
Obligations for Privacy and Confidentiality in

Distributed Transactions

U.M.Mbanaso
1
, G.S. Cooper

1
, David Chadwick

2
, Anne Anderson

3

1Informatics Research Institute (IRIS), University of Salford, UK
2Computing Laboratory, University of Kent, UK

3Sun Microsystems Inc, Burlington MA USA

Abstract. Existing access control systems are typically unilateral in that the

enterprise service provider assigns the access rights and makes the access

control decisions, and there is no negotiation between the client and the service

provider. As access management systems lean towards being user-centric,

unilateral approaches can no longer adequately preserve the user’s privacy,

particularly where the communicating parties have no pre-existing trust

relationships. Establishing sufficient trust is therefore essential before parties

can exchange sensitive information. This paper describes a bilateral symmetric

approach to access control which deals with privacy and confidentiality

simultaneously in distributed transactions. We introduce the concept of

Obligation of Trust (OoT) as a privacy assurance mechanism that is built upon

the XACML standard. The OoT allows communicating parties to dynamically

exchange their privacy requirements, which we term Notification of Obligations

(NOB) as well as their committed obligations, which we term Signed

Acceptance of Obligations (SAO). We describe some applicability of these

concepts and show how they can be integrated into distributed access control

systems for stricter privacy and confidentiality control.

1. Introduction

Trends in emerging access management systems raise an interesting paradox. On the

one hand, service providers’ applications require identity/attribute related information

in order to validate a user’s request. On the other hand, users may not wish to disclose

their information or attributes to a remote Service Provider (SP) without determining

in advance whether the service provider can be trusted to comply with their privacy

preferences. Conventionally, privacy is often considered from the users’ perspective,

just as access control is considered from the SP’s standpoint. That is, the user is

concerned about the confidentiality of their personal identifying information (PII),

and the resource provider is concerned about the confidentiality and integrity of the

resource information. These assumptions have resulted in unilateral asymmetric

approaches. Yet the SP may also have sensitive attributes such as membership

certificates of consortia, or trust relationships with third parties (TTPs) or policies of

various kinds that a resource user may demand to see before releasing their PII. This

suggests a symmetrical approach may be more appropriate, and has led to the research

topic called trust negotiation where each party’s attributes are released incrementally

to the other, as trust is established between them [1]. In B2B transactions, both parties

may require the dynamic exchange of service level agreements (SLA) or business

level agreement (BLA) in order to assess the mutual benefits and associated risks.

This may also require the establishment of trust and a guarantee of compliance to

agreed business rules. One way to achieve this is for each party to issue to the other a

proof of acceptance of the requirements contained in the SLA or BLA. Enabling the

runtime exchange of these requires a bilateral symmetric approach to allow the

communicating parties to indicate their willingness to accept constraints imposed by

the other party, before the latter is prepared to reveal their sensitive information.

There is therefore some overlap between user privacy requirements and business

requirements.

To address confidentiality and privacy problems simultaneously and

symmetrically, the parties in distributed transactions should have a standard means of

declaring their privacy requirements and the respect they will give to the other party’s

privacy requirements before sharing their resources. All parties need to evaluate the

risk of giving out their PII and determine the degree to which they are prepared to

trust the other participating actors. They will need to identify any constraints and

obligations they may wish to place on the others. Trust negotiation [1] has been

proposed to address this dilemma, but as will be pointed out later it has its limitations.

We therefore approach the subject of resources control in a slightly different manner.

We propose a technical solution that derives its concepts from well established

standards. We describe the concept of an Obligation of Trust (OoT) protocol, whereby

two parties can exchange difficult-to-repudiate1 digitally signed obligating constraints

(or Notification of Obligations (NOB) which detail their requirements for sending

their sensitive information to the other party), and proof of acceptances (or Signed

Acceptance of Obligations (SAO), which acknowledge the conditions they have

accepted for receiving the other party’s sensitive information). The OoT protocol

provides the negotiating mechanism for carrying obligating constraints and proof of

acceptances between security domains. Being signed, they help the communicating

parties to produce difficult-to-repudiate technical evidence in the event of disputes.

