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Abstract. RFID technology is a ubiquitous technology, and seems des-
tined to become more a more ubiquitous. Traditional cryptographic prim-
itives are not supported on low-cost RFID tags since, at most, 4K gates
can be devoted to security-related tasks. Despite this, there are a vast
number of proposals based on the use of classical hash functions, an as-
sumption that is not realistic (at least at the present time). Furthermore,
none of the published authentication protocols are resistant to active at-
tacks. We try to address these two issues in this work by designing a
new authentication protocol, secure against passive and active attacks,
inspired by Shieh et al.’s protocol for smart-cards, but adapted to RFID
systems. The original Shieh et al.’s scheme is considered one of the most
secure an efficient protocols in the smart-card field. Because in this pro-
tocol tags should support a hash-function on-board, a new lightweight
hash function, named Tav-128, is also proposed. A preliminary security
analysis is shown, as well as a study on its hardware complexity, which
concludes that its implementation is possible with around 2.6K gates.

Keywords: IUC, RFID, Security, Active-attacks, Authentication, Light-
weight Hash functions

1 Introduction

One of the main problems that ubiquitous computing has to solve before its
wide development is privacy [1]. In the RFID context, products labeled with
insecure tags reveal sensitive information when queried by readers. Additionally,
tags usually answer different queries with the same identifier. These predictable
tag responses allow a third party to establish an association between tags and
their owners. In addition to the previous threats, there are some other aspects
that must be considered: eavesdropping, counterfeiting, physical attacks, active
attacks, etc. To depth in all these matters we recommend the reading of [2–4]
where surveys of the most important advances in RFID technology are presented.

Low-cost RFID tags are very computationally limited devices due to its se-
vere price restriction (.05 - 0.1 ¤). Tags can only store hundreds of bits, and have
250-4K gates to implement security functions [5]. Even under these conditions,
most of the proposed solutions in the literature are based on hash functions or



PRNGs [6–9]. From a theoretical point of view, these proposals have helped to
increment the security level of RFID systems. However, none of these proposals
are realistic. Note that for implementing traditional hash functions significantly
more resources are needed. On the other hand, lightweight protocols can be fit-
ted in low-cost RFID tags, because they only perform very simple operations.
Nevertheless, none of the existing proposals are resistant to active attacks. In
most of the cases, these kind of attacks are simply discarded as not applicable,
which may be false in some real-life scenarios. Recently, Cui et al. have proposed
the use of asymmetric cryptography to solve active attacks [10]. However, nowa-
days the usage of asymmetric cryptography, although being an active research
field [11, 12] is not considered to be possible in low-cost RFID tags.

The kind of attacks applicable to RFID technologies are not much differ-
ent to those that can happen in wireless, bluetooth, or smart-card systems. We
have found interesting resemblances in the field of smart-card security, which
is by now a consolidated technology. Since the pioneer work of Lamport (1981)
where he proposed a remote authentication scheme, many researchers suggested
alternative schemes improving the efficiency and security of remote authentica-
tion processes. Recently, Shieh et al. have proposed a very interesting scheme in
their work entitled “Efficient remote mutual authentication and key agreement”
[13]. This protocol is considered to be one of the most secure an efficient secu-
rity protocols for smart-cards. Taking advantage of this work, we have updated
their protocol to the characteristics of RFID systems. The resulting protocol is
not only resistant to the standard passive attacks, such as privacy, tracking and
eavesdropping, etc. but also to active attacks. As the protocol is based on the use
of hash functions, we have also designed a new lightweight hash function, named
Tav-128. A security and performance analysis of this new function is presented,
showing its applicability to low-cost RFID tags.

The rest of the paper is organized as follows. In Sect. 2, Shieh et al.’s protocol
is described. Sect. 3 proposes a new protocol inspired in Shieh et al.’s scheme
but adapted to RFID systems. A security analysis is presented in Sect. 4. A new
lightweight hash function is proposed in Sect. 5, including a preliminary security
and performance analysis. Finally, we draw some conclusions in Sect. 6.

