Autonomic Multi-Server Distribution
in Flash Crowds Alleviation Network

Merdan Atajanov
Graduate School of Science and Engineering
Saitama University
Saitama 338-8570, Japan

Toshihiko Shimokawa
Faculty of Information Science
Kyushu Sangyo University
Fukuoka 813-8503, Japan

Norihiko Yoshida
Graduate School of Science and Engineering

Saitama University
Saitama 338-8570, Japan

Abstract

The Flash crowds are rapid increase in access to contents of web sites,
which makes the web sites inaccessible, leaving the clients with unsatisfied
requests. The major shortcoming of flash crowds researches is that they do
not assist vital resizing feature of a cloud of the surrogates; the surrogates
involved in the alleviation process do not change from the start to the end
of flash crowds. Our system, FCAN (Flash Crowds Alleviation Network)
is a system to provide resources to web sites to overcome flash crowds.
A main feature of FCAN is its dynamically resizing feature, which can
adapt to request load of flash crowds by enlarging or shrinking a cloud of
surrogate servers used by the web sites. In this paper, we present a new
feature of FCAN to support multiple servers which experience different
flash crowds simultaneously, and show experiment results with real web
log data provided by Live Eclipse 2006.

keywords: Internet Load Distribution, Content Distribution Net-
works, Flash Crowds

1 Introduction

Even though the Internet capacity and network bandwidth emerged very rapidly
these days, in some cases clients still experience problems while accessing the

web sites. These problems are slightly different from the problems that were in
the early days of the Internet. These new problems involve network congestion,
traffic bottleneck on the server side, which maybe caused by the overwhelming
number of users simultaneously accessing web contents. This is called “flash
crowds” phenomenon [1]. The best way to provide decent replies to the clients is
to disseminate the requested contents as near as possible to the clients. Most of
the corporations disseminate their web contents by implementing geographically
distributed network of surrogate servers or by using services of the companies
such as Akamai [2]. These companies distribute the load of highly hit web sites
across a geographically dispersed network in advance. Their solution mainly
focuses on using proprietary networks and caching centers to intercept and serve
clients requests before the flash crowds occur.

As a new solution, we already introduced a system called FCAN (Flash
Crowds Alleviation Network) [3, 4]. It utilizes cache proxies in the Internet as
surrogates to form an anti-flash crowds system. Its advantageous feature over
other anti-flash crowds systems is that FCAN has a dynamic nature: with its
help, a cloud of surrogates can grow or shrink adapting to the changes in traffic
coming to the surrogates. Some small subset of cache proxies is involved at the
beginning, and the subset can grow or shrink adapting to the load changes.

Our previous works were done considering just single server situation, where
only one server can benefit from FCAN system. We extend our FCAN so that
it can handle several member servers experiencing flash crowds. We focus our
attention on addressing multi server situation, when several servers experience
flash crowds simultaneously. Our system handles several flash crowds simulta-
neously by splitting a network of cache proxies to the servers that experience the
flash crowds. The cache proxy can be involved in several flash crowds events,
however the system tries to keep cache proxies involvement only in one flash
crowds’ event. In this paper, we use real flash crowds’ data to investigate how
FCAN behaves more realistically than in [4]. First we provide simulation results
with artificial data and then show results with real flash crowds’ data.

The rest of the paper is organized as follows: Section 2 is Related Work
section; in Section 3, we describe FCAN design. The simulation data and results
are in Section 4. Section 5 is the conclusion, including some considerations and
future work.

2 Related Work

The flash crowds event is a very recent phenomenon in the Internet. Mostly
flash crowds are infrequent and unpredictable events: you can predict that flash
crowds could happen, but it is almost impossible to predict their magnitude
and duration. Related researches against flash crowds can be divided into three
categories: server-based solutions, client-based solutions, and intermediate so-
lutions.