The OoT protocol also provides a mechanism for dynamically exchanging other

obligating documents such as service level agreements (SLAs), business level

agreements (BLAs), contractual documents, etc. In effect, the OoT protocol merges

technical solutions (mechanical exchange and matching, digital signature) with

potential social/judicial solutions (non-repudiation, technical legal recourse). The rest

of this paper is structured as follows. Section 2 describes related research. Section 3

presents the OoT protocol as well as how matching of obligation constraints and proof

of acceptances is achieved. Section 4 describes the system architecture of a reference

engine and its core subsystems, which we are currently constructing. In section 5, we

provide an example use of the model and section 6 concludes the paper.

1 We use the term “difficult-to-repudiate” rather than non-repudiation, since repudiation is a

legal issue that has to be determined in a court of law. The technical constructs proposed in

this paper should make it more difficult for an entity to repudiate their actions.

2. Related Research

The Platform for Privacy Preferences (P3P) [2] is one approach that attempts to

address privacy in commercial service provider (SP) websites. Whilst it has provided

some degree of privacy awareness, it has not particularly addressed privacy concerns

in distributed access control systems. The fact that P3P is widely implemented by

most websites and processed by compliant user-agents by comparing the P3P policy

statement against an APPEL [3] statement that describes the user’s privacy

preferences is beneficial. By contrast, in distributed access control systems, SPs don’t

usually convey their privacy policy statements to the service users during access

request. Even if a user in a distributed access control system retrieves the remote P3P

policy, the policy may not necessarily meet the user’s preference. Thus, the user may

abort the service or continue without the choice for further negotiations. Also P3P

doesn’t support provider-side requirements; the SP may have some privacy

constraints that require enforcement at the client’s side. The main components of a

P3P privacy statement include the recipient of the data, the purpose for which that

data is requested, the retention period at the collector’s store, and the data category. It

can include other components such as disputes and remedies, as well as whether

disclosure to third parties is allowed. Though P3P covers most of the basic principles

of privacy [4], the fact that it has not satisfactorily resolved the requirements for

bilateral privacy negotiation [5] limits its use in access control.

Shibboleth [6] from Internet2 provides a mechanism for federated access

management based on the SAML security standard [7]. Shibboleth provide single sign

on (SSO) and a mechanism for an IdP in one security domain to securely convey

attributes about a web-browsing user to a SP in another security domain. In

Shibboleth, privacy is addressed in two ways. Firstly, after the user authenticates to

the IdP, the Shibboleth authentication service generates a one time handle to identify

the user and transmits this to the SP. Secondly, the IdP uses Attribute Release Policies

(ARP's) to decide whether to release specific attributes to the SP or not. This is fine as

long as the remote site doesn’t require any identifying attributes to complete the

service. But this is unlikely to be the case in most transaction scenarios. Furthermore,

the Shibboleth infrastructure doesn’t provide any support for bilateral negotiation of

service parameters. If the user doesn’t provide the requested attributes, access to the

services is unilaterally denied. Another significant privacy flaw is that the ARP is

coarse and doesn’t support most of the known privacy principles [4].

ID-WSF from the Liberty Alliance is an open standard for federated identity

management that is built upon the extensibility of SAML security assertions [7]. It

provides a framework for the discovery and communication of identity information

among federated domains. When a client authenticates to an IdP, a SAML-based

assertion handle (SSO) is generated and communicated to a relying party or SP with

optional information which the relying party may use to call-back the user’s IdP. The

ID-WSF framework provides a flexible security model for a highly distributed set of

IdPs.

Microsoft, IBM and VeriSign have been working on a set of specifications (called

"WS-Security roadmap" or "WS-Identity Policy Framework") for their next

generation platform of Web services. The WS-Policy suite of policies, which includes

Security Policy, Reliable Messaging Policy, etc. are not designed primarily for

implementing access control. They are predominantly designed to enable Services to

advertise what requirements (especially authorization requirements) a requesting party

must satisfy in order to use the services. The idea is that a requesting party can

consider what it is willing and able to accept, before sending attributes that can satisfy

the requirements. However, WS-policies do not necessarily provide a means to

enforce access control policies since typically they are not to be consumed by Policy

Decision Points (PDPs).

