
LaMSM: Localization Algorithm with Merging
Segmented Maps for Underwater Sensor

Networks

Eunchan Kim, Seok Woo, Chungsan Kim, and Kiseon Kim

Department of Information and Communications,
Gwangju Institute of Science and Technology (GIST),

1 Oryong-dong, Buk-gu, Gwangju, 500-712, Republic of Korea
{tokec, swoo, only2442, kskim}@gist.ac.kr

Abstract. Underwater sensor networks (UWSNs) are considered a cost-
effective solution to ocean applications, such as the acquisition of natu-
ral resources in oceans, protection from underwater disasters, etc. These
applications basically require location information of nodes to identify
the venue of reported events. To locate more accurately the position
of nodes, multidimensional scaling (MDS) is widely used because of its
good tolerance to errors in measured distances. MDS requires measured
distances between every pair of nodes but in practice, only distances be-
tween nodes within a communication range can be measured. Hence, the
well-known MDS-MAP(P) [6] calculates unmeasured distances for MDS
but these calculations result in large errors. In this paper, we proposed
a localization algorithm with merging segmented maps (LaMSM) that
constructs many reliable segmented maps composed of only nodes within
a communication range, and then merges them together based on their
common nodes. The segmented maps are built from only the measured
distances and as a result, LaMSM provides more accurate node positions
than MDS-MAP(P).

Key words: sensor networks, optimization, localization, multidimen-
sional scaling.

1 Introduction

Recently, many countries have been turning their interest toward underwater ap-
plications to acquire natural resources in oceans, to monitor pollution, to prevent
disasters, etc. For such applications, there are many underwater systems using
autonomous underwater vehicles (AUVs) which explore and gather geological
features from the ocean floor. However, traditional underwater devices usually
have difficulties in real-time monitoring, high expense, and recovery from fail-
ure. To overcome these difficulties, underwater sensor networks (UWSNs) are
emerging as a cost-effective solution by monitoring events near sensor nodes
deployed underwater [1]. The major difference between UWSNs and terrestrial
sensor networks is the communication channel among sensor nodes. Due to the
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limited transmission range of high radio frequency (RF) signals, acoustic signals
are alternatively used for UWSNs because of their long transmission range: up
to 1Km, 10Km, and 100Km depending on the used bandwidth and frequency.

Acoustic signals experience high delays due to the low speed of sound un-
derwater: about 1.5× 103 m/s [1, 2]. High delays of acoustic signals can provide
more accurate distances between nodes through resolving the delays called time
of flight (ToF) than in the case of RF signals. Once distances between nodes
are secured, sensor nodes can be localized with useful traditional localizations.
Among the basic methodologies for localization, multidimensional scaling (MDS)
is a popular mathematical tool due to its good tolerance to errors in measured
data. MDS computes the positions of nodes from both connectivity and distance
between nodes [3]. Applying MDS to localization needs distance information be-
tween every pair of nodes in a network but in practice, a node can measure only
the distances to nodes within a communication range.

For complete distance information, MDS-MAP calculates the unmeasured
distance by summing measured distances along the shortest multi-hop path be-
tween nodes [4]. It then constructs a global map where all nodes are located and
relocates the global map with the given beacon nodes. However, errors in cal-
culating the unmeasured distance becomes greater as the number of hop counts
in the shortest path increases, which considerably affects the localization error
of nodes. To patch MDS-MAP, MDS-MAP(P) restricts the hop count to 2 or
3 hops in calculating unmeasured distances, which prevents errors in distances
from increasing [5, 6]. Hence, MDS-MAP(P) first builds local maps for 2-hop or
3-hop areas and then merges them together to construct a global map. It per-
forms well but there are still open problems to improve accuracy: how to obtain
more accurate local maps and how to merge them with minimum error.

In this paper, we propose a localization algorithm with merging segmented
maps (LaMSM) which constructs segmented maps with only fully connected
nodes, merges segmented maps to build a local map, and merges local maps
again to form a global map. Because the segmented maps are the basic units
for a global map, it is important to reduce localization error in a segmented
map. To build a reliable segmented map with MDS, LaMSM uses only measured
distances by grouping only the nodes fully connected to one another. The rest
of this paper is organized as follows: Section II summarizes literature related
to our current research, Section III explains our proposed algorithm in detail,
and Section IV presents the simulation results under varying errors in distance
measurements. Finally, we conclude this paper in Section V.

2 Related Works

In this section, we explain several distance-based localizations that construct a
local map with measured distances and then merge them together. These are
well known for their good performance using a small number of beacon nodes.