2 Review of Shieh et al.’s scheme

The security of Shieh et al.’s scheme (2006) is based on the use of secure one-way
hash functions (Merkle, 1989; NIST FIPS PUB 180, 1993; Rivest, 1992). Time
stamps are used but no time-synchronization is required. The scheme consists
in two phases: the registration phase, and the login and key agreement phase.

2.1 Registration phase

Assume an user Ui submits his identity IDi and password PWi to the server over
a secure channel for registration. If the request is accepted, the server computes
Ri = h(IDi⊕x)⊕PWi and issues Ui a smart-card containing Ri and h(), where



(1) Ui → Server: IDi, Tu, MACu

(2) Server → Ui: Tu, Ts, MACs

(3) Ui → Server: Ts, MAC′′
u

ai = h(IDi ⊕ x) MACu = h(Tu||ai)
MACs = h(Tu||Ts||a′

i) MAC′′
u = h(Ts||(ai + 1))

Fig. 1. Messages transmitted in Shieh’s scheme

h() is a one-way hash-function, x is the secret key maintained by the server, and
the symbol “⊕” denotes the exclusive-or operation.

2.2 Login and key agreement phase

Fig. 1 is an illustration of messages transmitted during the login and key agree-
ment phase in Shieh’s scheme. When user Ui wants to login to the server, he
first inserts his smart-card into a card reader then inputs his identity IDi and
password PWi. Next, the smart-card performs the followings steps:

1. Compute ai = Ri ⊕ PWi.
2. Acquire current time stamp Tu, store Tu until the end of the session, and

compute MACu = h(Tu||ai).
3. Send message (IDi, Tu, MACu) to the server.

After receiving message (IDi, Tu, MACu) from Ui, the server performs the
following steps to assure the integrity of the message, answer to Ui, and challenge
Ui to avoid replay attacks:

1. Check the freshness of Tu. If Tu has already appeared in a current execution
session of user Ui, reject Ui’s login request and stop the session. Otherwise
Tu is fresh.

2. Compute a′i = h(IDi ⊕ x), MAC ′
u = h(Tu||a′i) and check whether MAC ′

u

is equal to the received MACu. If it is not, reject Ui’s login and stop the
session.

3. Acquire current time stamp Ts. Store temporarily paired time stamps (Tu, Ts)
and IDi for freshness checking until the end of the session. Compute MACs =
h(Tu||Ts||a′i) and session key Ks = h((Tu||Ts)⊕ a′i). Then, send the message
(Tu, Ts,MACs) back to Ui.

On receiving the message (Tu, Ts,MACs) from the server, the smart-card
performs the following steps to authenticate the server, achieves a session key
agreement, and answers to the server.

1. Check if the received Tu is equal to the stored Tu to assure the freshness of
the received message. If is not, report login failure to the user and stop the
session.



2. Compute MAC ′
s = h(Tu||Ts||ai) and check whether it is equal to the received

MACs. If not, report login failure to the user and stop. Otherwise conclude
that the responding party is the real server.

3. Compute MAC ′′
u = h(Ts||ai +1) and session key Ks = h((Tu||Ts)⊕ai), then

send the message (Ts,MAC ′′
u) back to the server.

When the message (Ts,MAC ′′
u) from Ui is received, the server performs the

following steps to authenticate Ui and achieve key agreement:

1. Check if the received Ts is equal to the stored Ts. If it fails reject U ′
i login

request and stop the session.
2. Compute MAC ′′′

u = h(Ts||(a′i+1)) and check whether this is equal to MAC ′′
u .

If it is not, reject Ui’s login request and stop the session. Otherwise, Ui is a
legal user and Ui’s login is permitted. At this moment, mutual authentication
and session key agreement between Ui and the server are achieved.

3 Our scheme

In this section, a new protocol adapted to RFID systems and resistant to passive
and active attacks (inspired in Shieh et al.’s protocol) is proposed. First, we will
mention some peculiarities of RFID systems which should be considered in the
new design. These will force changes in the protocol, which will be presented
next.