One approach that addresses bilateral access control is the Automatic Trust

Negotiation (ATN) technique [8, 9]. ATN introduces a trust negotiation layer for

symmetrical interactions. Research efforts in this area have developed advanced ATN

techniques to cover a variety of scenarios [10] [11] [12]. Recent initiatives in

preserving privacy [13, 14] also favour the use of negotiation techniques for solving

privacy problem. ATN is an access control technique that permits the gradual release

of policies and credentials so that trust can be incrementally increased until the

communicating parties are sufficiently satisfied of each others trustworthiness to send

all their confidential information. However, ATN doesn’t provides mechanisms

whereby the relying party can convey proof of acceptance for obligating constraints -

assurance that the attributes contained in the assertions will be used in accordance

with the party’s privacy preferences. Recent work in this area by Spantzel et al [15]

introduces a framework that integrates ATN with Identity Management Systems

(IdM). Based on their comparison of ATN and IdM systems, it shows that ATNs have

not truly explored access security standards such as XACML, SAML, etc which may

limit their practical implementation.

To the best of our knowledge, none of the above systems provides a mechanism for

the remote enforcement of privacy obligations. So there is uncertainty that the

receiving party will adhere to them. Further, the receiving party may not accept any

liability if the sender’s PII is compromised. Without privacy assurances there is the

possibility that the receiving party may even misuse the sender’s PII without any form

of liability. Privacy negotiation will provide a mechanism that relies less on trusted

external third parties and more on the communicating parties themselves. Privacy is

governed by laws, legislation and principles requiring that privacy solutions should

provide tenable difficult-to-repudiate technical evidence in the case of a privacy

dispute. Consequently, there is a need to provide a mechanism for providing tamper-

proof technical evidence that may be used in the event of disputes when parties do not

conform to their commitments. One approach to achieve this is to provide a protocol

to enable participating parties to exchange digitally signed commitments. We

acknowledge that a technical “non-repudiable signature” on its own may not be

sufficient evidence for a court of law since other factors also contribute to a digital

signature being legally non-repudiable, such as: how much active participation the

user had in deciding to sign, how free the user is to use the signed-for sensitive

information, whether the software automatically generated the signature, and how

complex the signed agreement is. However, these legal issues are not within the scope

of the current paper. We consider the technical issues only that will help to provide

difficult-to-repudiate evidence.

3. Obligation of Trust (OoT) Protocol

Obligation of Trust is a protocol that defines a standard mechanism enabling two or

more communicating parties to exchange obligating constraints as well as proof of

acceptances. The basic concept is built upon the assumption that a requesting party

has no means of enforcing obligations placed on a remote party. In traditional access

control systems, an obligation is an action that should be performed by a Policy

Enforcement Point (PEP) in conjunction with the enforcement of an access control

decision [13]. XACML [16] describes an Obligation element as a set of attribute

assignments, with an attribute FulFillOn which signifies whether the consuming PEP

must fulfill the obligation if the access control decision is “Permit” or “Deny”. When

a Policy Decision Point (PDP) evaluates a policy containing obligations, it returns the

access control decision and set of obligations back to the PEP. However, in a

distributed environment the SP’s PEP is unlikely to be in the same security domain as

the service requestor; therefore there is no guarantee that any obligations required by

the requestor can either be incorporated into the policy used by the SP’s PDP, or even

if they can, be enforced by the SP’s PEP. Given this, it makes sense to address the

remote enforcement of obligations by allowing a SP to convey back to the requestor

an acceptance or rejection of their obligating constraints. The OoT protocol addresses

this interaction. We divide the OoT protocol into two steps: Notification of Obligation

(NOB) (which may be signed or unsigned) and Signed Acceptance of Obligation

(SAO) (which must be signed). The OoT protocol is symmetric. An initiating party

sends a NOB outlining the obligating constraints it is placing on the other party and

the commitments it is willing to make if the other party accepts its obligations. The

other party, after evaluation, sends back either a signed acceptance (SAO) of the

constraints it accepts and the commitments it requires, or initiates more service

negotiations with its own NOB, or rejects the request and terminates the session.