MDS-MAP(P) proposed by Shang et al [5] uses multidimensional scaling
(MDS) and local distance information. Most local distances between nodes can
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be obtained by resolving received packets but there still remain unmeasured dis-
tances in a local area. Building local maps with the MDS requires fully complete
distance information for all nodes in a local area so that MDS-MAP(P) calcu-
lates the sum of measured distances along the shortest path between two nodes
instead of unmeasured distances.

Moore et al presented a distributed localization which constructs robust
quadrilaterals for local maps and merges them together [7]. The quadrilateral
is constructed with a trilateration method using distances among four nodes.
When two quadrilaterals are merged, a map is sometimes reflected and merged
into another map because of a serious position error in quadrilaterals called flip
ambiguity. To prevent flip ambiguity, Moore et al’s scheme collects only robust
quadrilaterals in which four nodes should have full connections to one another
and greater than a pre-defined angle between them. This restriction could re-
duce the possibility of flip ambiguity but it also excludes the chance for other
node maps to be used as quadrilaterals. Only robust quadrilaterals are merged
together using the closed-form solution suggested by Horn et al [9].

While the previous localizations take into consideration local map construc-
tion with constraints and basic mathematical tools, e.g., MDS or trilateration,
Kwon et al turned their focus to a merging method to overcome flip ambiguity
in their localization [8]. They utilized a merging method based on the closed-
form solution of Horn et al and additional distance information. In addition, they
investigated performance between maps with the MDS method and the multilat-
eration. According to their results, merging MDS-based local maps shows better
localization accuracy than merging multilateration-based local maps. However,
the MDS-based local maps are constructed with the same mechanism as the
MDS-MAP(P), so that the local maps also have errors due to the calculated
distances as well as errors due to measurement error.

3 Proposed Localization Algorithm

This section discusses the causes of localization inaccuracy of local maps in MDS-
MAP(P) and describes the proposed localization algorithm which also follows the
overall structure of MDS-MAP(P) but adopts different mechanisms to construct
local maps and to merge them.

3.1 Problem Statement

Building a local map with MDS, MDS-MAP(P) calculates all distances between
every pair of nodes within a local area by summing the measured distances
along the shortest path between them. In the calculated distance between distant
nodes, errors arising from indirect paths degrade the accuracy of nodes’ positions
in a local map rather than errors in measurements. Fig. 1(a) shows the real
deployment of node 1 and its neighbors, where a line between two nodes stands
for a direct connection. For instance, node 2 cannot directly communicate with
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(a) Neighbor nodes within communication 
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fully connected nodes

Fig. 1. Node deployed example within communication range of node 1: (a) real deploy-
ment of node 1 and its neighbor nodes, (b) segmented maps of node 1 of the LaMSM.

node 6, so that it cannot measure the distance to node 6. In this case, MDS-
MAP(P) calculates the distance as d26 = min(d21 + d16, d27 + d76, d25 + d56):
whatever it selects is an indirect distance for the real distance between node 2
and node 6.

3.2 LaMSM: Localization Algorithm with Merging Segmented
Maps

In the proposed LaMSM, a segmented map is newly defined as a basic unit to
make a reliable local map. LaMSM is composed of two phases: building a local
map with segmented maps at every node and constructing a global map with
collected local maps at a special node.

A. Building Segmented Maps from Measured Distances Each node mea-
sures distances from itself to neighbor nodes by resolving delays at received
acoustic packets, and then sends and receives the distance information to neigh-
bor nodes. Then, each node realizes most distances between neighbor nodes
but still has some unmeasured distances between them. To avoid calculating
the unmeasured distance, it segments measured distances into sub-distance sets.
Elements in a sub-distance set are distances between nodes which are fully con-
nected to one another, so that there is no unmeasured distance in a sub-distance
set. Applying MDS to each sub-distance set, each node can immediately build a
few segmented maps which are the basic units to construct a local map. For in-
stance, node 1 can build three segmented maps with sub-distance sets, as shown
in Fig. 1(b). All nodes in each segmented map are connected to one another, so
that they can measure all distances between them. Hence, node 1 does not need
to calculate any unmeasured distance like d26 to build segmented maps but it is
necessary to merge three segmented maps together for a local map in Fig. 1(a).
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B. Merging Segmented Maps for a Local Map Once segmented maps are
secured, the next work of each node is to merge them for a local map. Each node
selects a segmented map which has the most nodes among the segmented maps,
as a reference map. The other segmented maps are merged into the reference
map sequentially by relocating them on the coordinates of the reference map.
A merging order is determined with the number of common nodes between a
reference map and the other segmented maps. Hence, it is important to minimize
errors arising in every merging time, otherwise errors continuously increase at
the next merging time.

