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Abstract. ASIPs are designed specifically for a particular application
or a set of applications. Their instruction sets must be carefully tailored
to provide high performance as well as to meet non-functional constraints
such as silicon area and power consumption. Traditionally, evaluation of
different candidate instruction sets is all carried out through simulation.
However, the growing design complexity and time-to-market pressure
have rendered simulation increasingly infeasible. In this paper, we present
an instruction level modeling method that can rapidly evaluates several
important aspects of a selected instruction set. Experimental results show
that we can prune a large number of candidate instruction sets with the
model, accelerate design space exploration and alleviate the pressure on
simulation.

1 Introduction

Application Specific Instruction set Processors (ASIPs) are in between custom
architectures such as Application Specific Integrated Circuits (ASICs) and com-
mercial programmable processors such as General Purpose Processors (GPPs).
ASIPs typically consist of a configurable base processor core and a base instruc-
tion set, plus the capability to extend the instruction set. The goal of ASIP
design is to optimize performance for an application domain while minimizing
the area and energy costs.

One of ASIP design approaches is language-driven design space exploration,
based on Architecture Description Languages (ADLs) [2] [3][4]. An ADL spec-
ification is used to generate a software toolkit including compilers, simulators,
assemblers, etc.. Design space exploration is then performed with these tools.
During the instruction set design of an ASIP, first, some pre-designed extensible
instructions are chosen as candidates from a provided library. Then, instruction
set tailoring and extension according to a specific application domain is con-
ducted with the help of the toolkit generated. Research done on the instruction
set design for ASIPs include [8][9][10].
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Traditionally, simulation approach is used throughout the ASIP designs, in-
cluding the process to optimize hardware parameters, instruction matching to
meet the functional requirements of the specific applications, and estimating the
non-functional constraints such as size and power for the ultimate synthesizable
instruction set. However, the long simulation time often gets in the way of the
time-to-market, rendering the design-simulate-analyze methodology not feasible.
Our method aims at reducing simulation when evaluating the instruction set,
meanwhile keeping the concern on non-functional parameters such as power and
size.

The remainder of this article is organized as follows: In Section 2, we out-
line our technical approach. Section 3 introduces our basic data structures and
Section 4 elaborates on our method. In Section 5, we present our preliminary
experimental results and analysis. Section 6 concludes our work.

2 Technique Outline

Fig. 1 shows the process of instruction selection and instruction set extension.
The following is a corresponding explanation:

1. Application specifications in a high-level language (e.g. C, C++) and the
pre-designed extensible instruction library in HDL are translated into an
intermediate representation (IR) respectively. This is called the translation
phase. We use Data Flow Graph (DFG) as our intermediate representation.

2. During the instruction matching phase, we try to cover the DAGs represent-
ing the dataflow of each basic block in an application by DFGs representing
the dataflow of instructions selected from the instruction template library.
This results in covered basic blocks and a candidate instruction set.

3. Construct the Instruction Parameter Table (IPT), which reflects the esti-
mated parameters of each single instruction.

4. Construct the Instruction set Evaluation Model (IEM), with which we are
able to rapidly evaluate overall cost of the candidate instruction set.

5. Evaluate the instruction set using /EM, under system design constraints.

6. Use IEM to help the instruction set optimization (instruction clustering).
Instruction extensions are specified with the architecture description lan-
guage zpADL [16], and corresponding items are added to IPT. Reconstruct
IEM and repeat 5, 6, until the evaluation results are fair.

Representing dataflow of basic blocks and template instructions with DFGs
is trivial. And we adopt the instruction matching algorithm described in [6] to
do the initial DFG covering of basic blocks. In the following sections, we will
focus on our methods according to step 3 through step 6 stated above.

3 Instruction Parameter Table IPT

In this section, we introduce a static resource model called the Instruction Pa-
rameter Table (IPT), which specifies the execution and design parameters of
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Fig. 1. Instruction set design for an ASIP

every individual instruction. The table will be further used to construct the In-
struction set Evaluation Model (IEM), which aims to evaluate several aspects of
a selected instruction set.