Because the NOB and SAO are constructed using standard XACML obligations

elements, both communicating parties have a common language for expressing their

requirements and commitments, and are able to feed these obligations directly into

their PDPs for automatic decision making, and ultimate enforcement by their

respective obligations services.

OoT Encoding Scheme

The Web Services Profile of XACML (WS-XACML) [17] describes a way for

carrying XACML policies between communicating parties. WS-XACML specifies

formats for four information types:

• an authorization token or credential for carrying an authorization decision across

realms,

• a policy assertion type that is based on XACML elements which can embed WS-

Policy or other XML constructs,

• ways to wrap P3P policy preferences and match them using XACML assertions,

and

• XACML Attributes in SOAP Message Headers in such a way that they can be

authenticated as having been issued by a trusted authority.

The WS-XACML Assertion Type is an abstract framework that describes an

entity’s Web Service’s policy in the context of different policy domains, such as

authorization or privacy domains. The name of the Assertion’s element indicates the

domain to which it applies, such as XCMLPrivacyAssertion for the privacy domain

and XACMLAuthzAssertion for the authorization domain. The

XACMLPrivacyAssertion deals with privacy specific Assertions which can carry

Requirements i.e. what the asserter requires of the other party, and Capabilities i.e.

what the asserter is willing and able to do for the other party if its Requirements are

satisfied. The inner box in Figure 1 depicts the WS-XACML model which defines an

XACMLAssertionAbstractType. This allows constraints on a policy vocabulary to be

expressed as XACML Apply functions. The XACMLAssertion contains two sets of

constraints as shown in figure 1. The first set, called Requirements, describes the

information or behavior that the policy owner requires from the other party. The

second set, called Capabilities, describes the information or behavior that the policy

owner is willing and able to provide to the other party. One instance of this type is the

XACMLPrivacyAssertion whose Capabilities element describes the Obligations that

are being accepted and the information that will be provided. The Requirements

element specifies the Obligations that the sender requires of the other party in order to

proceed.

Using the built-in extensibility mechanism of WS-XACML and SAML Assertions,

we can conveniently encode the components of the OoT protocol as extensions of

standard elements. The NOB can be expressed as an instance of a

XACMLPrivacyAssertion in which the desired obligating constraints are placed in the

Fig. 1. SAML Obligation Of Trust Model

Requirements section of the Assertion, and any obligations that the sender is willing

and able to fulfill in the Capabilities section. The SAO can be expressed as an

instance of a XACMLPrivacyAssertion in which the Requirements section specifies

the sender’s understanding of what the recipient has committed to do and the

Capabilities section specifies the obligations that the sender has committed to

undertake. By signing the SOA the signer is stating in a difficult-to-repudiate form

their commitment to fulfill the Obligations contained in the Capabilities element, so

long as their Requirements are satisfied. Figure 1 shows the extensions of WS-

XACML and SAML that map into our Obligation of Trust model. The OoT schema is

available at [18], but basically it defines a new SAML protocol request type (the

Obligation of Trust Query Type) and a new SAML statement type (the Obligation of

Trust Statement Type).

In the privacy domain, these elements can be used to describe either the acceptable

(Requirements) or supported (Capabilities) P3P policy contents. For example, if a

recipient will only use the sender’s sensitive information for the “current” transaction

and “admin” purposes, and the information is only for the designated recipient, this

can be sent as a P3P policy STATEMENT of PURPOSE expressed as a WS-XACML

constraint as shown in figure 2.

