after performing recovery actions that are neces-
sary to avoid inconsistencies. Once all handlers complete, thread execution can
potentially be resumed from the farthest, contiguous surviving thread segment

(from the thread’s root). Such a coordinated set of recovery actions will preserve
the abstraction of a continuous reliable thread.

A straightforward approach for scheduling handlers is to model them as tra-
ditional (single-node) threads. Further, the classical admission control strat-
egy [11-13] can be used: When a thread T arrives on a node, if a feasible node
schedule can be constructed such that it includes all the previously admitted
threads and their handlers, besides T and its handler, then admit 7 and its
handler; otherwise, reject. But this will cause the very fundamental problem
that is solved by UA schedulers through their best-effort decision making—i.e.,
a newly arriving thread is rejected because it is infeasible, despite that thread
being the most important. In contrast, UA schedulers will feasibly complete the
high importance newly arriving thread (with high likelihood), at the expense of
not completing some previously arrived ones, since they are now less important
than the newly arrived.

In this paper, we consider the problem of recovering from thread failures with
assured timeliness and best-effort property. We consider distributable threads
that are subject to TUF time constraints. Threads may have arbitrary arrival
behaviors, may exhibit unbounded execution time behaviors (causing node over-
loads), and may span nodes that are subject to arbitrary crash failures and
a network with permanent/transient failures and unreliable transport mecha-
nisms. Another distinguishing feature of motivating applications for this model
(e.g., [1]) is their relatively long thread execution time magnitudes—e.g., mil-
liseconds to minutes. For such a model, we consider the scheduling objective of
maximizing the total thread accrued utility.

We present a UA scheduling algorithm called Handler-assured Utility Accrual
scheduling algorithm (or HUA) for thread scheduling, and two protocols called
Decentralized Thread Polling with bounded Recovery (or D-TPR) and Wireless
Thread Polling with bounded Recovery (or W-TPR) for ensuring thread integrity.
D-TPR targets networks with generally permanent network failures, and W-
TPR targets mobile, ad hoc wireless networks with generally transient network
failures. We show that HUA and D-TPR/W-TPR ensure that handlers of threads
that encounter failures during their execution will complete within a bounded
time, yielding bounded thread cleanup time. Yet, the algorithm/protocols retain
the fundamental best-effort property of UA algorithms with bounded loss—
i.e., a high importance thread that may arrive at any time has a very high
likelihood for feasible completion. Our implementation experience using DRTSJ’s
emerging Reference Implementation (RI) demonstrates the algorithm /protocols’
effectiveness.

Thread integrity protocols have been developed in the past—e.g., Thread
Polling with bounded Recovery [13], Alpha’s Thread Polling [3], Node Alive pro-
tocol [14]. None of these efforts provide time-bounded thread cleanup in the pres-
ence of node and (permanent/transient) network failures and unreliable trans-
port mechanisms. Further, [13] suffers from unbounded loss of the best-effort
property due to its admission control strategy (we show this in Section 3.3).
In contrast, HUA and D-TPR/W-TPR provide bounded thread cleanup with

bounded loss of the best-effort property in the presence of (permanent/transient)
network failures and unreliable transport mechanisms — the first such algo-
rithm/protocols. Thus, the paper’s contribution is the HUA and D-TPR/W-
TPR.

2 Models and Objectives

Threads. Threads execute in local and remote objects by location-independent
invocations and returns. The portion of a thread executing an object operation
is called a thread segment; a thread can be viewed as being composed of a series
of thread segments. A thread’s initial segment is called its root and its most
recent segment is called its head, the only segment that is active. A thread can
also be viewed as being composed of a sequence of sections, where a section is a
maximal length sequence of contiguous thread segments on a node.

A section’s execution time estimate is known when the thread arrives at the

section’s node. This execution time estimate includes that of the section’s normal
code and its exception handler code, and can be violated at run-time (e.g., due
to context dependence, causing processor overloads). However, the number of
thread sections is unknown a priori. The application is comprised of a set of
threads, denoted T = {T1,T5, T3, ...}
Timeliness Model. Each thread T;’s time constraint is specified using a TUF,
denoted U; (t). Downward step TUF's generalize classical deadlines where U;(t) =
{0, {n}}. We focus on non-increasing (unimodal) TUFs, as they encompass the
majority of time constraints of interest to us (e.g., [15]).