The CDN (Content Distribution Networks) is one approach in server-layer
solutions. The main idea is to distribute load expected for one server to sev-
eral surrogate servers. The server-layer solution’s biggest disadvantage is over-
estimation of resources; these resources are only used in the flash crowds’ event.
In most cases, a flash crowds event is unexpected or unpredictable, it takes
short time; therefore providing extra resources is not a good solution to antici-
pate flash crowds. In the client-side solutions client transparency is gone which
in most cases requires client cooperation. Moreover the client-side solutions are
very difficult to manage. Related work against the flash crowds includes Coral-
CDN [5] and P2P-based systems such as Backslash [6] and PROOFS [7]. Main

characteristics of flash crowds are extensively studied in [3], these characteristics
were used as the basis for designing FCAN system.

3 FCAN Design

3.1 Overview

FCAN is an intermediate layer solution, focusing on a CDN-like cloud of cache
proxies where popular objects are cached in, and delivered to end users. Our
proposal is to construct the CDN-like cloud of proxies where all proxies are
static members. This cloud of CPs (cache proxies) is widely spread with lots of
participants. When flash crowds occur, the member server chooses a subset of
proxies to form its small cloud, which will be responsible for the popular objects.
If the subset of CPs cannot handle the client requests, new proxies are invited
and the cloud grows. When the flash crowds decrease, cloud of CPs shrinks.

The popular objects are stored in some kind of CDN-like cloud of reverse
proxies. In these proxies, contents are stored for the duration that flash crowds
last, and client requests that are supposed to go to the server, are delivered to
these proxies serving as surrogates. In this way, the load on the main server is
reduced, and more clients get satisfied replies. In the peaceful time, there is no
need for the FCAN system to be active; it is only activated when flash crowds
occur, and it helps servers until the flash crowds are over. DNS redirection is
used to redirect client requests to the cache proxies.

FCAN consists of the below:

e A member server: is a server that suffers from the FC (flash crowds) event
and wants to use system to overcome it.

e A FC object: is a main content that is requested in flash crowds’ event.

e A Permanent proxy member: is a main proxy in the CDN-like cloud. It
is divided into two subgroups:

— A Core proxy member: is a proxy that is always responsible for a FC
object, when the member server is in FC state.

— A Free proxy member: is a proxy that dynamically joins and leaves
the core part, and helps the core proxies when they are overloaded.

Every proxy can be a core or a free proxy, it can even be a core proxy for
one member server and a free for another member server. The free proxies stay
alert in case any of member servers begin to experience flash crowds. In that
case some of the CPs switch to the core proxy state and help the member server.

3.2 Key Features of FCAN

The proxies generate and monitor such statistical information as request rates
and loads for the FC objects. These statistics are passed to and processed by
the member servers to monitor the overall state in alleviation procedure so that
the member servers decide when to enlarge or shrink the cloud, and find out
when the flash crowds are over.

All permanent proxies are defined beforehand and configured by the admin-
istrator of the system. These proxies form main CDN-like cloud of CPs, which
is used by the member servers that suffer from flash crowds. Every permanent
proxy should provide the following functions:

Table 1: Priority Table for the member servers

SVRO1 SVRO02
CPO 70 90
CP1 20 50
CP2 10 100
CP3 30 30
CP4 90 20
CP5 60 40
CP6 100 10
CP7 50 80
CP8 40 70
CP9 80 60

Change its state from a free proxy member to a core proxy member and
vice versa

e Distribute permanent proxy database list

e Provide ability to store FC objects permanently

e Generate and monitor statistics of request rate and load
e Maintain cloud membership operations

The proxy has an ability to store FC objects permanently; these objects
do not expire until FC event is over. The member server has the following
functions:

e Disseminate FC object to the core proxies

e Manage own core set of proxies involved

e Trigger an update of DNS zone file

e Collect and process statistics generated by the core proxies

FCAN system uses a priority table in the selection mechanism of proxies. As
it can be seen in the Table 1, the cache proxies are assigned different priorities
for different member servers, where the least number has the highest priority.
FCAN system assigns proxies to member servers according to these priorities.

The priorities are not sequential, but sparse. A new additional proxy can
be easily inserted in between, or be removed from the table without a need to
update priorities.