OoT Protocol Scheme

Figure 3 is a simplified sketch of the OoT protocol in operation, and shows how two

parties may exchange signed components of the OoT. Party A wishes to access item

X from party B, but it is assumed that party A knows nothing about the privacy or

access control requirements for item X. Similarly, Party B knows nothing about the

privacy requirements of Party A’s attributes. Party A sends a request for item X and

Party B responds with a NOB containing its Requirements and Capabilities. Figure 4

<Apply FunctionId="urn:oasis:names:tc:xacml:2.0:function:xpath-expression-subset">

<AttributeSelector

RequestContextPath="//P3P10/POLICIES/POLICY/STATEMENT/PURPOSE/*"

DataType="urn:oasis:names:tc:xacml:2.0:data-type:xpath-expression" />

<Apply FunctionId="urn:oasis:names:tc:xacml:2.0:function:xpath-expression-bag">

<AttributeValue DataType="urn:oasis:names:tc:xacml:2.0:data-type:xpath-

expression">//P3P10/POLICIES/POLICY/STATEMENT/PURPOSE/current</At

tributeValue

<AttributeValueDataType="urn:oasis:names:tc:xacml:2.0:data-type:xpath-

expression">//P3P10/POLICIES/POLICY/STATEMENT/PURPOSE/admin</Att

ributeValue>

<AttributeValueDataType="urn:oasis:names:tc:xacml:2.0:data-type:xpath-

expression">//P3P10/POLICIES/POLICY/STATEMENT/RECIPIENT/ours</Att

ributeValue>

</Apply>

</Apply>

Fig. 2. Example of WS-XACML constraint on P3P PURPOSE.

shows an outline of an algorithm for the decision making when a party receives a

NOB. Party A checks whether it can satisfy Party B’s Requirements, and whether

party B’s Capabilities can satisfy its own (party A’s) Requirements. If Party B’s

Capabilities are acceptable and sufficient for Party A, and A can fully meet B’s

requirements, then A can send an SAO to B stating its pick of the offered capabilities

and its own capabilities to meet party B’s requirements. If B’s capabilities are

acceptable but not sufficient, or A has additional requirements, A may send a counter

NOB to B containing its additional or alternative Requirements. A’s Requirements

will determine the subset of B’s Capabilities that it requires, and A may supplement

them with additional ones of its own. A’s Capabilities will include the subset of B’s

Requirements that it can provide, along with any additional ones it may be willing to

provide. If Party B’s Capabilities are insufficient for Party A, then A will either

terminate the session or return a NOB with Requirements that supercede B’s stated

Capabilities. If A cannot meet all the stated requirements of B, then A may decide to

terminate the session or add a reduced set of Capabilities to the NOB.

Party B evaluates party A’s NOB and if satisfied with A’s Capabilities and

Requirements it returns a signed SAO stating in its Capabilities that it can fullfil all of

party A’s Requirements, and in its Requirements which of Party A’s Capabilities it

has chosen. If B is satisfied with A’s Capabilities but not with A’s Requirements, B

may either send another NOB to A showing less Capabilities than A requires (along

with its own Requirements), or terminate the session. If B is not satisfied with the

Capabilities of A’s NOB, it will either terminate the session or return a NOB with

increased Requirements. If Party A receives another NOB, and this is satisfactory, it

returns a signed SAO, otherwise it behaves as last time around. If Party A receives

party B’s SAO, and if satisfied with it, it returns its own signed SAO. Thus the parties

Fig. 3. The OoT Protocol Sketch

continue to exchange NOBs until either one party terminates the session (negotiated

agreement not possible) or returns a signed SAO. Once a signed SAO has been

delivered the recipient must either accept this by returning its own signed SAO or

terminate the session. It is not allowed to return a NOB in response to a signed SAO,

since this is in effect rejecting what one had previously offered in a prior protocol

exchange. Once the negotiation is complete, and each party is in possession of the

signed SAO of the other party, then Party A delivers the attribute values defined in

Requirement B and Party B delivers item X to A.