In Shieh et al.’s protocol, when the user wants to login in the server “he
first inserts the card into a card-reader...”. In a RFID system, tags (T ) will be
equivalent to smart-cards and readers to card-readers, respectively. Note RFID
readers (R) are assumed to be connected to back-end databases (B) over a secure
channel. Additionally, both devices have “non-limited” computing and storing
capabilities. In the following, when we refer to a RFID reader an entity composed
by a reader and a back-end database is considered.

However, there are significant differences between smart-card and RFID sys-
tems. RFID technology operates through the radio channel, so communication
could be eavesdropped. Another particularity is the asymmetry of the commu-
nication channel, which allows monitorization of the forward channel (reader-
to-tag) from a much longer distance than the backward channel (tag-to-reader).
Smart-cards are usually tamper resistant devices, which is not the case of RFID
tags. Furthermore, when then smart-card is inserted in the reader an user in-
tervention is necessary, entering his identity and password. In RFID technology,
however, interactions between tags and readers are automatic.

Taking into account all these considerations, Shieh et al’s scheme has been
adapted. Our proposed scheme consists on two phases: the registration phase,
and the mutual authentication and index-pseudonym update phase. The follow-
ing symbols have been used:

xi: secret key maintained by the reader Nz: random number generated by z
h(): secure one-way hash function ⊕: exclusive-or operation
||: string concatenation operation



(1) R → Ti: hello
(2) Ti → R: h(NTi

||IDSn
i ), NTi

, MACTi
(3) R → Ti: NR, MACR

(4) Ti → R: MAC′′
Ti

(5) R → Ti: MUCR

Database Record-Tagi

IDSnew
i IDi xi PWi

IDSold
i

NTi
NR

ai = h(IDi ⊕ xi) MACTi
= h(NTi

||ai)
MACR = h(NTi

||NR||a′
i) MAC′′

Ti
= h(NR||(ai + 1))

MUCR = h((NTi
⊕NR)||IDSnew

i )

IDSn+1
i

= h((NTi
||NR)⊕ ai ⊕ IDSn

i )

Tag Memory

IDSn
i NTi

NTR

ai

RAM

Static Identifier - ID
MRC

Fig. 2. Messages transmitted in our protocol

3.1 Registration phase

The user or holder of the tag submits his static identifier IDi
1 and a freely

chosen password PWi to the reader over a secure channel for registration. If the
request is accepted, the reader generates a random index-pseudonym IDS0

i and
computes ai = h(IDi⊕xi).1 The tag will replace its identifier IDi by IDS0

i and
store ai. The IDSn

i will be used as searching-index of a database in which all
the sensitive information (IDi, xi, PWi) and the temporary data session (NTi ,
NR) associated with each tag are stored. IDSnew

i and IDSold
i are initially set to

IDS0
i . The password PWi will be used by the holder of the tag (over a secure

channel) to temporarily deactivate the tag. In this case, ai will be replaced by
Ri = ai ⊕ PWi.

3.2 Mutual authentication and index-pseudonym update

The messages interchanged in our scheme are shown in Fig. 2. First, the reader
usually applies a probabilistic (ie. Aloha-based algorithm) or determinist (ie.
Binary tree-walking protocol) collision avoidance protocol to singulate a tag out
of many [9]. Upon singulation condition, the reader will send a “hello” message

1 A 64-bit length identifier is compatible with all the encoding schemes (SGTIN, SSCC,
GLN, etc) defined by EPCGlobal [14]. Due to this reason, we assume that tag static
identifier (IDi), and index-pseudonyms (IDSn

i ) are 64-bit length. Additionally, the
secret key xi is xored with IDi to compute ai, so xi length is also set to 64-bits.



to the tag. To start the mutual authentication, the tag accomplishes the following
steps:

1. Generate a random number NTi
2, and store NTi temporarily until the end

of the session.
2. Compute h(NTi ||IDSn

i ), and MACTi = h(NTi ||ai).
3. Send message (h(NTi

||IDSn
i ), NTi

, MACTi
) to the reader and wait for re-

sponse.

