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Abstract. Due to the open and dynamics nature of ubiquitous com-
puting environments and services, quantitative service differentiation is
needed to provide controllable quality of service (QoS) levels to meet
changing system configuration and resource availability and to satisfy
different requirements of applications and users. A proportional differ-
entiation model was proposed in the DiffServ context, which states that
QoS factors of certain classes of aggregated traffic be proportional to their
differentiation weights. While it provides compelling proportionality fair-
ness to clients, it lacks of the support of a server-side QoS optimization
with respect to the resource allocation. In this paper, we propose and pro-
mote a square-root proportional differentiation model for delay-sensitive
Internet services. Interestingly, both popular QoS factors with respect
to delay, queueing delay and slowdown, are reciprocally proportional to
the allocated resource usages. We formulate the problem of quantitative
service differentiation as a resource allocation optimization towards the
minimization of system delay, defined as the sum of weighted respon-
siveness of client request classes. We prove that the optimization-based
resource allocation scheme essentially provides square-root proportional
service differentiation to clients. We then propose a generalized rate-
based resource allocation approach. Simulation results demonstrate that
the approach provides quantitative service differentiation at a minimum
cost of system delay.

1 Introduction

Popular Internet services must be scalable to support a large number of concur-
rent client requests reliably, responsively, and economically [3]. These scalability
and availability requirements pose great challenge on both processing power
and networking capacity. Meanwhile, clients of Internet services are diverse with
respect to service expectations and access devices. To meet changing system
configuration and resource availability and to satisfy different application and
client requirements, there is an increasing demand for provisioning of different



levels of quality of service (QoS) [2,4,7,10,12]. Service differentiation is to pro-
vide a certain level of QoS guarantee to a class of aggregate requests based on
predefined service level agreements with the clients. It can provide degraded
levels of QoS to client requests when a server is heavily loaded, but also adapt
the service quality to meet the variety of client preferences and devices. By ad-
justing the level of QoS, service differentiation techniques are able to postpone
the occurrence of request rejection as the server load increases. They achieve
the scalability in terms of cost-effectiveness. In addition, service differentiation
can also provide an incentive for different charging policies for most of today’s
QoS-sensitive Internet services.

The service differentiation architecture is also demanded in ubiquitous com-
puting and communications. By blending computers into the ubiquitous net-
working infrastructure, ubiquitous computing provides people with a most wide
range of communication and information access services. The services are en-
sured to be accessible anytime, anywhere on any device. Provisioning of such
services is a challenge because of the diversity of access devices and access net-
works. Their capabilities to receive, process, store and display media-rich content
vary greatly. A user who accesses streaming services on a cellular phone must
expect different service qualities from users on a highend workstation with high
bandwidth networking capacities. A service differentiation architecture supports
such heterogeneous QoS requirements and preferences by adapting the stream
quality to various devices and access patterns.

To provide quantitative QoS differentiation, the proportional differentiation
model [4] was proposed which states that QoS metrics of certain classes of ag-
gregated requests should be proportional to their differentiation parameters,
independent of their workloads. It is accepted as an important relative differ-
entiation model and is applied in the proportional delay and loss rate differen-
tiation in packet forwarding and dropping [4]. It is also adopted for server-side
service differentiation [7,11]. While the proportional model provides compelling
proportionality fairness to clients, it lacks of the support of a server-side QoS
optimization with respect to the resource allocation. This is due to the fact that
from the server’s perspective, the QoS factor offered to a client is usually not
proportional to the resource usage allocated.

In this paper, we propose and promote a square-root proportional differenti-
ation model for delay-sensitive Internet services, in which delay is the key QoS
metric. We find that both popular delay factors, queueing delay and slowdown,
are reciprocally proportional to the allocated resource usages according to the
foundations of queueing theory. Note that slowdown measures the ratio of a re-
quest’s queueing delay to its service time. It is known that clients are more likely
to anticipate short delays for “small” requests and more willing to tolerate long
delays for ”large” requests [5]. The slowdown metric characterizes the relative
queueing delay. We formulate the problem of quantitative service differentiation
as a resource allocation optimization towards the minimization of system delay,
defined as the sum of weighted delay of client request classes. We prove that the
optimization-based resource allocation scheme essentially provides square-root



proportional differentiation to clients. We then propose a generalized rate-based
resource allocation approach. Simulation results demonstrate that the approach
provides quantitative service differentiation at a minimum system delay.

The structure of the paper is as follows. Section 2 reviews related work. Sec-
tion 3 gives the square-root proportional differentiation model with a generalized
resource allocation approach. Section 4 focuses on the performance evaluation.
Section 5 concludes the paper with remarks on the implementation issues.