Definition 1 An Instruction Parameter Table (IPT) is a table to describe
the evaluated cost of a single instruction execution, where

— 7 is a set of instructions,
— for each I €T,
e cc (I) is the clock cycle needed to execute instruction I on given hardware;
o area (1) is the lut number® of units to implement an estended instruction
I;
e power (I) is the evaluated power consumption for the execution of in-
struction 1;

Values of the first two parameters can be obtained with some tools. We gen-
erate Verilog code for each instruction and put the codes through the Synplicity
tools [1] for the timing (clock cycle) and area (lut number) numbers. Our ASIP
design is based on a pre-fabricated processor core, thus the pre-designed instruc-
tions will not cause additional area on our chip. That is, the area size constraint
is only relevant when we need to generate a new instruction. This is indicated
in our Instruction set Evaluation Model later.

3 We use the lut number because our experiment environment is based on FPGA. The
gate number would be used if synthesize to ASIC.
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Instruction level power evaluation techniques are used to get the third pa-
rameter in the table. With the popularization of embedded systems, low power
design has become one of the most challenging tasks in system development.
A lot of the techniques for system-level power evaluation have been proposed
in the past [12][13][14]. In [17], we presented a novel two-level power estima-
tion model, including a microarchitecture level model and an instruction level
model. The microarchitecture level power model is based upon the structure of
the components, and the instruction level model is based upon the microarchi-
tecture model. Thus, the proposed methodology provides us with an accurate
and rapid model to evaluate high level embedded system design. We get our
power(I) parameter from this evaluation model.

4 Instruction Set Evaluation

Definition 2 We use an Instruction set Evaluation Model (IEM) to fast
evaluate a candidate instruction set for a specific application. An TEM includes
four estimation formulae of the candidate instruction set VW in terms of power
consumption, execution time, area needed for instruction extension, and code
size, formularized as:

Area(W) = Z area(I); (1)

Iew
Size(W) = length(I) x |Tw|; (2)
Time(W) = SPNgeiay(trans form(W)); (3)
Energy(W) = Z power(I) x t(I) x count(I). (4)
Iew

Here, t(I) in formula (4) is execution time needed to execute an instruction
L Tt can be got directly from cc(I), which is defined in IPT together with area(I)
and power(I). Note that area(I) = 0 if I is a pre-designed instruction, so the
total area cost is the number of luts we needed for adding some new kinds of
instructions in an instruction set. count(I) is the number of times instruction [
appeared in the instruction flow of the application execution. It will be explained
a little later.

Fig. 2(a) shows the data flow of a basic block, which is covered by instruc-
tions selected. Take each instruction as a node we get a DAG (Directed Acyclic
Graph) W in Fig. 2(b). The node number of W, |Tyy|, shows the number of
instructions in a compiled application code segment. length(I) is the length of
instructions for a pre-decided instruction set architecture, which is always an in-
variable. Thus, formula (2) tells that the code size is decided by both the length
of every instruction and the number of instructions in a compiled application
code segment.

4.1 Execution time estimation

In our fast evaluation model, we use the DAG (Fig. 2(b)) to evaluate the relevant
performance of execution time. Two problems must be considered first. One is
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the iteration times of each basic block. The other one is how the structure of
the graph, those concurrency and dependency, affect the pipelining of the actual
instruction flow.

We use two vectors to help illustrate our evaluation method, one is 6, the
other is ¢. For each node t in DAG W, if t € B, B is a basic block, then
0(t) = 0(B) is the iteration times of B, and ¢(t) = ¢(B) is the parallelability of

B, which means the execution time of ¢ can be reduced to % by pipelining.

So the whole execution time can be expressed as:

Z ZteB;delay « G(B) _ Z tdelay X e(t) (5)

&, B " 0

For 0(B) in formula (5), we use executive without compiling optimization of
the application as the input to an instruction set simulator ISAsim 4, and get
the execution frequency 6 of basic blocks with the profiling module of ISAsim.
Although the profiling of this vector parameter based on a simulation technique,
our evaluation method can still be helpful and faster because we only need the
same 6 when evaluating among different instruction set with the same applica-
tion.