Once the previous message is received, its integrity is checked and the reader
answer includes a challenge to avoid replay attacks:

1. Check the newness of NTi
. If NTi

has already come out in a current mutual
authentication, the protocol is stopped in this point. Otherwise NTi

is fresh.
2. Compute p′ = h(NTi

||IDSnew
i ) and p′′ = h(NTi

||IDSold
i ) and check wether

any of the two values is equal to the received h(NTi
||IDSn

i ). The above
procedure is repeated for each entry (row) in the database until a match is
found. If not found, the protocol is stopped at this point.

3. Compute a′i = h(IDi ⊕ xi), MAC ′
Ti

= h(NTi
||a′i), and check if it is equal to

MACTi
. If not, the protocol is stopped and a check over tag deactivation is

taken by computing R′
i = a′i ⊕ PWi, MAC ′

Ti
= h(NTi ||R′

i) and verifying if
it is equal to MACTi

. A match will imply that the tag has been deactivated
temporally by its holder.

4. Acquire a fresh random number NR.2 For avoiding replay attacks, the pair
(NTi

, NR) is stored until the end of the session.
5. Compute MACR = h(NTi ||NR||a′i). Then, send the message (NR, MACR)

back to the tag and wait for response.

After receiving the message (NR, MACR), the following steps are accom-
plished to authenticate the reader, achieve new material to update the index-
pseudonym, and finally answer to the reader:

1. Compute MAC ′
R = h(NTi ||NR||ai) and check if its value is equal to the

received MACR. If not, stop the protocol at this point. Note that the newness
of this message is guaranteed by NTi

. For preventing loss of synchronization
attacks, NR is also stored in the tag.

2. Compute MAC ′′
Ti

= h(NR||(ai + 1)) and send it back to the reader.

When the message MAC ′′
Ti

is received, the reader computes MAC ′′′
Ti

=
h(NR||(a′i + 1)) and checks whether it is equal to MAC ′′

Ti
. If not, the protocol is

stooped. At this point, both the reader and the tag have mutually authenticated.
Additionally, both possess two nonces (NTi

, NR), which have been interchanged.
Shieh et al. proposed using this fresh material to establish a session key agree-
ment. In our case this material is employed to update the index-pseudonym.
Obviously, the tag and reader have to be synchronized.
2 Tags conforming with EPC Class-1 Gen-2 specification support a 16-bit PRNG [15].

We suggest that 32-bit PRNGs should be supported on low-cost RFID tags, as
mentioned in [16, 17]. So, 32-bit length could be an adequate value to NTi and NR.



The glib solution for the synchronization problem will be to update the
index-pseudonym in the tag when message 4 is sent, and this updating will
be performed in the reader when checking this message. Under this scenario an
attacker (active attack) could intercept message 4 avoiding the update of the
index-pseudonym in the reader with the consequently losing of synchronization.
A naive solution will consist on assuming that after the end of the protocol, com-
pletion messages are sent between the involved entities. However, these messages
could be also intercepted. Additionally, note that tags are much more constrained
devices than readers. For this reason, a new message 5 has been added to the
protocol (Message Update Code - MUC), and readers will have to store the old
and the new index-pseudonym to prevent the interception of this message. To
complete the protocol, the following steps are performed by the reader:

1. Store the current session index-pseudonym IDSold
i = IDSnew

i to avoid de-
synchronization attacks.

2. Compute the new index-pseudonym IDSnew′

i = h((NTi ||NR)⊕a′i⊕IDSnew
i ).3

3. Compute MUCR = h((NTi
⊕NR)||IDSnew′

i ) and send it to the tag, including
the two nonces interchanged between reader and tag and the new index-
pseudonym.

When the message MUCR is received from reader, the tag accomplishes
the following steps to verify a successfully index-pseudonym update has been
performed in the reader:

1. Compute the potential-new index-pseudonym IDSn+1
i = h((NTi ||NR)⊕ai⊕

IDSn
i ).3

2. Compute MUC ′′
R = h((NTi ⊕ NR)||IDSn+1) and check whether MUC ′′

R is
equal to MUCR. If this is the case, update the index-pseudonym.