As indicated above, in some transactions it will be the case that either a user’s

configured capabilities are insufficient to match an SP’s requirements, or a user’s

requirements are too great for an SP’s capabilities. In this case the software might

indicate to the user that the SP’s (or user’s) requirements are not covered by any of

the user’s (or SP’s) sets of capabilities. The user should be able to view the NOB

request and possibly extend their capabilities or reduce their requirements. As an

example, suppose a user has configured his requirement’s policy so that recipients are

not to reveal the user's PII to 3rd parties, but a Service X offers very generous

compensation to Service C's users who are willing to sign up for X’s new services. In

• Set flag initially to “SAO”

• Evaluate received requirements to determine whether I can meet them with my

capabilities

o If so, construct offered Capabilities to match received requirements

o If not, either

� terminate or

• determine* whether additional capabilities should be offered to match,

and/or

• construct capabilities to match a subset of the received requirements, plus

additional alternative capabilities to be offered, and set flag to “NOB”

• Analyse capabilities to be offered by me (as determined above) and construct a

revised list of (my) requirements.

• Analyse sets of capabilities received and compare with my list(s) of

requirements (as determined above).

o If all my requirements are met from one set of offered capabilities, keep the

above-defined requirements.

o If all my requirements are met from merged sets of offered capabilities,

construct Requirements from these, set flag to “NOB”

o If my requirements are not met, either

� terminate or

� determine* whether requirements can be relaxed due to alternative

capabilities being offered and modify requirements accordingly and set flag

to “NOB”

• If SAO flagged, send SAO, else send NOB.

(* “determine” could include the possibility to ask a human operator.)

Fig. 4. Outline Algorithm for handling a NOB

this case, Service C could send the user a NOB containing a Requirement to provide

permission for Service C to release PII to Service X, in exchange for compensation.

The user’s agent does not have a Capability to match this Requirement, so the user's

client software could display Service C’s Requirement for the granting of permission

to forward the PII to Service X, along with Service C’s Capability to offer

compensation to the user. If the user dynamically chooses to accept this contract, a

new Capability is added to the user's set of XACMLPrivacyAssertions, for this and

future use, and a signed SAO is sent to Service C.

Matching and Evaluation

Requirements are logically connected by AND: the policy owner requires the other

party to satisfy all of the constraints listed in the Requirements section. Capabilities

on the other hand are logically connected by a non-exclusive OR: the policy owner is

willing and able to provide any subset of the capabilities described by these

constraints. Figure 5 illustrates the matching of the two WS-XACML Assertions.

Two XACMLAssertions match if, for each assertion, all constraint in the Requirements

section are satisfied by (at least) one of the statements in the Capabilities section of

the other assertion. WS-XACML specifies efficient generic algorithms for

determining that one constraint “satisfies” another. We can use this mechanism to

evaluate an XACML-P3P policy against an XACML privacy profile (or any policy

expressed in XML), provided we have matching semantics between them. Once the

matching is done, the next step is to extract the capability that matches the recipient’s

requirements, produce the SOA and generate the signatures.

XACML Assertion Type

Alice’s Requirements

What Alice requires

of Bob

Alice’s Capabilities
What Alice is willing

and able to do for Bob,

if conditions in

Requirements
are met

XACML Assertion Type

Bob’s Requirements

What Bob requires

of Alice

Bob’s Capabilities
What Bob is willing

and able to do for Alice,

if conditions in

Requirements
are met

Alice Bob

XACML Assertion Type

Alice’s Requirements

What Alice requires

of Bob

Alice’s Capabilities
What Alice is willing

and able to do for Bob,

if conditions in

Requirements
are met

XACML Assertion Type

Alice’s Requirements

What Alice requires

of Bob

Alice’s Capabilities
What Alice is willing

and able to do for Bob,

if conditions in

Requirements
are met

XACML Assertion Type

Bob’s Requirements

What Bob requires

of Alice

Bob’s Capabilities
What Bob is willing

and able to do for Alice,

if conditions in

Requirements
are met

XACML Assertion Type

Bob’s Requirements

What Bob requires

of Alice

Bob’s Capabilities
What Bob is willing

and able to do for Alice,

if conditions in

Requirements
are met

Alice Bob

Fig. 5. Matching of Two WS-XACML Assertion Type

4. Example of WS-XACML Aware Applications

The OoT protocol provides a platform which permits two or more communicating

parties to negotiate obligating constraints in a tamper proof manner. Privacy

Negotiation is one such good example of using the OoT principles.