The core proxies’ IP addresses are added to the DNS record of the member
server, so that requests are redirected to the core proxies. While DNS update
propagates, all the requests are still going to the member server. The member
server can act beforehand, by triggering DNS update before state change of
the FCAN system. This way DNS propagation will catch up sooner. Load
distribution is done by round-robin DNS, or it may be done by some other
advanced selection mechanism|8].

CP1 CP1 CP1

0 w Q0 w
o .9 of °©

W) = N e

SVR02 SVRO2 SVRL

CPZOOO CPZOOO COOO

CP

Figure 1: FCAN Outline

3.3 Overall View

At first, the system is in a peaceful state in which there are no flash crowds as
it is shown in the left of Figure 1, and FCAN is in an inactive mode. When
flash crowds come, a system forms a CDN-like cloud of core proxies, which act
as surrogates for the member server as shown in the middle of Figure 1. If
the cloud of surrogates cannot handle increasing amount of requests for the FC
object, the member server invites more free proxies to participate in the cloud
as shown in the right of Figure 1.

The member server selects potential core proxies among the proxies by send-
ing check requests to these proxies. First, it probes a proxy which has the highest
priority for the member server, and then a proxy with the second highest prior-
ity, and so on. Eliminating proxies which are already used in other servers’ flash
crowds alleviation procedure. This way it will find the most appropriate proxies
that can participate in the alleviation procedure. When potential candidates
are selected, the member server triggers DNS update to include IP addresses of
newly added proxies, and disseminates FC object(s) to the selected proxies. In
Figure 1, the initial core cloud consists of two proxies, CP1 and CP2.

3.4 The Cloud Growth and Shrinkage
There are two thresholds used in the FCAN system: Th;gn and Lo .

o Thign: the request rate is close to critical or soon will be above the accept-
able rate, so that the system switches its state to the CDN-like cloud of
the cache proxies.

e T, request rate is low, so that the system switches its state back to the
peaceful client/server state.

When a member server detects that the load exceeds Thq4p, the system be-
comes active. When the initial core cloud is not enough, a new proxy (CP3 in
Figure 1) is added to already involved member proxies (CP1 and CP2), and CP3
becomes core proxy for SVR01. When the average load on the core proxies is
below T}, for predefined duration, the member server concludes that FC event
is over. So, at first, it dismisses only some of the core proxies, and updates DNS.

CP1 CP1 CP1

SVR02
CP6 cps CP6 cps CP6 cps

Figure 2: Multiple Member Servers in FCAN

The proxies with the lowest priority are dismissed first. Then, if the request
rate at proxies is still under Tj,,,, the member server dismisses some other core
proxies. This process continues until all core proxies are dismissed. Firstly, the
DNS records are updated, and the proxies wait for certain period until DNS
propagation is supposedly finished. Then they change their state from core to
free. The DNS redirection is done before dismiss, so as to prevent client requests
being redirected to the proxy which does not have the flash crowds content, or
which already changes its state to a normal forward proxy.

3.5 Multi-server Scenario

Cache proxies and member servers are independent from each other. FCAN
is not designed for some specific member servers; it is designed to be used by
several member servers in need at the same time. A member server can use
a subset of proxies depending on the magnitude of flash crowds, and another
member server can use another subset of the proxies. A proxy in the system
can be a core proxy for one member server and a free proxy for another server.
It is preferable that these subsets of the proxies used in different flash crowds
do not overlap. To avoid overlapping, the system uses the priority table with
predefined priorities for the member servers. When flash crowds comes, proxies
are assigned to member servers according the priorities. If the proxy is already
used in another flash crowds alleviation process, FCAN skips it and moves to a
next proxy in the priority table.

In Figure 2, suppose that SVR02 also starts to experience the flash crowds
event. It needs to construct its own cloud. Let assume that flash crowds magni-
tude of SVRO2 is higher than SVRO01, therefore the system invites three proxies
at the beginning. From the table 1, we see that initially CP3 is overlapping be-
tween SVRO1’s core proxies cloud and SVR02’s. However CP3 is already used
in alleviation process for SVRO01’s flash crowds. So, when SVR02 probes CP3,
it finds out that CP3 is busy, so it leaves CP3 and invites a next proxy from
the priority table, which is CP5. After the initial core cloud is defined, SVR02
disseminates contents to its core members. These measures are done to avoid
overlapping of the core proxy clouds.