4 Security analysis

The robustness of the proposed protocol against the main important attacks is
analyzed in the following.

1. User Privacy
Tag IDi must be kept secure to guarantee user’s privacy. In order to protect
it, both the tag’s memory and the radio channel have been taken into ac-
count. In the registration phase, the static identifier IDi and the password
PWi are submitted to the reader over a secure channel. To avoid radio ac-
cess to the static identifier, IDi is replaced by the hash of IDi ⊕ xi. Note,
xi is a secret key only known by the reader. Additionally, and similarly to
what happens in e-passports, we recommended the IDi to be printed as a

3 If tags support on board the proposed Tav-128 hash function, ai’s length will be
fixed to 128-bits (ai = h(IDi ⊕ xi)). In this case, we suggest the following update

equation: IDSnew′
i = h((NTi ||NR) ⊕ a′

i[0:63] ⊕ a′
i[64:127] ⊕ IDSnew

i ).



machine-readable code as illustrated in Fig. 2. In the radio channel, the value
of IDSn

i is protected by the use of a secure one-way hash function h(). In
the same way, ai can not be derived from the messages authentication codes
MACTi , MACR and MAC ′′

Ti
.

2. Location Privacy
The secure protection of tag information does not ensure location privacy.
Constant answers would allow an attacker to identify each tag with its
holder. To protect the index-pseudonym, only its hash is transmitted. As
the index-pseudonym is not updated until the completion of the protocol,
and the protocol may be accidentally or intentionally interrupted, the hash
of the IDSi concatenated with nonce NTi

is really sent. Similarly, ai is
anonymized by means of the use of message authentication codes where a
kind of challenge-response nonces are included. Finally, sending the message
update code MUCR = h((NTi

⊕ NR)||IDSn+1), the new index-pseudonym
is hidden. So, in order to avoid tracking, all the information is anonymized.

3. Data Integrity
Based on the use of a mutual authentication approach, our protocol guaran-
tees data integrity between tag and reader. On the other hand, tag’s memory
is rewritable so modifications are possible. In this memory, both ai and the
index-pseudonym IDSn

i are stored. If an attacker does succeed in modifying
this part of the memory, the reader would not recognize the tag, having to
carry out the registration phased again (see Sect. 3.1 ).

4. Mutual Authentication
Due to the fact that both tag and reader authenticate each other, by means
of message authentication codes MACR and MAC ′′

Ti
, mutual authentication

is accomplished. These message authentication codes include ai, a secret only
shared between them, preventing any other to create correct MACs, and in
this way guaranteeing the legitimacy of each part. Therefore, it is infeasible
for a fraudulent reader or tag to impersonate another entity.

5. Replay Attack
Our protocol is based on a challenge-response scheme, so replay attacks are
prevented because challenges are different each time and long enough to
prevent attacks based on storing them. In our scheme, any replay attack will
not be able to correctly answer the challenges that form part of the protocol.
In message 2, tag sends (h(NTi ||IDSn

i ), NTi , MACTi) where a nonce NTi

is included. Therefore, the reader must include NTi in the answer message,
so in message 3 the reader sends (NR, MACR = h(NTi

||NR||a′i)), including
not only the response nonce NTi

but also a challenge nonce NR. Then, tag
sends MAC ′′

Ti
= h(NR||(ai + 1)) back, including NR, to the reader. So, only

legitimate parties (reader+tag) can send valid answers as challenge nonces
are joined with the message authentication codes requiring the knowledge of
ai.

6. Forgery Resistance
All the sensitive information stored in the tag (IDSn

i , ai) is never sent in
clear in the communication channel. In all cases, this information is concate-



nated with a nonce and hashed before passed on the channel. Therefore, the
simple copy of information by eavesdropping is not useful to an adversary.