As an example, an Internet-based ticket service (ITS) provides online ticketing

services to both consumers and partners through automated Web services. The ITS

can provide special price offers to certain categories of clients in particular seasons.

The ITS requires prospective clients to provide or show proof of possession of certain

properties and then to make firm commitments that they will not disclose its price list

to third parties (i.e. competitors) before it can decide whether they qualify for special

offers. On the other hand, the clients may not wish to give out their sensitive attributes

without receiving proof from the ITS that it will not disclose them. The ITS therefore

needs to assure the clients that their attributes will be held according to their privacy

preferences. Figure 6 depicts the ITS’s internal XACMLPrivacyAssertion and

figure 7 is the customer’s internal XACMLPrivacyAssertion. Looking at the

assertions, the customer’s Requirements are really “Obligations” to be fulfilled by the

ITS. Similarly, the ITS’s Capabilities are really “Obligations” that the ITS is able and

willing to meet. The OoT provides the mechanism to assure each participant of the

other’s commitment to respecting their security preferences. Each party can save the

XACMLPrivacyAssertion (ITS)

Requirements

Client Name

IATA membership certificate

Certified Quarterly Sales > £12,000.00

Price List not given to 3rd parties

Capabilities

PURPOSE: PII used internally for this transaction

RETENTION: PII kept only until transaction is completed

RECIPIENT: PII not given to any 3rd party

Fig. 6. ITS’s Internal XACMLPrivacyAssertion

XACMLPrivacyAssertion (customer)

Requirements

RETENTION: PII kept only until transaction is completed

RECIPIENT: PII not given to any 3rd party

 Capabilities

Name

IATA membership certificate

Certificate of Incorporation

Certified Quarterly Sales > £12,000.00

Price List not given to 3rd parties

Fig. 7. Customer’s Internal XACMLPrivacyAssertion

digitally signed XACMLPrivacyAssertion with the complete Capabilities as difficult-

to-repudiate evidence in the case of disputes.

6. Conclusion

This paper describes one concrete approach to enhancing privacy assurance, by

permitting the bilateral exchange of privacy Requirements and the Capabilities to

satisfy them. The OoT mechanism merges technical solutions with possible

social/judicial solutions for security assurance in distributed open systems. This

mechanism demonstrates a secure way of using P3P policies in WS-XACML which

provides a framework for the dynamic exchange of requirements and capabilities,

meaning that this framework can support the P3P platform with minimal effort. Our

solution demonstrates significant improvement in the provision of privacy in

distributed transactions where technically “difficult-to-repudiate” services are vital.

Again, the benefit of this framework is that the same security engine can apply to the

four types of information described in WS-XACML, meaning that privacy and

confidentiality can be achieved simultaneously for both service providers and

consumers. This approach is currently being implemented

An additional benefit of this approach over traditional ATN is that it has the

potential to reduce the number of interactions between parties and therefore the

effects of network latency since both requirements and capabilities can be transmitted

in a single payload rather that separately. A mechanism that assures each party that

their information will be used in accordance with their wishes will increase the level

of trust and confidence between the communicating parties and may even reduce the

liabilities of regulated organizations.

The OoT protocol has a couple of limitations. Firstly it assumes that the other party

exists as a physical entity that can be sued if violations occur. This requires either a

robust PKI system to exist or some other mechanism to establish whether the subject

of a certificate is a legal entity, and will put meaningful identifying information in the

issued certificate. Secondly, it is open to probing attacks. A malicious party can probe

another party by providing bogus capabilities in order to gather the other party’s

requirements and capabilities and then terminate the connection before any actual data

is transferred. In [19], we described how XACML can be used to address the probing

attack by a trust negotiation involving the gradual and incremental exchange of

information. This requires that the XACML policy is expressed in such a way that the

level of trust established can determine what other information (policy/attributes) is

released at any phase. The order and sequence are controlled by the crafting of policy

rule expressions. Furthermore, we have not dealt with refinements for multiple

assertions and multiple set of Capabilities. These are the subject of further work.