2 Related Work

The concept of service differentiation is not new. It was first invented for QoS-
aware packet scheduling in the network core. The proportional differentiation
model has been extensively studied in packet scheduling with respect to packet
delay, packet loss, and connection bandwidth; see [4] for a representative ap-
proach. The work in [7] demonstrated that some approaches developed for pro-
portional delay differentiation on networks can be tailored for its provisioning
on Internet servers. While the model is compelling and important for Internet
services due to its inherent proportional fairness and predictability properties,
it lacks of the resource allocation optimization from the server’s perspective.

On the basis of request classification, the objective of service differentiation
on servers can be realized in five aspects: admission control, feedback control,
content adaptation, resource allocation, and request scheduling. Admission con-
trol can provide QoS guarantees on delivered services, such as response time and
bandwidth, to different classes. The work in [8] developed an admission control
mechanism to provide differentiated bandwidth allocation to multiple service
classes in a Web server. Feedback control operates by responding to measured
deviations from the desired performance. The work in [9] proposed to integrate a
queueing model with proportional integral control for relative request delay guar-
antees in Web servers. Multimedia objects are becoming a prevalent part of Web
content. Content adaptation techniques are often used to deliver the media-rich
objects in different formats, resolutions, sizes, color depths, and other quality
control options for service differentiation purposes [12].

Priority-based request scheduling and rate-based resource allocation are gen-
eral resource management approaches to ensuring the QoS of requests or preserv-
ing the quality spacings between two classes. There are efforts on priority-based
request scheduling with admission control for response time differentiation [2].
Incoming requests were categorized into the appropriate queues and executed
according to their priority levels [2]. The approach was shown to be effective for
service differentiation in terms of queueing delays between lower and higher pri-
ority classes of traffic, but with no guarantee of quality spacings. In this paper,
we propose and promote a square-root proportional differentiation model, which
essentially provides the resource allocation optimization and proportionality fair-
ness at the same time. We adopt a rate-based resource allocation approach in
the simulations and performance evaluation.



3 A Square-root Proportional Model

Predictability and controllability are two basic requirements of quantitative ser-
vice differentiation. Predictability requires that higher priority classes receive
better or no worse service quality than lower priority classes. Controllability re-
quires that a scheduler contain a number of controllable parameters that are
adjustable for the control of quality spacings between classes. An additional re-
quirement is fairness. Fairness is a quantitative extension of the predictability,
which describes how much better QoS received by a class compared with that
received by another class.

Proportional fair-sharing is compelling and important for various Internet
services due to its inherent proportional fairness and predictability properties.
Assuming incoming requests are classified into IV contending classes, the propor-
tional differentiation model aims to ensure the quality spacing between class @
and class j to be proportional to certain pre-specified differentiation parameters
d; and ¢; [4]. We consider delay as the key QoS factor in delay-sensitive Internet
services. The quality factor of a request class is then represented by the inverse
of its delay. That is,
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where ¢; and g; are the delay factors of class 7 and class 7, respectively. The model
essentially considers the proportional fairness to the clients. From the viewpoint
of the server, however, it lacks the support of a system-wide QoS optimization
with respect to the resource allocation.

In the following, we formulate a general resource allocation problem that aims
to optimize a system-wide QoS to the server. We will prove that the derived
allocation scheme also provides proportional service differentiation, in square
root, to the clients. The basic idea of QoS provisioning is to divide the resource
allocation procedure into a sequence of short intervals. In each interval, based
on the measured resource utilization and the predicted workload, the available
resource usages of the server are differently allocated to N task servers handling
traffic classes. We assume the processing rate of a server can be proportionally
allocated to the task servers. Each task server presents a processing unit that
handles requests from the same class in a FCFS manner. The objective of the
optimization is to minimize the system delay. Based on the delay factor (g;) for
individual request classes, the system delay is naturally defined as G = Zi\; 0:qi,
the weighted delay of all request classes. We introduce the system delay as the
system-wide QoS of a delay-sensitive Internet server. We formulate the resource
allocation for quantitative service differentiation as the following optimization
problem:

1<i4,5 <N,

N
Minimize G = Z 0iqi (1)

i=1

subject to q; = f(ci, i), (2)



Zci < C. (3>

(1) defines the objective function of the quantitative service differentiation. It is
to minimize the system delay of the server. It implies that requests from higher
classes get lower delay (higher QoS). The rationale is its feasibility, differenti-
ation predictability and controllability. (2) gives the definition of ¢; with the
allocated resource usage (¢;) and the workload (I;) of class i. We assume that
the server has a single processing resource bottleneck. Although processing a re-
quest often needs to consume resources of different types, resource management
usually focuses on the allocation of the most critical resource [2, 5]. (3) gives the
constraint of the resource allocation, where C' is the resource available during
the current resource allocation interval, which is the server’s processing capacity
minus the overhead of resource usage collection and allocation in each interval.
A processing rate allocation scheme is needed to determine the amount of the
resource usages allocated to the task servers for handling requests so that the
resource utilization is maximized.