Another problem is to get the actual execution time of each basic block.
This is complex due to the pipeline behavior. However, the greatest parallelism
we can get from pipelining will be constrained by the dependency in the DAG
(flow graph). We approximate the actual pipelined execution time of the basic
block with timed Petri net. This is reasonable for two sakes: First, architecture
relative optimization can’t be performed before instruction set is decided and
our methods just consider the maximum possibility of parallelism; Second, we
just want to compare between different instruction selections, thus we don’t

4 ISAsim is part of zpSIM generated by our zpADL, we will briefly introduce them
later.
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need actual precise clock cycles, Proper approximation is enough for evaluating
preference.

Definition 3 A Shifted Petri net (SPN) is an extended timed Petri net[15]
with following differences from Petri net:

At any time, each place can have at most one token in it.
For every transition t, there exist a transition delay which represents the
execution time of the function associated to the transition. Formally,

VteT, thelay S Rar,

with R(J{ being the set of non-negative real numbers.

Each token k holds a time stamp kiime.

When a transition t is fired, the marking M will generally change by re-
moving all the tokens from the pre-set °t and depositing one token into each
element of the post-set t°, and

ktime = rjnea}{.]tzme} + tdelaya Vk € K;

where J is the set of tokens in °t, and K is the set of tokens in t°

Algorithm 1: TRANSFORM Algorithm 2: GET SPNgeiay
01: Input: DAG W = (Trg, Erc); IPT. 01: Input: SPN = (P,T;F) .

02: Owutput: SPN = (P, T; F, M) . 02: Output:

03: for each t' € Tra execution time of the SPN SPNgeiqy
04: count(I) = count(I) + 0(t') ; 03: for each p € inP

05: t=newy t=t; 04: k = newtoken; ktime = 0;
06: tdetay = 0(t') x lookuprpr (¢, cc); 05: put k into p; Mo(p) = 1;
07: put ¢ into T'; 06: end for

08: if°t' =0{ 07: while (3t € T', t is enabled), do
09: p = newp; put p into inP; 08: fire(t);

10: f =mnewy; put f = (p,t) into F; }||09: end while

11: else if t'° =0 { 10: SPNgeiay = pgﬁi(p{k”me(p)};
12: p = new,p; put p into outP; 11: return SPNgeiay;

13: f =mnewy; put f = (¢,p) into F; }

14: end for

15: for each e = (t),t5) € Frc

16: p = newp; put p into P;

17: f =newy; put f = (p,t) into F;

18: f = newy; put f = (¢,p) into F;

19: end for

20: P=PJinPJourP;

21: My=P —0

22: return SPN = (P,T; F, My);

Formula (3) according to Algorithm 1 and algorithm 2 is based on this ap-

proximation. Algorithm 1 describes how to transform a DAG into a Shifted Petri
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Net. Vector 6 is bound to each t in line 4 and 6. So line 4 keeps the accumulation
for the instruction frequency count(I), which is used in our power evaluation;
and line 6 takes the block frequency into consideration of whole execution time
as the numerator on the right of formula 5. Algorithm 2 uses firing rules of
timed Petri net to evaluate the execution time with instruction level parallelism
to incarnate the parallelability ¢(t) on the right of formula 5.

4.2 Power consumption

Formula 4 uses count(I) get from Algorithm 1 and simply adds all the power
consumption estimation value of each instruction used in the application to get
the total power consumption of application implementation with the candidate
instruction set. From the view of pipeline, this is not correct since power con-
sumption of a single instruction are different between being stall and being
normal, i.e., in pipeline, power consumption of an instruction is related to its
previous instructions executed, deploy policy, even related to the memory system
of the CPU. Thus, estimating the running power consumption of an application
is difficult. However, the instruction level power consumption parameters we get
from [17] is an average normal running values, which dissipates the power con-
sumption of stall in to every instruction in the power model. The experiment in
[17] also shows that the relevant error compared to the result of SimplePower[5]
is less than 10%.