Each TUF U; has an initial time I;, which is the earliest time for which the

function is defined, and a termination time X;, which denotes the last point that
the function crosses the X-axis.
Abort Model. Each section of a thread has an associated exception handler.
We consider a termination model for all thread failures. If a thread has not
completed by its termination time, or a thread encounters a network or node
failure, an exception is raised, and handlers are released on all nodes hosting
thread’s sections. When a handler executes, it will abort the associated section
after performing recovery actions that are necessary to avoid inconsistencies—
e.g., rolling back/forward section’s held logical and physical resources to safe
states.

Each handler may also have a TUF time constraint, and an execution time
estimate, provided by the handler’s thread when the thread arrives at a node.
Violation of the termination time of a handler’s TUF will cause the immediate
execution of system recovery code on that node, which will recover the thread
section’s held resources and return the system to a consistent and safe state.
System and Failure Models. We consider a system model where a set of
processing nodes N; € N,i € [1,m] are interconnected via a network. We con-
sider an unreliable multihop network model (e.g., WAN, MANET), with nodes
interconnected through routers. Node clocks are synchronized—e.g., using [16].

Nodes may fail arbitrarily by crashing (i.e., fail-stop), while network links may
fail transiently or permanently, causing network partitions.

We consider Real-Time CORBA 1.2’s [5] Case 2 approach for thread schedul-
ing. According to this approach, node schedulers use thread scheduling pa-
rameters and independently schedule thread sections to optimize the system-
wide timeliness optimality criteria, resulting in approximate, global, system-wide
timeliness.

Scheduling Objectives. Our primary objective is to maximize the total thread
accrued utility as much as possible. Further, the orphan cleanup and recovery
time must be bounded, while retaining the best-effort property of UA algorithms.

3 The HUA Algorithm

3.1 Rationale

Section Scheduling. Since the task model is dynamic—i.e., when threads
will arrive at nodes, and how many sections a thread will have are statically
unknown, node (section) schedules must be constructed solely exploiting the
current system knowledge. A reasonable heuristic is a “greedy” strategy at each
node: Favor “high return” thread sections over low return ones, and complete as
many of them as possible before thread termination times, as early as possible.

The potential utility that can be accrued by executing a thread section on
a node defines a measure of that section’s “return on investment.” We measure
this using a metric called the Potential Utility Density (or PUD) [10]. On a
node, a section’s PUD measures the utility that can be accrued by immediately
executing it on the node, per unit of remaining execution time.

However, a section may encounter failures. We first define the concept of a
section failure and a released handler:

Definition 1 (Section Failure) Consider a section S; of a thread T;. We say
that S; has failed when (a) S; violates the termination time of T; while execut-
ing, thereby raising a time constraint-violation exception on S;’s node; or (b) a
failure-exception notification is received at S;’s mode regarding the failure of a
section of T; that is upstream or downstream of S;, which designates S; as an
“orphan-head.”

Definition 2 (Released Handler) A handler is released for execution when
its section fails according to Definition 1.

In the absence of section failure the corresponding section PUD can be ob-
tained as the utility accrued by executing the section divided by the time spent
for executing the section. The section PUD for a failure scenario (per Defini-
tion 1) can be obtained as the utility accrued by executing the handler of the
section divided by the total time spent for executing the section and the handler.

Thus, on each node, HUA examines thread sections for potential inclusion
in a feasible node schedule in the order of decreasing section PUD. For each

section, the algorithm examines whether that section and its handler can be
feasibly completed, in which case it is added to the schedule.

If a non-head section S; is not included, it is conceptually equivalent to the
(crash) failure of N;. This is because, S;’s thread T; has made a downstream
invocation after arriving at N; and is yet to return from that invocation. If T;
had made a downstream invocation, then S; had executed before, and hence was
feasible and had a feasible handler at that time. S;’s rejection now invalidates
that previous feasibility. Thus, S; must be reported as failed and a thread break
for T; at N; must be reported to have occurred to ensure system-wide consistency
on thread feasibility. The algorithm does this by interacting with the integrity
protocol (e.g., D-TPR).

This process ensures that included sections always have feasible handlers.
Further, all upstream sections’ handlers are also feasible. When any such section
fails, its handler and all upstream handlers will complete in bounded time.