Let’s consider two maps: a reference map and a segmented map, which have
m common nodes in the p-dimensional Euclidean space, usually p = 2 or 3.
The position matrices for m common nodes are represented as A = [aj ]p×m in a
segmented map and B = [bj ]p×m in a reference map, respectively. While merging
the segmented map to a reference map, each node computes three parameters: a
scaling parameter s, an orthonormal rotating (optionally reflecting) matrix R,
and a translating vector t, in order to minimize the following discrepancy error
E(s,R, t) between two common node sets:

E(s, R, t)2 =
m∑

j=1

||sRaj + t− bj ||2 . (1)

For the parameters, we adopt Umeyama’s method [10] which determines
the rotating matrix R with the singular value decomposition. According to
Umeyama’s method, three parameters can be expressed as

R = USV T ,

s =
trace(DS)

1
m

∑m
j=1 ||aj − ā||2 ,

t = b̄− sRā ,

(2)

where ā = 1
m

∑m
j=1 aj , b̄ = 1

m

∑m
j=1 bj , A = [aj − ā]p×m, B = [bj − b̄]p×m,

UDV T = svd(BAT ), and

S =

{
I if det(BAT ) ≥ 0
diag(1, 1, · · · , 1,−1) if det(BAT ) < 0 .

(3)

While merging two segmented maps, we do not use the scaling parameter in Eq.
2 to preserve the scale of all segmented maps as well as a reference map.

Because some segmented maps are given as being reflected in the coordinates
of a reference map, rotating matrix R needs to determine whether it reflects a
segmented map or not, as well as to rotate it. However, Umeyama’s method does
not provide such a determination to reflect in the rotating matrix R. Further-
more, it is hard to determine reflection of a segmented map only with common
nodes when there are outliers in common nodes or when common nodes are
almost placed on a straight line.
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(a) Reference map

(b) Segmented map

(c) New reference map I

(d) New reference map II

Fig. 2. Merging segmented maps for a local map: (a) reference map at node 1, (b)
segmented map overlapped with a reference map at node 1, (c) new reference map I
after merging an original segmented map, (d) new reference map II after merging a
reflected segmented map.

To determine reflection of a segmented map, LaMSM considers two kinds
of segmented maps: an original segmented map and a reflected segmented map.
LaMSM relocates two segmented maps on the coordinates of a reference map
with three parameters in Eq. 2, respectively. Then, LaMSM can obtain inde-
pendently two new reference maps for a segmented map. It then selects a new
reference map that has less direct connections between excluded nodes. The ex-
cluded nodes mean the other nodes which remain in a segmented map and a
reference map except common nodes. Because excluded nodes in a segmented
map are placed out of the communication range of excluded nodes in a reference
map, they do not have any direct connection to each other.

For example, a reference map and a segmented map are shown in Fig. 2(a) and
2(b). Their common nodes are nodes 1 and 5, excluded nodes of a reference map
are nodes 2, 3, and 4, and an excluded node of a segmented map is node 6. With
original and reflected segmented maps, two new reference maps are obtained:
one is the new reference map I after merging an original segmented map, and
the other is the new reference map II after merging a reflected segmented map,
as shown in Fig. 2(c) and 2(d). While excluded node 6 of a segmented map has
connections to excluded nodes 2, 3, and 4 in Fig. 2(c), it has no connections to
any excluded nodes in Fig. 2(d). Hence, we can properly relocate a segmented
map on the coordinates of the reference map by selecting the new reference map
II, as shown in Fig. 2(d).

C. Merging All Local Maps for a Global Map After building a local map
by merging segmented maps, each node sends the local map information to a
powerful node, such as a monitoring center, a sink node or a base station. Among
the collected local maps, the powerful node selects the local map which has the
largest number of nodes, as a reference map for a global map. Then, the other
local maps are merged into the reference map with the same mechanism as the
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Fig. 3. Real deployments with 4 beacons marked as black square nodes: (a) 200 nodes
in a square area, (b) 160 nodes in a C-shape area.

one used to merge segmented maps. The reference map becomes a global map
after merging all local maps. Then, the powerful node relocates the global map
with the given beacon nodes in order to assign all nodes the absolute positions,
which can be achieved with Umeyama’s method by regarding the given beacon
nodes as common nodes of a real map. Here, the scaling parameter in Eq. 2 is
used because the global map could be scaled up or down compared to a real map.
Finally, we can get a global map where all nodes have their absolute positions.
The main advantages of such a centralized algorithm using a powerful node
are to alleviate network burden because it is not necessary to forward absolute
positions to all nodes, and to improve accuracy in nodes’ position using the
global information of sensor nodes.