4.3 xpADL driven develop environment

Our fast evaluation method is part of our system-level develop platform for ASTP.
We have explored a design environment driven by an architectural description
language called zpADL [16]. It can generate a tool kit used for DSE including
rechargeable simulators and compilers. In the method of this paper, two tools
are used. One is the simulator apSIM mentioned in block frequency profiling.
Another tool we used from zpADL is zpSYN. During instruction set optimiza-
tion, extended instructions are specified in zpA DL, and relies on the synthesizer
xpSYN to generate an efficient hardware implementation, often with the Verilog
code. The codes will be further put through the Synplicity tools [1] to obtain
instruction information such as timing and area. We add these information into
our Instruction Parameter Table (IPT).

5 Experimental Results and Analysis

5.1 Experimental setup

We conduct a case study to demonstrate the effectiveness of our approach in the
following steps:

First, use PISA [7] instruction set as pre-designed instruction library. De-
scribe it using xpADL, and generate a simulator zpSIM as reference. Then, IPT
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construct is done by using apPower in [17] with 2.5V, 50M H z to get instruction-
level power evaluation, and by using Synplify Pro map to Xilinx xc2s200 to get
instruction clock cycle (and we also use it later to get the luts number of ex-
tended instructions). Add different instructions to the original instruction set W,
get candidate instruction sets and evaluate them using IEM. Take susan_smooth
program for example, after some profiling, we get three candidate instruction
set W1, W2, and W3 by adding fabricated instructions a x b+ ¢, a + b+ ¢, and
a * b+ ¢ % d respectively. Some evaluation parameter values are shown in Table
1. Lastly, the above steps are iterated for different instruction set extensions.

Table 1.

IS || Area| Size Time Energy Total
(luts)|(bytes)| (cc) Instr_count
W 0 [184160|42241680|326697097| 61533089
WI1|| 543 [173184]41592513(317305112| 57666965
W2| 62 |179584(42221870|325052831| 59864311
W3|| 1054 |184128(42231774(326584738| 61525951

5.2 Results and analysis

We apply our fast evaluation method on several different instruction set exten-
sion, then analyze the rationality of our evaluation results, also compare the time
evaluation to our zpSIM generated from xpADL. We find that time evaluation
results differ a lot from simulation. However, the trend of which instruction set
can make application faster is almost the same. For other evaluation factors,
there is no exercised comparative standard, however, they are consisted to the
system designers’ empiricism. (e.g. Fig. 3 for susan_smooth from Table 1).

W Wl M2 w3

Fig. 3. Compared evaluation results

1
Ew = - : . (6)
Power(W)PP x Size(W)PS x (C+Area(W)ﬁA ) x Time(W)PT
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Formula (6) combines the evaluation parameters in IEM and indicates when
an instruction set is more superior. Fig. 4 is Eyy of four code segment on four
instruction-set respectively, with § all set to 1. It indicates that instruction set
W1 might be the best choice for susan_smooth. Actually, we noticed that, the
instruction mult + mflo appeared with a frequency about 6.283% in the final
execute flow, while addiu + addu appeared with about 2.712% and instructions
in the form of a * b + ¢ * d appeared with about 0.0116%. On the other hand,
instruction extension with form a * b + ¢ is not suitable for blowfish. This is
because there is not mult instruction in flowfish.

E | R
] wh
B w:
W s

qsort susan_ basic-  blow
smooth math fizh

Fig. 4. Efficiency of different instruction sets

6 Conclusions

In this paper we propose a method for fast evaluating the instruction set tar-
geted towards a certain application, with several design constraints. We use the
Instruction level Parameter Table and an Instruction set Evaluation Model to
compare different candidate instruction sets concerning their power consump-
tion, code size, chip area and execution time. Our model is not as precise as the
simulation techniques, but it has three important advantages. First, when han-
dling a large number of candidate instruction sets, our method fast pre-prunes
most of them, reducing the dependence on simulation (which is always the bot-
tleneck in the design space exploration). Second, while simulators only focus on
performance, our evaluation method also provides an overall view of the instruc-
tion set design. Lastly, we use Petri net in our model to get time evaluation. The
flow graph representation of Petri net eases the application profiling since loops
and concurrency are explicitly illustrated. This is much better than analyzing
the instruction flow provided by a simulator.

For future work, we try to make our model more precise and applicable to a
broader range of instruction set architectures.
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