No such assurances are afforded to sections that fail otherwise—i.e., the ter-
mination time expires for .S;, which has not completed its execution and is not
executing when the expiration occurs. Thus, S; and its handler are not part of the
feasible schedule at the expiration time. S;’s handler is executed in a best-effort
manner, in accordance with its potential contribution to the total utility.
Feasibility. Feasibility of a section on a node can be tested by verifying whether
the section can be completed on the node before the section’s distributable
thread’s end-to-end termination time. Using a thread’s end-to-end termination
time for verifying the feasibility of a section of the thread may potentially overes-
timate the section’s slack, especially if there are a significant number of sections
that follow it in the thread. However, this is a reasonable choice, since the number
of sections of a thread is unknown (otherwise approaches from [17] apply).

A handler is feasible if it can complete before its absolute termination time.
Failure time is impossible to predict, so a reasonable choice for the handler’s
absolute termination time is the thread’s end-to-end termination time, plus the
handler’s termination time, delaying the handler’s latest start time.

3.2 Algorithm Overview

HUA’s scheduling events at a node include the arrival of a thread at the node,
release of a handler at the node, completion of a thread section or a section
handler at the node, and the expiration of a TUF termination time at the node.
To describe HUA, we introduce a number of variables and auxiliary functions
which are largely self-explanatory. Detailed descriptions appear in the full version
of this paper.

HUA is shown in Algorithm 1. Invoked at time t.,,., HUA H and checks
the feasibility of the sections. If a section’s earliest predicted completion time
exceeds its termination time, it is not included. Otherwise, HUA calculates its
PUD. Sections are then sorted by PUD (line 8), and those with positive PUD
are I eaftiivelysimsimtedbintnd ,Sfiaintaimed dndeonms-defrasibils @idendt S$ttion
ternoiveatidf ineeticiihes, thatcdisorerfpvadd isShatren iserded niditbebonagefdositiohe
thatiomsresheddl¢o the Mtmedity; pfotoSHL ¥ nesifiect neggrding S;’s failure. If one

Algorithm 1: HUA: High Level Description

1: input: S,, o,, H; output: selected thread Scze;
2: Initialization: t := tey,; o := 0; HandlerIsMissed := false;
3: updateReleaseHandlerSet ();
4: for each section S; € S, do
5: if feasible(S;) =false then
6: | reject(S;);
else S;.PUD = min (U (t+s D=T) U{L(t+si'EmT+S£L'EmT)>
7: BeT S;.BExT+SP ExT
8: Otmp :=sortByPUD(S;);
9: for each section S; € o¢mp from head to tail do
10: if S;.PUD > 0 then
11: Insert(S;, o, S;.X);
12: Insert(Sf, o, S;. X + S?.X);
13: if feasible(o) =false then
Remove(S“ o, S;.X);
14: Remove (S, o, S; X+S” X);
15: if IsHead(S;)—false and S; € o, then
16: L alertProtocol(S;);
17: else break;
18: if H # () then
19: for each section S" € H do
20: if S" ¢ o then
21: HandlerIsMissed := true;
22: break;

23: if HandlerIsMissed := true then
24: ‘ Serze :=head0f (H);
else
25: O =0
26: Tere:=head0f (0);

27: return Scgc;

or more handlers have been released but have not completed their execution , the
algorithm checks whether any of those handlers are missing in ¢ If any handler
is missing, the handler at the head of H is selected for execution. If all handlers
in H have been included in o, the section at the head of ¢ is selected.

3.3 Algorithm Properties

Theorem 1 If a section S; fails (per Definition 1), then under HUA with zero
overhead, its handler SM will complete no later than S;. X + S X (barring SI’s
failure).3

Consider a thread T; that arrives at a node and releases a section S; after
the handler of a section S; has been released on the node (per Definition 2) and
before that handler (S;L) completes. Now, HUA may exclude S; from a schedule
until S]h completes, resulting in some loss of the best-effort property. To quantify
this loss, we define the concept of a Non Best-effort time Interval (or NBI):

3 Proofs of all theorems have been eliminted for space, but are available in the full
version of this paper at http://www.real-time.ece.vt.edu/eso07.pdf.