7. Active Attacks
(a) Man-in-the-middle attack: If an attacker tries to impersonate a legiti-

mate reader to obtain information from a tag, perhaps to be able to
impersonate it in a future. This kind of attack is not feasible because
all messages include a message authentication code, which requires the
knowledge of the secret ai shared only between the tag and the reader. In
the previous scenario, the fraudulent reader will not be able to generate
message 3, so the capture of the message 4 sent back by the tag will be
a vain attempt. Moreover, in future sessions, a new challenge would be
used by the reader preventing any advantage from knowing old messages.

(b) Parallel session: Because of the asymmetric structure of the message
authentication codes MACTi

= h(NTi
||ai) and MAC ′′

Ti
= h(NR||ai + 1)

this attack fails. Another important point is that both reader and tag
store the session nonces, NTi

and NR.
(c) Synchronization loss: The tag updates the index-pseudonym only when

the message update code (MUC) is received. An attacker could interrupt
this message, trying to de-synchronize reader and tag. To avoid this
sort of attack, each time the reader updates the index-pseudonym, the
old index-pseudonym is still maintained. Under the interception of the
MUC from the reader, the tag will use the old index-pseudonym to build
h(IDSn

i ||NTi
). When the reader checks its integrity, it first will try with

the new index-pseudonym, and if it fails, then he will try with the old
index-pseudonym. Next, the rest of the protocol will be accomplished
ensuring the recovery of a synchronization loss.

5 Hash-Function

Traditional cryptographic primitives excess the capabilities of low-cost RFID
tags. The required hardware complexity of these devices may be weighted up by
its circuit area or the number of equivalent logic gates. At most, around 4K gates
are assumed to be devoted to security-related task [5]. The best implementation
of SHA-256 requires around 11K gates and 1120 clock cycles to performing a
hash calculation on a 512-bit data block [18]. As the number of needed resources
are quite higher than those of a low-cost RFID tag, it may seem natural to
propose the use of another smaller hash functions. However, functions such as
SHA-1 (8.1K gates, 1228 clock cycles) or MD5 (8.4K gates, 612 clock cycles) can
not be fitted either in a tag [18]. Recently, some authors suggest the usage of a
“universal hash function” [19]. Although this solution only needs around 1.7K
gates, a deeper security analysis is needed and has not yet been accomplished.
Furthermore, this function has only a 64-bit output, which does not guarantee
an appropriate security level because finding collisions is a relatively easy task
due to the birthday paradox (around 232 operations). For this reason, we propose
a 128-bit hash function named Tav-128 that can be fitted in low-cost RFID tags
and provides a suitable security level for most applications.



5.1 Tav-128 Security analysis

Some of the recent cryptanalytic attacks on many of the most important hash
functions [20, 21] rely in the fact that these constructions generally use a very
linear (LFSR-based) expansion algorithm. In order to avoid this, we have decided
to make the expansion of the Tav-128 hash function (corresponding to algorithms
C and D in the code shown in the Appendix A) highly nonlinear. As, on the
other hand, the resulting function should be very efficient and lightweight both
from the gate count and the throughput point of view, we have found these
functions by evolving compositions of extremely light operands by means of
genetic programming, as described in [22].

We have also tried to include a filter phase (corresponding to algorithms A
and B in the Appendix A) in the input of the Tav-128 function, in order to avoid
the attacker to have direct access to any bit of the internal state. Not having this
possibility, some attacks that have been found on other cryptographic primitives
in the past are precluded. So, decreasing the control the attacker has over the
hash functions inputs significantly complicates his task.

An output length of 128 bits was found to be a reasonable compromise be-
tween speed and robustness to realistic attacks in the intended scenarios. Addi-
tionally, we propose the use of eight rounds in the internal loop (r2 parameter)
for having and adequate security margin, though we have found that even with
six rounds (which will significantly improve its performance) the overall scheme
seems to be secure.