In case where all proxies are used up in the alleviation procedure, some
member server should share some of the proxies among each other. The proxies

Table 2: Simulation with Artificial Input

Servers | Start | End | CPs | Initial | Thign Tiow
(sec) | (sec) | used | Set (req/sec) | (req/sec)
SVROL | 55 | 250 | 832 | 8.3 40 5
SVR02 | 45 175 10,64 | 0 30 5
—— SVRO1 —CP2 CP8
404 Average on CPs 40+ —— CP3—— SVRO01

of requests
N
of requests

T T T T T 1 T T T T T 1
0 50 100 Time 150 200 250 0 50 100 Time 150 200 250

Figure 3: SVRO1 with artificial input

that are shared among member servers will divide local capacity per server to
be able to handle the requests for several flash crowds’ objects.

4 Simulation and results

Our simulation has three roles: member servers, member proxies, and clients;
each of them runs as independent thread. It is based on previous simulation of
FCAN project. The network is built on an application layer with servers and
proxies running continuously and concurrently. Clients’ threads are created to
send the requests, and then destroyed after getting the replies. Either a server
or a proxy rejects the incoming requests if the average load exceeds its capacity.
When the traffic is increasing, a member server switches the system to CDN-
like cloud of proxies. If the initial core proxies are not enough in the alleviation
procedure, the member server invites new proxies, until the load is stabilized.
When the load is decreasing, the proxies begin to leave the cloud and a member
server is switched back to the normal state.

Table 2 summarizes the configuration for the simulation of servers SVRO01
and SVR02 with artificial input. Figures 3 and 4 present the results of this
simulation. The left graphs in Figures 3 and 4 show average load, while the
right graphs show individual loads on the proxies and member servers. The flash
crowds for SVRO1 start at 55th second and continue until the end of simulation.
The flash crowds for SVR02 start at 45th second and end at 175th second. The
magnitudes of two flash crowds are different; the magnitude of SVR01’s flash
crowds is bigger than the SVR02’s. Three additional proxies CP8, CP3, CP2
are used till the end of the SVRO01’s flash crowds. On the other hand only CPO
is used till the end of the SVR02’s flash crowds and CP6, CP4 is used just for
10 seconds at the beginning of the flash crowds.

Next, we investigate simulation results with real access logs, kindly provided

—— SVRO02 CPO CP6
—— CP4——SVR02

IS
S
!

Average on CPs 404

@
]
!
w
S

!

)
S
!

of requests
N
3
!

of requests

=)
!

T T T N T T 1 T T T T T 1
0 50 100 Time 150 200 250 0 50 100 Time 150 200 250

Figure 4: SVR02 with artificial input

Table 3: Simulation Configuration

Servers involved 2

The number of proxies 10

Proxy’s priority order for SVR01 8,3,2,5,7,1,9,4,6,0
Initial set for SVRO1 8,3

Proxy’s priority order for SVR02 0,6,4,9,1,7,5,2,3,8
Initial set for SVR02 0

Threshold Th;gn (req/sec) for SVRO1 | 30
Threshold Tjp (req/sec) for SVRO1 | 5
Threshold Thign (req/sec) for SVR0O2 | 20
Threshold Tje (req/sec) for SVR02 | 5
Server Capacity (req/sec) SVRO1 40
Server Capacity (req/sec) SVR02 30

by “Live Eclipse” web site [9]. These live web logs are used as the input data
for simulation with multi-server scenario. In March 2006, Live Eclipse delivered
web streaming for the Eclipse that took place in Turkey, Libya and Egypt. Live
Universe provided two different streaming sites:

o http://www.live-eclipse.org

e http://www.nishoku.jp

The first one was used by all the clients in the world, while the second one
was just by Japanese clients. Therefore, there is a difference in access graphs
for these two sites, as expected access rates for the live-eclipse is much higher
than for the nishoku site. Figure 5 shows access rate patterns for these two sites
at the time eclipse took place.