Definition 3 Consider a scheduling algorithm A. Let a section S; arrive at a
time t with the following properties: (a) S; and its handler together with all
sections in A’s schedule at time t are not feasible at t, but S; and its handler
are feasible just by themselves; (b) One or more handlers (which were released
before t) have not completed their execution att; and (¢) S; has the highest PUD
among all sections in A’s schedule at time t. Now, A’s NBI, NBI 4, is defined
as the duration of time that S; will have to wait after t, before it is included in
A’s feasible schedule. Thus, S; is assumed to be feasible together with its handler
att + NBI 4.

We now describe the NBI of HUA and other UA algorithms including DASA [10],
LBESA [9], and AUA [13] (under zero overhead):

Theorem 2 HUA'’s worst-case NBI is t + maxys,eo, (Sj.X + SJ}?.X), where oy
is HUA’s schedule at time t. DASA’s and LBESA’s worst-case NBI is zero;
AUA’s is +o00.

Theorem 3 Best-case NBI of HUA, DASA, and LBESA is 0; AUA’s is +0.

4 The D-TPR Protocol

D-TPR targets systems with node and network failures that are generally per-
manent. The protocol is instantiated in a per-node component called the Thread
Integrity Manager (or TIM), which continually runs D-TPR’s polling operation.
TIM operations are considered to be administrative operations, and they are
conducted with scheduling eligibility exceeding all application threads. We thus
ignore the (comparatively small, and bounded) processing delays on each node
in the analysis.

4.1 Polling

At every polling interval ¢,, the TIM on each node identifies locally-hosted sec-
tions, sending a POLL message to each of its predecessor and successor nodes
for each section. Each POLL messagecontaining corresponding local and remote
section IDs for each section. If the entry type is SUCCESSOR, the remote section
ID will correspond to the successor section of the local section in the entry. Sim-
ilarly, the remote section ID of PREDECESSOR corresponds to the predecessor
section of the local segment in the entry. In this way, the node receiving the
POLL message is able to discern (downstream or upstream) the message’s origin
and thus from which direction the section has been deemed healthy.

4.2 Break Detection

When an invocation is made, D-TPR creates timers which are set to a delay D,
the likely worst-case message delay incurred in the network, and is empirically
determined (similar to our measurements in Section 6). One timer is established

for the downstream section and the other is established for the upstream sec-
tion. The TIM on the node making the invocation (upstream side) creates a
downstream-invocation timer that will cause a timeout when polling messages
have not been received from downstream frequently enough. The TIM on the
node hosting the remote object to which the invocation is being made (down-
stream side) creates an upstream-invocation timer that will cause a timeout
when polling messages are not received from upstream frequently enough.

When a POLL message is received from upstream, the upstream-invocation
timer is reset to D and resumes counting down. The same is true of the down-
stream-invocation timer when a POLL message is received from downstream. A
“thread break” is declared when either the upstream or downstream-invocation
time reaches zero.

Lemma 4 Consider a section S; and its successor section S;. Under D-TPR,
if S;’s node fails, or S; becomes unreachable from S; (but not necessarily vice
versa), then S; will detect a thread break between S; and S; within t, + D.

Lemma 5 Consider a section S; and its predecessor S;. Under D-TPR, if S;’s
node fails, or S; becomes unreachable from S; (but not necessarily vice versa),
then S; will detect a thread break between S; and S; within t, + D. S; and its
downstream sections are now said to be orphaned.

4.3 Recovery

Recovery operations are administrative functions carried on below the level of
application scheduling. While recovery proceeds, D-TPR activities continue con-
currently, allowing the protocol to recognize and deal with multiple simultaneous
breaks and cleanup operations.

If the upstream-invocation timer expires, the protocol assumes that the up-
stream section is unreachable and declares the local section associated with the
timer to be an orphan. D-TPR then attempts to force the upstream section
to become the thread’s new head while forcing the downstream section to be-
come an orphan. To force the upstream section to become the new head, the
protocol sends a NEW_HEAD message upstream and stops upstream POLL mes-
sages, which refresh the upstream section. If the upstream node receives the
NEW_HEAD message, the upstream section will immediately begin behaving like
a new head. If the upstream node does not receive the message, the upstream
section’s downstream-invocation timer will expire (due to the stopped POLL mes-
sages) forcing the section to become the new head.