We have performed an additional security analysis of Tav-128, consisting on
examining the statistical properties of its output over a very low entropy input.
Specifically, 225 32-bit inputs have been generated by means of an incremental
counter (x, x+1, x+2, etc). After randomly initializing (with values obtained
from http://randomnumber.org) the internal state and the accumulated hash
a0 value, we compute the output of Tav-128 for each counter value input (Tav(x),
Tav(x+1), Tav(x+2), etc). The resulting hashes have been analyzed with two
well-known suites of randomness tests, namely ENT [23] and DIEHARD [24].
The results are presented in Tables 1 and 2 (see Appendix A). Tav-128 also
passed the very demanding -because it is oriented to cryptographic applications-
NIST [25] statistical battery. We have computed 100 p-values for each test, being
all the results compatible with a uniform U(0, 1). The whole report is available in
http://163.117.149.137/tav/ due to the huge amount of p-values generated.

Authors acknowledge that successfully passing these statistical batteries,
even over a very low-entropy input, does not prove security, but we believe
that it points out the nonexistence of trivial weaknesses.

5.2 Hardware Complexity

One of the most relevant aspects considered in the design of Tav-128 was the sort
of operations that can be employed. As tags are very restricted computationally,
only simple operations have been used. For example, multiplication has been
ruled out due to its high cost [26]. Concretely, the following operators have



been finally used: right shifts, bitwise xor, and addition mod 232. The necessary
architecture to implement Tav-128 can be divided in two main blocks:

– Memory blocks. All the used variables are stored in this part: state (128-
bits), accumulated hash a0 (32-bits), internal variables h0 (32-bits) and h1
(32-bits), and the input a1 (32-bits).

– Arithmetic logic Unit. In this unit the addition mod 232 and the bitwise
xor operation are implemented. As the h0 and h1 functions consist of three
or more components, an auxiliary register to store the intermediate results
is necessary.

Although we have not implemented Tav-128 in hardware, an overestimation
of its gate counting can be easily obtained. The function bitwise xor requires
32 logic gates as we are operating with 32-bit variables. For implementing the
add with carry circuit, a parallel architecture is proposed. Six logic gates are
needed for each bit added in parallel.4 The registers will be implemented by
means of flip-flops. A gate count of 8 has been chosen for implementing a flip-
flop as in [27]. So, 2304 logic gates are necessary to store the memory block and
the auxiliary register. Additionally, around 50 extra logic gates are employed to
control the internal state of the hash function. Therefore, 2578 logic gates are
needed for implementing Tav-128.

Another key aspect to consider is throughput. We reckon that 1568 clock
cycles are needed for executing one Tav-128 hash. Due to the fact that low-
cost RFID tags imply serious powers restrictions, we assume that the clock
frequency is set to 100 KHz. Under this conditions, the throughput obtained
by a tag that would have on-chip Tav-128 will be around 65 hashes/sec. It is
generally accepted that at least between 50-100 tags should be authenticated
per second [28]. In order words, a tag may use up at the most 2000 clock cycles
(@100Khz) to answer a reader. In some applications 65 hashes/sec may not be
enough, so we have analyzed how to increment the speed of Tav-128. In the
initial proposed scheme (see Appendix A), we have a parameter (r2), which fits
the number of rounds computed in the C and D algorithms. This parameter has
been initially fixed to eight rounds in order to guarantee a high avalanche effect.
After accomplishing a deeper study, we have determined that r2 may be reduced
to six rounds. So, the speed of the tag will be incremented in a 25% or in other
words, the tag may compute around 80 hashes/sec. Note that for non-high speed
demanding applications, we recommend to fix r2 to eight rounds.

6 Conclusions

Since 2002, there has been a great number of publications concerned with the
security of RFID technology. In the majority of those proposals, the security
objectives are focused on privacy, tracking, counterfeiting, etc. All this kind of
attacks are passive, but active attacks can not be ruled out in many scenarios.