The logs for these two servers are scaled down so we can feed them into
the simulation. The log of Live-Eclipse site is scaled down by 30, and log for
Nishoku site by 10. Every simulation second corresponds to one minute of real
time.

1204 | Eclipse access(60seconds average) 120

Nishoku access(60seconds average)

100 100+

@
3
!
@
3
I

@
3
!
@
3
!

of requestes
8
L

of requests
N
8
!

N
S
!
N
S
I

T T 0 T T T T
0 50 100 Tjme 150 200 250 0 50 100 Time 150 200 250

Figure 5: Access Pattern for “Live-Eclipse” and “Nishoku” Sites

In this experiment, two different member are used servers one for live-eclipse,
another for nishoku and also ten permanent proxies are used for alleviation pro-
cedure. Table 3 summarizes the configuration of ten proxies and two indepen-
dent member servers. The SVR01 and SVR02 experience flash crowds at the
same time: SVRO1 is fed the live-eclipse log, and SVR02 is fed the nishoku
log. The priorities for these member servers are different, and initial core sets
of proxies are different between the member servers according to their priority
settings for the proxies and magnitudes of flash crowds. Before inviting free
proxy to join the core cloud, a member server checks if free proxy is available,
not used in other member server’s flash crowds event. If it is already used by
another member server, then a next free proxy in the priority table is probed
for availability.

Figure 6 and 7 shows the results of the simulation with real data, where
Figure 6 shows SVR01 “Live Eclipse” server’s cloud and Figure 7 shows SVR02
“Nishoku” server’s cloud. The left graphs in Figures 6 and 7 show average load,
while the right graphs show individual loads.

For SVRO01, seven proxies are used: two core proxies and five additional
proxies. Initial set of the core proxies consists of two proxies CP8 and CP3.
For the first 60 seconds the member server can handle the client requests itself.
The SVRO01’s flash crowds start around 60th second. The member server invites
initial core set of proxies to join in the alleviation process. At the beginning
the requests grow so rapidly that initially assigned two proxies are not enough.
Therefore third proxy CP2 is added to the system immediately. In this situation
where three proxies and member server are involved, the system handles the load
until the next rapid increase of flash crowds starting around 150th second. Four
more proxies are added to the system in the following order: CP5, CP7, CP1,
and CP9. With the help of these new additional proxies to the core part, the
average load on the system is kept under the threshold Table 3. After 180th
second, the client requests start decreasing very rapidly. At this moment, the
system waits short duration to check if it is temporary change in the client
requests. Since requests are decreasing at the steady rate, the system dismisses
the proxies one by one until the system is switched back to the client/server
mode. The state change occurs around 200th second.

In Figure 7, SVR02 uses two proxies, one is core proxy and the other is ad-
ditional free proxy. Initial set consists of just one core proxy CP0O. The SVR02’s
flash crowds start around 50th second, at this point, the highest peak of client
requests is reached. Initially CPO is added to the system, then immediately

@
3
J
@
3
J

—CP1 CP7

‘ ——CP2——CP8
404 —— SVRO1 404 \ CP3 cP9
—— CP5—— SVRO1

Average on CPs |

W
]
I

of requests
8
!

3
!

o
I

T T T 1 T
0 50 100 Time 150 200 250 0

Figure 6: Access Log of “Live Eclipse” Proxy Cloud

50 4

——CPO
——CP6
SVR02

of requests
8
L

N
S
!

i,

T T T 1 T n T
0 50 100 Time 150 200 250 0 50 100 Time 150 200 250

Figure 7: Access Log of “Nishoku” Proxy Cloud

CP6 is invited for 3 seconds. The CP6 is dismissed since the load is not high
and can be handled by one core proxy and member server. In this situation
where just one core proxy and member server are involved, the system handles
all client requests until the end of the flash crowds. The SVR02’s flash crowds
ends around the 195th second. The member server dismisses core proxy CP0O
and switches back to normal client/server mode.