In order to force the downstream section to become an orphan, the protocol
sends an ORPHANPROP message downstream and modifies its downstream POLL
messages to include an orphan status. The downstream node will either receive
the ORPHANPROP message and become an orphan, or the downstream section’s
timer will expire forcing it to become an orphan. When a section becomes an
orphan, it propagates the ORPHANPROP message in order to identify all orphans.

10

When a section’s downstream-invocation timer expires, the protocol assumes
that the downstream sections are unreachable and declares itself the new head
of the thread. The new head then sends an ENDORPHAN downstream and ceases
downstream refresh polling. In this way, the downstream section will either re-
ceive the ENDORPHAN notification and become an orphan or it’s upstream timer
will expire, making the section an orphan.

Lemma 6 Under D-TPR, if a thread break occurs between S; and its successor
S;, then S; will become the new head within t, + 2D. Since the new head of
a thread is always directly upstream from a break, D-TPR therefore activates a
new head within t, + 2D.

Lemma 7 Under D-TPR, if a thread break occurs between S; and its successor
Sj, then S; will identify itself as an orphan within t, + 2D.

4.4 Cleanup

An orphaned section releases its exception handler only if it is an “orphan-
head.” This can happen in one of three ways: (1) The current head of the thread
becomes an orphan; (2) A non-head orphan is returned to by an orphan-head
and becomes a new orphan-head; and (3) An orphan’s downstream-invocation
timer expires forcing it to become a new orphan-head.

Theorem 8 Under D-TPR/HUA, if a thread break occurs between a section S;
and its successor Sj, then all orphans from S; till the thread’s current head S;4r,
for some k > 1, will be aborted in the LIFO-order—i.e., from Sji to S;—and
will complete by t, + (2+k)D +0*_(Sj4a-X + S]Z_a.X), unless a section Sjyq
becomes unreachable from Sjiay1,0 <a <k —1.

Theorem 9 Under D-TPR/HUA, if a thread breaks, then the thread’s orphans
will complete within a bounded time.

5 The W-TPR Protocol

W-TPR is designed for mobile, ad hoc wireless networks, where communication
is assumed to be unreliable and prone to transient failures.The protocol exploits
the fact that a thread is only adversely affected by a thread break if the head
attempts to move across that break. In contrast, D-TPR detects a break and
assumes that the break will be permanent; so it preempts the possibility of the
head crossing the break by eliminating sections beyond the break point. W-TPR
assumes that the breaks are not permanent.

W-TPR differs from D-TPR primarily in the way thread-breaks are deter-
mined. In W-TPR, breaks are never actually recognized. Instead, the protocol
recognizes when communication errors affect either an invocation or a return
(head movement) and provides maintenance accordingly.

11

Figure 2 shows the section states and
transitions in W-TPR. No breaks are ever
declared—a section becomes an orphan
only if it receives the ORPHAN message i Return
from an upstream section. Sections are

healthy until notified otherwise. oo
Downstream Head Movement. Dur- ormal Completo

Orphan Mag

i

Orphan Msg Finish Cleanup

I

ing an invocation, a thread section S;
makes a call on a remote object, which
creates a second section S; 1. In order for
the invocation to be successful, S;+; must Fig. 2. Section State Diagram
be created and S; is made aware of S; 1.

An invocation request is sent down-
stream and the local section, S;, begins
waiting for invocation verification. The invocation is verified when the local
section receives an INV-ACK from the downstream node or a POLL from the
downstream node containing the section ID of the remote section (see further).

When the invocation is received by the downstream node, the downstream
node attempts to finalize the invocation and sends an INV-ACK message to the
upstream section. The downstream node begins sending periodic POLL messages
to the upstream section, at every polling interval ¢,. When a healthy section
receives a POLL message from an orphan, the healthy section returns an ORPHAN
message to the orphan. If the orphan is not the orphan-head, similar to D-TPR,
the ORPHAN message is propagated upstream.

The protocol resends the invocation request until either the invocation is
verified, or the protocol deems that communication with the downstream node
is not possible by waiting for an application-specified value t, to expire and no
INV-ACK or a POLL message is received from the downstream node during ¢,,. If
communication with the downstream node is not possible, then the local section
maintains head status and the application is notified that the invocation has
failed. The TIM also sends an ORPHAN message downstream, in the event that
only a partial invocation was accomplished. Thus the downstream node’s INV-
ACK/POLL messages are not received upstream while thread execution progresses
on the downstream node and further downstream.