For quantitatively predictable and controllable differentiation, we need to
have a closed form expression of quality factor(s) with respect to resource allo-
cation. We find that both popular delay factors, queueing delay and slowdown,
are reciprocally proportional to the allocated resource usage (processing rate).
We consider a general workload model on each task server. Let my, m_1, and mo
be the first moment (mean), the moment of its inverse, and the second moment
of the service time distribution, respectively. According to Pollaczek-Khinchin
formula [6], we have

Lemma 1. Given an M/G/1 FCFS queue on a task server i, where the arrival
process has workload l;. Then, the delay factor q; is reciprocally proportional to
the allocated resource usage to server i (c;). That is,

¢ = fleili) = Ao = 1)’

(4)
where < is a value determined by the service time distribution of the traffic
workload.

Proof. . Let d; and s; be the queueing delay and slowdown of a job on the task
server i, respectively. Let \; denote the arrival process of request class i. We
have l; = my ;. According to Pollaczek-Khinchin formula [6], we have

_ Ame ome/maly B
di = 2(61 — /\1m1) N 2(@2 — ll) - 2(01 — lz)’ xX= mz/ml. (5)

mgm,l/mlli - 0.8 lz
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S; = dim,1 = X= mgm,l/ml. (6)

It concludes the proof.



Theorem 1. The optimal resource allocation scheme to (1) essentially provides
square-root proportional QoS differentiation. That is,
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where function g(l;,1;) describes the workload relationship of two classes.

Proof. The optimization of (1) ~ (3) is essentially a continuous convex separa-
ble resource allocation problem. According to foundations of resource allocation
theory, its optimal solution occurs when the first order derivatives of the objec-
tive function over variables ¢; are equivalent. Specifically, the optimal solution
to (1) occurs when

X (;1[1 X 5]' lj

(20 — ;)2 - _(2(Cj —1,))? 1<4,5 <N (8)

It follows that
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Together with the constraint (3), the set of equations (9) leads to a linear
equation system. It follows the generalized rate-based resource allocation ap-
proach as

N
(C =251 L)Vl
~ .
2i=1 V05l
The first term of (9) ensures that the task server will not be overloaded. The
second term means that the remaining capacity of the server is proportionally
allocated to different classes according to their scaled arrival rates and differen-

tiation parameters.
Accordingly, the delay factor of a request class is calculated as
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It follows that
qi li |6
= =/ =1/ (12)
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(12) shows that the allocation approach has the property of square-root propor-
tional fairness as well, where g(1;,1;) = \/l;/l;. It concludes the proof.

Thus, this square-root proportional allocation scheme meets a two-fold ob-
jective: one is the (square-root) proportional service differentiation provision-
ing; the other is the optimization of the resource allocation with respect to the
system-wide QoS metric.



Remark. Recall that I; = mq\;. According to (12), the predictability of ser-
vice differentiation holds if and only if \/A;/A; < /6;/9; for 1 < j < i < N.
Otherwise, the predictability, that is, ¢; < g; if and only if 4 > j, will be vio-
lated. One solution is temporary weight promotion in [13]. When it is applied in
this context, based on the current session arrival rates and the number of visits
to a state in sessions, the scheduler temporarily increases weight ¢§; in the cur-
rent resource allocation interval so that the predictability of the relative service
differentiation holds. In this context, the allocation scheme becomes heuristic.

4 Performance Evaluation

To evaluate the rate-based resource allocation approach on quantitative service
differentiation, we built a simulator. The processing rate allocation can be im-
plemented by the use of many different mechanisms, as we are going to discuss
in Section 5. In this work, we built a simulator because that without being af-
fected by the methods of implementations, simulation can effectively evaluate
the performance of the rate allocation schemes by itself. The simulator consists
of a number of request generators, waiting queues, a load estimator, a processing
rate allocator, and a number of task servers. We conducted the simulations with
requests generated by using GNU scientific library. We consider Bounded Pareto
distribution, a typical heavy-tailed distribution, for the service time distribution
of workloads. Given a distribution, the first moment my, the moment of its in-
verse m_1, and the second moment msy can be represented in closed forms [11].
Due to the space limitation, we show the results of slowdown differentiation
only, while the results of queueing delay differentiation are similar. Each result
reported is an average of 100 runs, unless otherwise specified.