Work is currently being carried out on a reference implementation of the proposed

approach, and the testing and evaluation of this will be published in due course.

7. References

1. Bertino, E., Ferrari, E., Squicciarini, A.: Trust Negotiations: Concepts, Systems and

Languages. IEEE Computer, pp. 27-34, 2004.

2. W3C: The Platform for Privacy Preferences 1.0 (P3P 1.0). Technical Report. 2002.

3. Langheinrich, E.Z.M,: A P3P Preference Exchange Language 1.0 (APPEL1.0). W3C. 5

April 2002.

4. OECD: Fair Information Practices In The Electronic Marketplace A Report To Congress.

http://www.ftc.gov/reports/privacy2000/privacy2000.pdf May 2000.

5. W3C: Platform for Privacy Preferences (P3P). 2004.

6. Cantor, S.: Shibboleth Architecture. Internet2 Middleware.

http://shibboleth.internet2.edu/shibboleth-documents.html 2005.

7. Cantor, S., Kemp, J., Philpott, R., Maler, E.: Security Assertion Markup Language (SAML)

V2.0. http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf. March 2005.

8. Seamons, K. E., Ryutov, T., Zhou, L., Neuman, C., Leithead, T.: Adaptive Trust Negotiation

and Access Control. 10th ACM Symposium on Access Control Models and Technologies.

Stockholm, Sweden, 2005.

9. Winsborough, W. H., Li, N.: Towards Practical Automated Trust Negotiation. Proceedings

of the Third International Workshop on Policies for Distributed Systems and Networks

(Policy 2002), 2002.

10. Seamons, K. E., Winslett, M., Yu, T., Yu, L., Jarvis, R.: Protecting Privacy during On-line

Trust Negotiation. 2nd Workshop on Privacy Enhancing Technologies, San Francisco, CA,

2002.

11. Winsborough, W.H., Seamons K.E., Jones, V.E.: Negotiating Disclosure of Sensitive

Credentials. 2nd Conference on Security in Communication Networks., Amlfi, Italy, 1999.

12. Bertino, E.F.E., Squicciarini, A.: TNL: An XML-based Language for Trust Negotiations.

IEEE 4th International Workshop on policies for Distributed Systems and Networks, Lake

Como Italy, 2003.

13. Pau, L.-F.: Privacy Negotiation and Implications on Implementations. W3C Workshop on

Languages for Privacy Policy Negotiation and Semantics-Driven Enforcement, 2006.

14. Preibusch, S.: Privacy Negotiations with P3P. W3C Workshop on Languages for Privacy

Policy Negotiation and Semantics-Driven Enforcement, 2006.

15. Spantzel, A.B., Squicciarini, A.C., Bertino, E.: Trust Negotiation in Identity Management.

IEEE Security & Privacy, pp. 55 - 63, 2007.

16. OASIS: eXtensible Access Control Markup Language (XACML) Version 2.0. OASIS

Standard, 1 Feb 2005.

17. Anderson, A.: Web Services Profile of XACML (WS-XACML) Version 1.0, WD 8. OASIS

XACML Technical Committee 12 December 2006.

18. University of Salford: Schema for Obligation of Trust (OoT).

http://infosec.salford.ac.uk/names/oot/ootSchema/ December 2006.

19. Mbanaso, U., Cooper, G.S., Chadwick, D.W., Proctor, S.: Privacy Preserving Trust

Authorization using XACML. Second International Workshop on Trust, Security and

Privacy for Ubiquitous Computing (TSPUC 2006) Niagara-Falls, Buffalo-NY, 2006.