Fail Invoke

Lemma 10 Under W-TPR thread head location is ambiguous for at most t,.

Upstream Head Movement. When the head is moving from the local node to
an upstream node, the local node begins waiting for return verification from the
upstream node. When the return message is received by the upstream node, the
upstream node sends a return verification message RETURN-ACK downstream
to the local node. If the verification is not received within ¢,, then the return
times out and the protocol forces the return message to be resent, which chains
upstream. Even in the presence of upstream communication errors, the down-
stream section never becomes an orphan. Since the section has already finished
executing and has a healthy return value, it is fruitless to abort this section
before delivering its return value.

12

Lemma 11 Under W-TPR, a thread’s head is never disconnected from the rest
of the thread and no new head activation is required.

Cleanup. A section becomes an orphan upon receipt of an ORPHAN message,
in response to its POLL. When the ORPHAN message is received, the section
propagates that message downstream and waits for a return from its downstream
section to be designated an orphan-head before starting cleanup, as in D-TPR.
Cleanup begins when the furthest orphaned section is notified it is an orphan.

Theorem 12 Under W-TPR, if a section S; makes an unsuccessful invocation
to its (potential) successor section S; (i.e., S; will be S;’s successor had if the
invocation was successful), then all orphans that can potentially be created from
S; till the thread’s furthest orphaned section Sji,k > 1, will be aborted in the
LIFO-order and will complete within a bounded time under HUA, as long as no
further failures occur between S; and Sjiy.

Theorem 12 holds only if no further failures occur between S; and Sji.
D-TPR can detect such failures due to its continuous pairwise polling operation,
whereas W-TPR is unable to do so precisely due its “on-demand” polling.

6 Implementation Experience

HUA, D-TPR, and W-TPR were implemented in DRTSJ’s RI [6]. The RI in-
cludes a threads API, user-space scheduling framework for pluggable thread
scheduling, and mechanisms for implementing thread integrity protocols, run-
ning atop Apogee’s Real-Time Specification for Java (RTSJ)-compliant Aphe-
lion Java Virtual Machine. The experiments and RI ran on the Debian Linux
OS (kernel version 2.6.16-2-686) on 800MHz Pentium-IIT machines.

Metrics of interest included total thread cleanup time and protocol over-
head as measured by thread completion time. We measured these during 100
experimental runs of our test application. Each experimental run spawned a sin-
gle distributable thread which propagated to five other nodes, returning back
through the same five nodes.

Total cleanup time is the time between the failure of a thread’s node or
communication link and the completion of the handlers of all the orphan sec-
tions of the thread. Figures 3(a) and 3(b) show the measured cleanup times for
HUA/D-TPR and HUA/W-TPR, respectively. The cleanup times are plotted
against the protocols’ cleanup upper bound times for the thread set used in
our experiments. We observe that both HUA/D-TPR and HUA /W-TPR satisfy
their cleanup upper bound, validating Theorem 9.

Completion time is the difference between when a root section starts execu-
tion and when it completes. Figures 4(a) and 4 show the thread completion times
of experiments 1) with failures and D-TPR/W-TPR, 2) without failures but with
D-TPR/W-TPR, 3) without failures and without D-TPR/W-TPR, and 4) with
failures but without D-TPR/W-TPR. We measure the overhead each protocol
incurs in terms of the increase in thread completion times.

13

Total Thread Cleanup Times Total Thread Cleanup Times
11000

T T T 11000 T T T
HUA/D-TPR —+— HUA/W-TPR —+—
Upper Bound —--—- Upper Bound ——x---
10500
10500 F .
10000 -
10000
9500
E 9500 - E 9000 |
g g
= 9000 4 e 8500 4
8000 b
8500 b
7500 b
8000 X W&M
7000 B
S O S
0 10 20 30 40 50 60 70 80 90 100 o 10 20 30 40 50 60 70 80 90 100
Experiment Number Experiment Number
(a) D-TPR Thread Cleanup Times (b) W-TPR Thread Cleanup Times

Fig. 3. Thread Cleanup Times for D-TPR and W-TPR

Figure 4(a) shows the completion times for experiments with and without
D-TPR. We observe that the completion times of successful threads without D-
TPR is smaller than that with D-TPR. This is to be expected as D-TPR incurs a
non-zero overhead. However, we also observe that the completion times of failed
threads with D-TPR are shorter than even the completion times of successful
threads without D-TPR. This is because, orphan cleanup can occur in parallel
with the continuation of a repaired thread, allowing the repaired thread to finish
without waiting for all orphans to run to completion. A successful thread, on the
other hand, must wait for all sections to finish before it can complete, increasing
its completion time. Figure 4(a) also shows that failed threads with D-TPR
complete much more quickly than failed threads with no D-TPR support.