5 Discussions

The flash crowds are very unpredictable events. Therefore is it very difficult to
determine Tj,,, and especially T},;4p, thresholds. Tj,,, should be as low as average
load of the server in peaceful time. But the system will not switch itself to C/S
mode, just by load dropping under Tj,,. The load should persist under T},
for predefined duration of time. Tp;,, is defined as the rate that is reached in
a short duration, and which cannot ﬁe handled by the member server itself. At
the moment it is planned that CPs are volunteer proxy servers that are already
functioning on the Internet. The priority assignment to individual CPs is done
beforehand; priorities are in the way so that a proxy is not assigned high values

10

for serveral member servers. This way we reduce overlapping of the proxies
involved in the alleviation procedure. The selection of CPs for a member server
depends on the priorities assigned to proxies for that member server. Before
assigning the proxy as a core proxy, the member server probes the proxy for
availability and checks if it is not used by any other member server. In case the
proxy is involved in another alleviation procedure, the member server skips to
the next proxy in the priority table.

6 Conclusions

The strong point of FCAN is its dynamically resizing feature for the cloud of
surrogates. This cloud can grow or shrink according to the load of the system.
In this paper, we present FCAN’s support for multiple servers simultaneously
experiencing independent flash crowds. We investigate efficiency of this feature
using real data which were kindly provided by Live Eclipse project. The sim-
ulation results showed that FCAN system is capable of handling multiple flash
crowds at the same time.

In the Internet, dynamically generated contents have become more and more
popular. We are planning to concentrate our attention on dynamic contents in
flash crowds. The dynamic contents can be divided into two categories:

e Dynamically generated objects (using a backend database and scripts)

e Frequently updated contents

It is important to reduce the number of messages and amount of data ex-
changed in the network to reduce network congestion. In the flash crowds event,
the network already will be overwhelmed by flash crowds object.

Now we are applying some techniques originally developed for “distributed
shared memory”, especially the “lazy release consistency” technique which was
proved one of the most efficient [10].

Acknowledgments

This research was supported in part by MEXT in Japan under Grants-in-Aid
for Scientific Research on Priority Area 18049009, and by JSPS in Japan under
Grants-in-Aid for Scientific Research (B) 17300012.

References

[1] Flash Crowd phenomenon, http://en.wikipedia.org/wiki/Flash_Crowd
[2] Akamai, http://www.akamai.com

[3] C. Pan, M. Atajanov, M. B. Hossain, T. Shimokawa, and N. Yoshida,
“FCAN: Flash Crowds Alleviation Network Using Adaptive P2P Overlay
of Cache Proxies”, IEICE Trans. on Communications, Vol.E89-B, No.4,
pp.1119-1126, 2006.

[4] M. Atajanov, C. Pan, T. Shimokawa, and N. Yoshida, “Scalable Cloud of
Cache Proxies for Flash Crowds Alleviation Network”, Int’l Trans. on Com-
munication and Signal Processing, Vol.8, No.1, pp.59-70, 2006.

11

[5]

[9]

M. J. Freedman, E. Freudenthal, and D. Mazieres, “Democratizing Content
Publication with Coral”, Proc. 1st USENIX/ACM Symp. on Networked Sys-
tems Design and Implementation, 2004.

T. Standing, P. Maniatis, and M. Baker, “Peer-to-Peer Caching Schemes to
Address Flash Crowds”, Proc. 1st Int’l Workshop on Peer-to-Peer Systems,
pp.203-213, 2002.

A. Starvrou, D. Rubenstein and S. Sahu, “A lighweight, robust P2P system
to handle flash crowds”, IEEE Journal on Selected Areas in Communica-
tions, vol.22, no.1 Jan. 2004.

T. Shimokawa, N. Yoshida and K. Ushijima, “DNS-based Mechanism for
Policy-added Server Selection”, SSGRR2000: Int’l Conf. on Advances in In-
frastructure for Electronic Business, Science, and Education on the Internet
July 2000

Live Eclipse 2006, http://www live-eclipse.org/index_e.html

[10] P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy Release Consistency for

Software Distributed Shared Memory”, Proc. 19th Annual Int’l Symp. on
Computer Architecture, 1992.

12