4.1 Impact of Square-root Proportional Model on System QoS

Fig. 1 shows the results of system slowdown with the increase of server load
by the use of the square-root rate allocation approach proposed in this paper
and the proportional rate allocation scheme proposed in [11]. The predefined
differentiation weight ratio of high priority class to low priority class (07 : d2) is
4:1. The workload ratio of the two classes (I : l2) is 1:4.

Fig. 1(a) illustrates the effectiveness of the generalized rate allocation ap-
proaches by comparing the achieved system slowdown with the calculated slow-
down. We found that simulation results closely agree with the expected results
under various load conditions, before the server is heavily loaded (< 70%). The
gap between the simulated results and the expected results increases as the
server load increases. This is due to the variance of both inter-arrival time dis-
tributions and the heavy-tailed service size distributions. When the workload is
above 80%, the server observes more backlogged jobs. Slowdown of some back-
logged jobs could be very large, which increases the variance of the simulation
results. Second, we find that the square-root proportional rate allocation ap-
proach can reduce system slowodown significantly compared to that received by
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Fig. 1. System slowodown and its improvement due to different differentiation schemes.

the proportional approach. The improvement is shown in Fig. 1(b) with both
predicted and simulated values. We also want to note that when two classes have
the equal workload, the proportional approach indeed achieved the same system
slowdown as a non-differentiation approach did (the results are not shown due to
the space limitation). The results demonstrate the superiority of the square-root
proportional model in optimizing resource allocation for minimizing the system
slowdown. Also, we note that the improvement degree of system slowdown is
dependent on the workload ratio and differentiation weight ratio of the classes.

4.2 Differentiation Properties of Square-root Proportional Model

We then show the differentiation predictability and controllability of the rate
allocation approaches. The predefined differentiation weight ratio of two classes
(01 : 92) is set to 2:1. The workload ratio of two classes (7 : l2) is set to 1:1.

Fig. 2 shows the quantitative slowdown differentiation when the server work-
load changes from 10% to 90%. The results were due to the square-root pro-
portional rate allocation approach. Fig. 2(a) shows a per-class view of request
slowdown. It shows that the expected results closely agree with the simulated
results when the workload is moderate. This is due to the fact that the rate
allocation approach is guided by the predictive queueing model. When the sys-
tem load is close to system capacity, say at 90%, the rate allocation approach
generates poor predictability. This can be explained by the fact that as the
system load is close to its capacity, the impact of the variance of inter-arrival
times on slowdown dominates. This mitigates the controllability of the queueing-
theoretical rate allocation approach. Fig. 2(b) shows the achieved slowdown ratio
of two classes with the 95% confidence interval measured with 20 runs. As the
workload is close to the server capacity, the predictability is not desirable.

We then show the differentiation results by the use of the proportional rate
allocation approach. Fig. 3 depicts the achieved per-class request slowdown with
the 95% confidence interval measured with 20 runs at different system workload
conditions. It has the basic similar shape as Fig. 2. Results show that the rate
allocation approach is able to achieve the proportional differentiation as well.



From these results, we find that the generalized rate allocation approaches can
achieve the objective of providing quantitative service differentiation to classes
with different differentiation parameters under various system load conditions in
long timescales.
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Fig. 2. Two-class differentiation due to the square-root proportional model.
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Fig. 3. Two-class differentiation due to the proportional model.

We conducted a wide ranger of sensitivity analysis. We varied the number of
request classes, the arrival rate ratios of the classes, and the differentiation weight
ratios of the classes. While we do not have space to present all of the results,
note that we did not reach any significantly different conclusion regarding to the
quantitative service differentiation achieved by two models.

5 Conclusion and Future Work

In this paper, we proposed a square-root proportional service differentiation
model for ubiquitous computing environments and services. It was derived from
the resource allocation optimization towards minimizing the system slowdown of
an Internet server. We proved that the optimization-based allocation scheme es-
sentially provides square-root proportional fairness to clients. Simulation results
demonstrated that the derived rate allocation approach can provide quantitative
service differentiation at a minimum of system delay.



A challenging issue left is how to allocate resources to meet an allocation
of processing rate. In the theoretical analysis, we adopted the concept of task
server to represent the processing rate that can be allocated to a traffic class.
In practice, it can be a process on an individual Web server, a thread on a
multi-thread server, a processor in a parallel machine, and a node in a server
cluster. Process abstraction serves both as a protection domain and as a resource
principal in current general-purpose operating systems. However, because an ap-
plication does not have the control over the consumption of resources that the
kernel consumes on behalf of the application, resource principals do not always
coincide with processes. There are efforts on OS support for service differentia-
tion, as exemplified by resource containers [1]. The implementation of the rate
allocation schemes on servers deserves further study and evaluation.
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