D-TPR Thread Completion Times W-TPR Thread Completion Times

55000 30000
D-TPR ——1 W-TPR £Xxx1

50000 4 28000

45000 4 26000

40000 24000

Time (ms)
Time (ms)

35000 22000
30000 4 20000

25000 4 18000

oo om0 558 s

Failures No Failures No Failures Failures Failures No Failures No Failures Failures

(a) D-TPR Thread Completion Times (b) W-TPR Thread Completion Times

Fig. 4. W-TPR Thread Completion Times

Figure 4 shows completion times for experiments run with and without W-
TPR. As the figure shows, the measurements taken in the absence of W-TPR
are only slightly lower than the measurements taken in the presence of W-TPR.
We observe that W-TPR incurs relatively little overhead while providing the
properties discussed in Section 5.

14

7

Conclusions and Future Work

We present a real-time scheduling algorithm called HUA and two protocols called
D-TPR and W-TPR. We show that HUA and D-TPR/W-TPR bound the or-
phan cleanup and recovery time with bounded loss of the best-effort property —
the first such algorithm/protocols for systems with (permanent/transient) net-
work failures and unreliable transport. Our implementation using the emerging
DRTSJ/RI demonstrates the algorithm/protocols’ effectiveness.

Directions for future work include allowing threads to share non-CPU re-

sources, establishing assurances on thread time constraint satisfactions’; and ex-
tending results to arbitrary graph-shaped, multi-node, causal control/data flows.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

CCRP: Network centric warfare. http://www.dodccrp.org/ncwPages/ncwPage.
html

Baker, F.: An outsider’s view of manet. Internet-Draft, Work In Progress draft-
baker-manet-review-01.txt, IETF Network Working Group (March 2002)
Northcutt, J.D.: Mechanisms for Reliable Distributed Real-Time Operating Sys-
tems — The Alpha Kernel. Academic Press (1987)

The Open Group: MK7.3a Release Notes. The Open Group Research Institute,
Cambridge, Massachusetts (1998)

OMG: Real-time corba 2.0: Dynamic scheduling specification. Technical report,
Object Management Group (2001)

Anderson, J., Jensen, E.D.: The distributed real-time specification for java: Status
report. In: JTRES. (2006)

Horn, W.: Some simple scheduling algorithms. Naval Research Logistics Quaterly
21 (1974) 177-185

Jensen, E.D.; et al.: A time-driven scheduling model for real-time systems. In:
IEEE RTSS. (Dec. 1985) 112-122

Locke, C.D.: Best-Effort Decision Making for Real-Time Scheduling. PhD thesis,
CMU (1986) CMU-CS-86-134.

Clark, R.K.: Scheduling Dependent Real-Time Activities. PhD thesis, CMU (1990)
CMU-CS-90-155.

Nagy, S., Bestavros, A.: Admission control for soft-transactions in accord. In:
IEEE RTAS. (1997) 160

Streich, H.: Taskpair-scheduling: An approach for dynamic real-time systems. Mini
& Microcomputers 17(2) (1995) 77-83

Curley, E., et al.: Recovering from distributable thread failures with assured time-
liness in real-time distributed systems. In: IEEE SRDS. (2006) 267-276
Goldberg, J., et al.: Adaptive fault-resistant systems (chapter 5: Adpative dis-
tributed thread integrity). Technical Report csl-95-02, SRI International (1995)
Clark, R., et al.: An adaptive, distributed airborne tracking system. In: IEEE
WPDRTS. (April 1999) 353-362

Romer, K.: Time synchronization in ad hoc networks. In: ACM MobiHoc. (2001)
173-182

Kao, B., et al.: Deadline assignment in a distributed soft real-time system. IEEE
TPDS 8(12) (1997) 1268-1274