4 Simulation Results

To evaluate the proposed localization algorithm with merging segmented maps
(LaMSM), we consider two distinct placements of nodes, as shown in Fig. 3: one
is a regular placement where 200 nodes are randomly deployed over a 1000m
× 1000m square area, and the other is an irregular placement where 160 nodes
are randomly distributed over a C-shape area, where dark square nodes are
beacons which are supposed to be attached to buoys. Also, we assume that
communication between nodes is possible within acoustic transmission range,
R = 150m. The measured distance between nodes i and j contains a range error,
which is modeled as dij = va(tij + tε) = d∗ij + vatε where va = 1.5 × 103m/s is
the speed of sound underwater, d∗ij is the real distance between nodes i and j,
tij is actual time for d∗ij , and tε is a range error which is a random value with
the Gaussian distribution N(0, σ2). We ran the simulation 100 times to get the
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Fig. 4. Localization error in local maps built with LaMSM and MDS-MAP(P) under
σ = 1ms in (a) a square area and (b) a C-shape area, respectively.

results under a different range error each time. To indicate average position error
between positions of a real node and its estimated node, the average localization
error of a node is defined as

Epos =
1
n

n∑

i=1

||x∗i − xi||, (4)

where n is the number of nodes, x∗i and xi are the real position and the estimated
position for a node i, respectively.

First, we compare the average localization error in local maps built with
LaMSM and MDS-MAP(P). The number of nodes in a local map depends on
node density. The average number of nodes in a local map is 12.3 in a square
area and 12.5 in a C-shape area. The simulations of Fig. 4 were carried out
under 1ms range error in time of flight (ToF). As shown in Fig. 4, local maps
of LaMSM have lower and more regular localization error than those of MDS-
MAP(P) because LaMSM never uses unmeasured distances which MDS-MAP(P)
does. The average localization error of all local maps in LaMSM is 0.63m in
a square area and 0.61m in a C-shape area, while it is 2.26m and 2.12m in
MDS-MAP(P), respectively. Additionally, localization error of MDS-MAP(P)
gradually declines with the increasing number of nodes in a local map; that is,
the number of measured distances relatively increases rather than the number
of the calculated distances with increasing node number, so that the effect of
errors in the calculated distance is reduced correspondingly.

Fig. 5 shows the average localization error in a global map by varying the
standard deviation of a range error from 0.2ms to 2ms. Results show that the
accuracy of LaMSM is about 7.8 times better than MDS-MAP(P) in a square
area and about 10.4 times better in a C-shape area at 0.2ms range error, as
shown in Fig. 5(a) and 5(b), respectively. Even at 2ms range error, the accu-
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(a) Localization error of a global map

in a square area

(b) Localization error of a global map
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Fig. 5. Average localization errors for all nodes estimated with LaMSM and MDS-
MAP(P) in (a) a square area and (b) a C-shape area.

racy of LaMSM is still better than MDS-MAP(P); that is, about 1.6 times in
a square area and 2.6 times in a C-shape area. Overall, the cause of relatively
high localization error in MDS-MAP(P) is that errors arising from calculating
unmeasured distances are dominant over range errors when it constructs local
maps. Furthermore, the performance of LaMSM is analogous in both node de-
ployments, while MDS-MAP(P) performs better in a square area than a C-shape
area.

5 Conclusions

We presented the localization algorithm with merging segmented maps (LaMSM)
for underwater sensor networks (UWSNs). Underwater sensor nodes use acous-
tic signals to communicate due to its long transmission range, which makes it
possible to measure accurately distances between nodes by resolving the delay
of acoustic signals.

As a basic unit for a global map in LaMSM, a segmented map is composed of
the only fully connected nodes; that is, the map is built with only the measured
distances. Hence, it can avoid calculating unmeasured distances that result in
errors in accuracy. In fact, LaMSM has about 3.5 times better accuracy in a
local map than the well-known MDS-MAP(P). Furthermore, LaMSM provides a
closed-form solution to minimize localization errors arising from merging maps,
where it utilizes node connections to correctly decide whether a map is reflected
or not. According to our simulation results, LaMSM outperforms MDS-MAP(P)
with respect to localization accuracy: at least 1.6 times in a square area, and 2.6
times in a C-shape area, even at 2ms range error.

Accurate position information is useful to various ocean applications, such as
exploring geographical features, developing natural resources underwater, pro-
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tecting from ocean disasters, etc. To secure accurate position information, more
elaboration is required in resolving the delay of time of flight (ToF), time synchro-
nization, and localization algorithms. In the future our work will be to investigate
LaMSM under realistic environment, three-dimensional Euclidean space.
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