4
S = A⊕ [B ⊕ CENT ] CSAL = BCENT + ACENT + AB



A new protocol not only resistant to standard passive attacks but also resis-
tant to active attacks is proposed. Another interesting property is that tags can
be temporally deactivated without data loss. Instead of beginning from scratch,
we have tried to avoid past errors in the designing of our protocol. RFID technol-
ogy has similarities with other technologies such as wireless, bluetooth, smart-
card, etc. Indeed, we focused our attention to smart-card, which is a mature
technology. Concretely, we spotlight on remote authentication protocols, which
started to be developed in 1980. During years many researchers have been work-
ing in order to propose more secure and efficient schemes. Recently, Shieh et al.
have proposed a new scheme that can be considered one of the most secure and
efficient protocols. For this reason we decide to propose a new protocol for RFID
systems inspired in Shieh et al.’s protocol.

The proposed protocol is based on the use of a secure hash function. As
traditional cryptographic primitives such as SHA-256 or MD5 lie well beyond the
capabilities of low-cost RFID tags, a new hash function (Tav-128) is proposed.
Tav-128 can be implemented with only around 2.6K gates, and 1568 cycles (1248
if r2 parameter is set to six). Therefore, Tav-128 can be fitted in a real low-cost
RFID tags. Although further security analysis of the new hash function is needed,
this preliminary analysis seems to point out that it gives an adequate security
level for the intending application (mutual authentication of low-cost tags). To
conclude, although this hash function constitutes a great advance, as a future
work we plan to design a new version where the number of processing cycles was
reduced without incrementing the number of logical gates.
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APPENDIX A

A Hash Tav-128 Ansi C & Statistical Tests

/*********************************************/
Process the input a1 modifying the
accumulated hash a0 and the state
/************************************************/
void tav(unsigned long *state, unsigned long
*a0, unsigned long *a1)

{
unsigned long h0,h1;
int i,j,r1,r2,nstate;

/* Initialization */
r1=32; r2=8; nstate=4;
h0=*a0; h1=*a0;

/* A - Function */
for(i=0;i<r1;i++){h0=(h0<<1)+((h0+(*a1))>>1);}
/* B - Function */
for(i=0;i<r1;i++){h1=(h1>>1)+(h1<<1)+h1+(*a1);}

/* C and D - Function */
for(j=0;j<nstate;j++) {
for(i=0;i<r2;i++)

{
/* C - Function */
h0^=(h1+h0)>>3;
h0=((((h0>>2)+h0)>>2)+(h0<<3)

+(h0<<1))^0x736B83DC;
/* D - Function */
h1^=(h1^h0)>>1;
h1=(h1>>4)+(h1>>3)+(h1<<3)+h1;
} // round-r2
state[j]+=h0;
state[j]^=h1;

} // state

/* a0 updating */
*a0=h1+h0;

}

/*********************************************/
Initialization of the state and a0 with
random values obtained from www.random.org
/************************************************/
void init state(unsigned long *state, unsigned
long *a0)

{
state[0]=0xa92be51d;
state[1]=0xba9b1ef0;
state[2]=0xc234d75a;
state[3]=0x845c2e03;

a0[0]=0x768c7e74;
}

Table 1. Results obtained with ENT

Test Tav-128

Entropy 7.999999 bits/byte

Compression Rate 0%

χ2 Statistic 269.73 (50%)

Arithmetic Mean 127.4993

Monte Carlo π estimation 3.14178848 (0.01%)

Serial correlation coefficient -0.000073

Table 2. Results obtained with the
Diehard suite

Tav-128

Test p-value

Birthday Spacings 0.725

0.868

GCD 0.229

0.138

Gorilla 0.779

Overlapping Permutations 0.823

0.849

0.349

0.897

0.939

Ranks of 31×31 and 32×32 Matrices 0.556

0.241

Ranks of 6×8 Matrices 0.315

Monkey Tests on 20-bit Words 0.312

Monkey Test OPSO, OQSO, DNA OK

Count the 1’s in a Stream of Bytes 0.473

Count the 1’s in Specific Bytes OK

Parking Lot Test 0.235

Minimum Distance Test 0.580

Random Spheres Test 0.912

The Squeeze Test 0.487

Overlapping Sums Test 0.106

Runs Up and Down Test 0.147

The Craps Test 0.3211

0.067

0.775

0.261

Overall KS p-value 0.826


